亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        色散對(duì)雙晶交叉偏振濾波輸出特性的影響?

        2017-08-01 01:49:52耿易星李榮鳳趙研英王大輝盧海洋顏學(xué)慶
        物理學(xué)報(bào) 2017年4期
        關(guān)鍵詞:輸出特性功率密度色散

        耿易星 李榮鳳 趙研英王大輝 盧海洋 顏學(xué)慶

        (北京大學(xué)物理學(xué)院,核物理與核技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100871)

        色散對(duì)雙晶交叉偏振濾波輸出特性的影響?

        耿易星 李榮鳳 趙研英?王大輝 盧海洋 顏學(xué)慶

        (北京大學(xué)物理學(xué)院,核物理與核技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100871)

        (2016年9月13日收到;2016年10月7日收到修改稿)

        在北京大學(xué)超小型激光等離子體加速器系統(tǒng)上,通過壓縮器對(duì)激光脈沖引入色散,研究了色散對(duì)雙晶交叉偏振濾波(XPW)輸出特性的影響.結(jié)果顯示,隨著正負(fù)色散的引入,XPW功率會(huì)減小、輸出光譜帶寬也會(huì)變窄、輸出光譜中心波長(zhǎng)會(huì)發(fā)生藍(lán)移和紅移.與此同時(shí),正負(fù)色散對(duì)于三者的影響具有不對(duì)稱性,負(fù)色散相對(duì)于正色散會(huì)更快減小XPW功率和輸出光譜帶寬.因此,對(duì)雙晶XPW輸出特性而言,正色散的影響要小于負(fù)色散.該結(jié)果對(duì)雙晶XPW技術(shù)在高對(duì)比度超強(qiáng)激光中的應(yīng)用提供了重要的實(shí)驗(yàn)數(shù)據(jù).

        啁啾脈沖放大,交叉偏振濾波,光譜,色散

        1 引 言

        隨著超短超強(qiáng)激光的不斷發(fā)展,尤其是采用啁啾脈沖放大(chirp pulse amplification,CPA)技術(shù)后[1],飛秒激光聚焦的功率密度不斷提高,當(dāng)前可以達(dá)到的功率密度為1020W·cm-2,為研究強(qiáng)場(chǎng)物理提供新的技術(shù)手段[2-4],在如此高的功率密度下,激光的時(shí)域?qū)Ρ榷仍趶?qiáng)場(chǎng)物理實(shí)驗(yàn)中扮演著重要的角色.

        但是,在高功率激光裝置中,由于選單元件消光比的限制以及放大過程中的自發(fā)放大輻射效應(yīng)等因素的影響,不可避免地會(huì)存在時(shí)域背景噪聲,從而導(dǎo)致激光脈沖時(shí)域?qū)Ρ榷认陆礫5].當(dāng)超強(qiáng)激光與固體靶相互作用時(shí),如果飛秒激光的自發(fā)放大輻射或者預(yù)脈沖的功率密度超過1012W·cm-2,靶體會(huì)先被預(yù)脈沖離化形成預(yù)等離子體,進(jìn)而影響主脈沖與固體靶的相互作用以及最終的實(shí)驗(yàn)結(jié)果[6-8].為了得到高對(duì)比度的激光脈沖,目前發(fā)展了多種提高對(duì)比度的方法,如可飽和吸收體[9]、光學(xué)參量啁啾脈沖放大[10]、交叉偏振濾波(crosspolarized wave,XPW)[11,12]、等離子體鏡等[13,14].其中XPW技術(shù)結(jié)構(gòu)相對(duì)簡(jiǎn)單,轉(zhuǎn)化效率高,提高對(duì)比度明顯,尤其是雙晶XPW技術(shù)的發(fā)展,可以有效地避免單晶帶來的飽和問題,獲得更高的轉(zhuǎn)化效率,更有益于該技術(shù)在超強(qiáng)激光中應(yīng)用[15].在雙啁啾脈沖放大激光系統(tǒng)中,雙晶XPW技術(shù)可有效地提高太瓦(TW)甚至拍瓦(PW)量級(jí)的激光對(duì)比度[16,17].

        XPW技術(shù)不但可以有效地提高飛秒激光時(shí)域?qū)Ρ榷?而且具有良好的光譜展寬和時(shí)域壓縮效應(yīng).在CPA系統(tǒng)中,由于增益窄化效應(yīng)會(huì)導(dǎo)致光譜帶寬越來越窄,可壓縮的脈沖寬度越來越寬,從而降低激光的功率密度.而XPW輸出光譜帶寬在特定條件下可以獲得倍的展寬,極大地?cái)U(kuò)展了CPA系統(tǒng)的光譜帶寬,使PW激光脈寬可壓縮到30 fs[18].目前已有色散對(duì)單晶XPW輸出特性的理論和實(shí)驗(yàn)研究[19-22],還沒有對(duì)雙晶XPW輸出特性的相關(guān)研究.因此我們?cè)诒本┐髮W(xué)超小型激光等離子體加速器(compact laser plasma acceler-ator,CLAPA)系統(tǒng)上[23,24],通過改變壓縮光柵間距的方法為激光脈沖引入色散,研究了不同色散對(duì)雙晶XPW效率、輸出光譜帶寬以及輸出光譜中心波長(zhǎng)的影響.研究表明,正負(fù)色散對(duì)雙晶XPW上述特征具有不對(duì)稱的影響,負(fù)色散更加快速地降低XPW效率和輸出光譜帶寬,并且對(duì)輸出光譜中心波長(zhǎng)的影響也更加顯著.

        2 XPW技術(shù)的原理

        XPW過程是由晶體三階非線性張量χ3的實(shí)部各向異性所決定的三階非線性簡(jiǎn)并四波混頻過程,輸出波的偏振方向垂直于入射波偏振方向.當(dāng)激光功率密度達(dá)到一定強(qiáng)度時(shí),線偏振激光經(jīng)過非線性晶體后,其波矢會(huì)發(fā)生一定角度的旋轉(zhuǎn),產(chǎn)生與原來偏振方向垂直的交叉偏振波.由于對(duì)激光強(qiáng)度存在依賴效應(yīng),產(chǎn)生XPW所要求的功率密度一般要大于1012W·cm-2,這樣才能保證有較高的轉(zhuǎn)換效率.如果在光路中放置一對(duì)偏振正交的偏振片,主脈沖的功率密度較高,經(jīng)過非線性晶體后偏振方向發(fā)生旋轉(zhuǎn),其正交偏振分量會(huì)透過正交的偏振片,而脈沖中的預(yù)脈沖和自發(fā)放大輻射由于功率密度達(dá)不到產(chǎn)生XPW的閾值,不能發(fā)生三階非線性效應(yīng),偏振方向不發(fā)生偏轉(zhuǎn),不能透過正交偏振片,從而被濾掉,因此,XPW技術(shù)可以有效地提高超強(qiáng)激光脈沖的時(shí)域信噪比.

        3 實(shí)驗(yàn)裝置

        實(shí)驗(yàn)在北京大學(xué)CLAPA系統(tǒng)上進(jìn)行,該系統(tǒng)的前級(jí)為重復(fù)頻率1 kHz的再生鈦寶石放大器.輸入XPW的單脈沖能量為150μJ,脈沖寬度為40 fs,輸入光譜的中心波長(zhǎng)λINI為796.5 nm,輸入光譜帶寬ΔλINI為35.5 nm.實(shí)驗(yàn)中通過改變壓縮光柵的間距引入色散,這里僅考慮光柵引入的二階色散,壓縮器引入色散φ2=±2000 fs2.圖1所示為雙晶XPW技術(shù)的實(shí)驗(yàn)設(shè)置圖,其中P1和P2是正交放置的格蘭棱鏡,消光比優(yōu)于10-6;F1和F2是聚焦系統(tǒng).壓縮后的飛秒激光脈沖以水平偏振經(jīng)過一塊格蘭棱鏡P1后進(jìn)入系統(tǒng),經(jīng)過F1聚焦系統(tǒng)聚焦后進(jìn)入兩塊BaF2晶體,產(chǎn)生的XPW脈沖由透鏡F2準(zhǔn)直后,通過第二塊偏振正交的格蘭棱鏡P2輸出.

        圖1 (網(wǎng)刊彩色)雙晶XPW技術(shù)實(shí)驗(yàn)設(shè)置 其中P1和P2是一對(duì)正交放置的格蘭棱鏡,F1和F2是聚焦系統(tǒng)Fig.1.(color online)Experimental setup of XPW filter,P1,P2 are orthogonal positioned Glan prisms,F1 and F2 are focus system.

        4 實(shí)驗(yàn)結(jié)果與討論

        4.1 XPW效率

        我們首先測(cè)量了XPW效率η與色散φ2之間的關(guān)系,實(shí)驗(yàn)結(jié)果如圖2所示.當(dāng)φ2=0時(shí),η為17%.隨著φ2不斷增大,η不斷減小,從初始的17%降至1%.實(shí)驗(yàn)中發(fā)現(xiàn),±φ2對(duì)雙晶XPW效率的影響呈現(xiàn)不對(duì)稱性.φ2<0時(shí),即引入的色散為負(fù),η隨著φ2的增加迅速下降,φ2=-2000 fs2,η=1%.而φ2>0,即引入的色散為正,η隨著φ2的增加下降比較緩慢,φ2=2000 fs2,η=5%.當(dāng)|±φ2|=1120 fs2時(shí),ηφ2=-1120=3%,ηφ2=1120=10%,ηφ2<0明顯要小于ηφ2>0.

        圖2 XPW效率與色散φ2的關(guān)系Fig.2.Measured XPW efficiency as a function of quadratic spectral phase.

        4.2 XPW輸出光譜帶寬

        圖3 XPW輸出光譜帶寬ΔλXPW與色散φ2的關(guān)系 實(shí)線為測(cè)量的XPW輸出光譜帶寬,虛線為輸入光譜帶寬Fig.3.Measured spectral width(FWHM)of the XPW pulse as a function of quadratic spectral phase(full line).The dashed line is the spectral width of the initial pulse.

        4.3 XPW輸出光譜中心波長(zhǎng)

        色散φ2不但對(duì)于XPW輸出光譜帶寬有影響,而且對(duì)于輸出光譜中心波長(zhǎng)λXPW也有顯著的作用,如圖4所示,圖中實(shí)線是實(shí)驗(yàn)測(cè)量得到的輸出光譜中心波長(zhǎng)λXPW,虛線是輸入光譜的中心波長(zhǎng)λINI. 可以看出,φ2=0時(shí),λXPW=775 nm<λINI,存在藍(lán)移.引入色散φ2后,λXPW出現(xiàn)了明顯的移動(dòng),并且±φ2對(duì)λXPW的影響并不對(duì)稱.φ2<0,λXPW隨著φ2的增加開始進(jìn)行紅移,φ2<-350 fs2時(shí),λXPW>λINI,當(dāng)φ2<-1000 fs2后,λXPW紅移的速率開始變緩,維持在806 nm附近.φ2>0時(shí),λXPW隨著φ2的增加開始緩慢藍(lán)移,但當(dāng)φ2>1000 fs2時(shí),λXPW維持在772 nm左右.引入不同色散測(cè)量得到的光譜如圖5所示.

        圖4 XPW輸出光譜的中心波長(zhǎng)λXPW與色散φ2的關(guān)系實(shí)線為測(cè)量的XPW 輸出光譜中心波長(zhǎng)λXPW,虛線為輸入光譜中心波長(zhǎng)λINIFig.4.Measured XPW pulse central-wavelength as a function of quadratic spectral phase(full line).The dashed line is the central-wavelength of the initial pulse.

        圖5 不同色散情況下的XPW輸出光譜 (a)輸入光譜;(b)當(dāng)φ2=0 fs2時(shí)XPW輸出光譜;(c)當(dāng)φ2=-1960 fs2時(shí)XPW輸出光譜;(d)當(dāng)φ2=1960 fs2時(shí)XPW輸出光譜Fig.5.Experimental XPW pulse spectrum in different quadratic spectral phase:(a)Spectrum of the initial pulse;(b)XPW pulse spectrum measured whenφ2=0 fs2;(c)XPW pulse spectrum measured whenφ2=-1960 fs2;(d)XPW pulse spectrum measured whenφ2=1960 fs2.

        5 結(jié) 論

        在北京大學(xué)CLAPA系統(tǒng)上,通過改變壓縮光柵間距的方法為激光脈沖引入色散,研究了色散對(duì)雙晶XPW效率、輸出光譜帶寬以及輸出光譜中心波長(zhǎng)的影響.結(jié)果顯示,正負(fù)色散的引入會(huì)導(dǎo)致XPW功率減小、輸出光譜帶寬變窄、輸出光譜中心波長(zhǎng)出現(xiàn)藍(lán)移和紅移,除此之外,正負(fù)色散對(duì)于三者的影響具有不對(duì)稱性,負(fù)色散相對(duì)于正色散會(huì)更快減小XPW功率和輸出光譜帶寬,并且負(fù)色散會(huì)使輸出光譜中心波長(zhǎng)快速紅移,而正色散對(duì)于輸出光譜中心波長(zhǎng)的影響較小.對(duì)雙晶XPW輸出特性而言,正色散的影響要小于負(fù)色散.推測(cè)這種不對(duì)稱性源于雙晶XPW技術(shù)中的其他非線性效應(yīng)對(duì)XPW效率、輸出光譜帶寬和輸出光譜中心波長(zhǎng)的影響.

        [1]Strickland D,Mourou G 1985Opt.Commun.55 447

        [2]Macchi A,Borghesi M,Passoni M 2013Rev.Mod.Phys.85 751

        [3]Hiroyuki D,Nishiuchi M,Pirozhkov A S 2012Rep.Prog.Phys.75 056401

        [4]Corde S,TaPhuoc K,Lambert G,Fitour R,Malka V,Rousse A,Beck A,Lefebvre E 2013Rev.Mod.Phys.85 1

        [5]Ivanov V V,Maksimchuk A,Mourou G 2003Appl.Opt.42 7231

        [6]Culfa O,Tallents G J,Wagenaars E,Ridgers C P,Dance R J,Rossall A K,Gray R J,McKenna P,Brown C D R,James S F,Hoarty D J,Booth N,Robinson A P L,Lancaster K L,Pikuz S A,Faenov Y A,Kampfer T,Schulze K S,Uschmann I,Woolsey N C 2014Phys.Plasmas21 043106

        [7]Timur Z E,James K K,Atsushi S,Toshimasa M,Masaharu N,Kei K,Hideo N,Katsunobu N,Akito S,Hideyuki K,Tatsufumi N,Yuji F,Hajime O,Alexander S P,Akifumi Y,Mamiko N,Hiromitsu K,Kiminori K,Masaki K,Sergei V B 2014Nucl.Instrum.Methods Phys.Res.Sect.A745 150

        [8]Yabuuchi T,Mishra R,McGuffey C,Qiao B,Wei M S,Sawada H,Sentoku Y,Ma T,Higginson D P,Akli K U,Batani D,Chen H,Gizzi L A,Key M H,Mackinnon A J,McLean H S,Norreys P A,Patel P K,Stephens R B,Ping Y,Theobald W,Stoeckl C,Beg F N 2013New J.Phys.15 015020

        [9]Jeffrey W,Charles G D 2004Opt.Express12 1383

        [10]Norihiko N,Atsushi M 2007Opt.Lett.32 3516

        [11]Jullien A,Albert O,Burgy F,Hamoniaux G,Rousseau J P,Chambaret J P,Augé-Rochereau F,Chériaux G,Etchepare J 2005Opt.Lett.30 8

        [12]Liu C,Wang Z H,Li W C,Liu F,Wei Z Y 2010Acta Phys.Sin.59 7036(in Chinese)[劉成,王兆華,李偉昌,劉峰,魏志義2010物理學(xué)報(bào)59 7036]

        [13]R?de C,Heyer M,Behmke M,Kübel M,J?ckel O,Ziegler W,Ehrt D,Kaluza M C,Paulus G G 2011Appl.Phys.B103 295

        [14]Anna L,Tiberio C,Pascal D O,Fabrice R,Michel P,Fabien Q,Pascal M,Michel B,Hervé L,Philippe M 2007Opt.Lett.32 310

        [15]Jullien A,Albert O,Chériaux G,Etchepare J,Kourtev S,Minkovski N,Saltiel S M 2006Opt.Express14 7

        [16]Chvykov V,Rousseau P,Reed S,Kalinchenko G,Yanovsky V 2006Opt.Lett.31 1456

        [17]Xu Y,Leng Y X,Guo X Y,Zou X,Li Y Y,Lu X M,Wang C,Liu Y Q,Liang X Y,Li R X,Xu Z Z 2014Opt.Commun.313 175

        [18]Lureau F,Laux S,Casagrande O,Radier C,Chalus O,Caradec F,Simon-Boisson C 2012Proc.SPIE8235 823513

        [19]Ricci A,Jullien A,Rousseau J P,Liu Y,Houard A,Ramirez P,Papadopoulos D,Pellegrina A,Georges P,Druon F,Forget N,Lopez-Martens R 2013Rev.Sci.Instrum.84,043106

        [20]Lliev M,Meier A K,Greco M,Durfee C G 2015Appl.Opt.54 2

        [21]Jullien A,Canova L,Albert O,Boschetto D,Antonucci L,Cha Y H,Rousseau J P,Chaudet P,Chériaux G,Etchepare J,Kourtev S,Minkovski N,Saltiel S M 2007Appl.Phys.B87 595

        [22]Li G,Liu H J,Lu F,Wen X L,He Y L,Zhang F Q,Dai Z H 2015Acta Phys.Sin.64 020602(in Chinese)[李綱,劉紅杰,盧峰,溫賢倫,何穎玲,張發(fā)強(qiáng),戴增海 2015物理學(xué)報(bào)64 020602]

        [23]Shang Y,Zhu K,Lin C,Lu H Y,Zou Y B,Zhao Y Y,Shou Y R,Cao C,Zhao S,Geng Y X,Zhu J,Fu H Z,Wang H Y,Lu Y R,Yuan Z X,Guo Z Y,Chen J E,Yan X Q 2013Sci.Sin.:Phys.Mech.Astron.43 1282(in Chinese)[尚勇,朱昆,林晨,盧海洋,鄒宇斌,趙研英,壽寅任,曹超,趙栓,耿易新,祝嬌,符合振,王洪勇,陸元榮,袁忠喜,郭之虞,陳佳洱,顏學(xué)慶 2013中國(guó)科學(xué):物理學(xué) 力學(xué)天文學(xué)43 1282]

        [24]Yan X Q,Lin C,Lu H Y,Zhu K,Zou Y B,Wang H Y,Liu B,Zhao S,Zhu J,Geng Y X,Fu H Zh,Shang Y,Cao C,Shou Y R,Song W,Lu Y R,Yuan Z X,Guo Z Y,He X T,Chen J E 2013Front.Phys.8 577

        PACS:06.60.Jn,42.65.—k,42.65.Re DOI:10.7498/aps.66.040601

        Influences of quadratic spectral phase on characteristics of two crystal cross-polarized generation with femtosecond pulses?

        Geng Yi-XingLi Rong-FengZhao Yan-Ying?Wang Da-HuiLu Hai-YangYan Xue-Qing

        (State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,China)

        13 September 2016;revised manuscript

        7 October 2016)

        The rapid developments of ultra-intense and ultra-short laser offer the possibility to study laser driven ion acceleration with using solid density target.However,the prepulse and amplified spontaneous emission generated in the amplification can create preplasma at the target front by heating,melting and evaporating a portion of a solid density.The main pulse then interacts with the preplasma,which would be harmful to laser ion acceleration.Therefore,many methods have been developed to enhance the temporal contrast of high power laser system,such as saturable absorber,cross polarized wave generation(XPW)and plasma mirror.With many advantages,such as high conversion efficiency,introducing neither spatial nor spectral distortions,and easy setup compared with other mechanisms,XPW has be√en used to clean the femtosecond laser system.Besides that,the spectrum of the XPW pulse could be broadened by3 times under the best condition compared with the initial spectrum.It can solve the spectrum narrowing problem during the laser amplification to obtain ultra-short femtosecond laser pulse.Here,we experimentally investigate the output power,spectrum bandwidth and center wavelength shift of the generated cross-polarized wave according to the input pulse quadratic spectral phase.

        The femtosecond laser pulse in compact laser plasma accelerator system at Peking University is used to investigate the role of quadratic spectral phase in characterizing the two crystal cross-polarized generation.The Ti:Sapphire-based laser system has a central wavelength of 798 nm and bandwidth of 35.5 nm which allows the pulse to be compressed down to 40 fs duration(FWHM).Typical the input pulse energy of XPW is 150μJ and the laser system operates well at 1 kHz repetition rate.The quadratic spectral phase can be increased by changing the position of compressor grating.

        The conversion efficiency,spectrum bandwidth and the central wavelength shift by changing the quadratic spectral phase are measured.The conversion efficiency is 17%when quadratic spectral phaseφ2=0,and decreases as quadratic spectral phase increases.The rapid decrease is caused by negative quadratic spectral phase.The spectrum bandwidth is 62 nm under the optimum condition,and the broadening effect exists when quadratic spectral phase is in a range of-280 fs2<φ2<1400 fs2.It is slowly blue-shifted whenφ2>0 and stays at 772 nm whenφ2>1000 fs2.It starts to be red-shifted whenφ2<0 and stays at 806 nm finally.

        In conclusion,with the increase of quadratic spectral phase,we observe the effects of conversion efficiency and spectrum bandwidth and the shift of central wavelength.Moreover,the influences of positive and negative quadratic spectral phase on characteristics of XPW are different.Our result shows that the negative quadratic spectral phaseis more effective at reducing the conversion efficiency and spectrum bandwidth than the positive one.

        chirp pulse amplification,cross-polarized generation,spectrum,quadratic spectral phase

        :06.60.Jn,42.65.—k,42.65.Re

        10.7498/aps.66.040601

        ?國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):11504009)和國(guó)家重大科學(xué)儀器設(shè)備開發(fā)專項(xiàng)(專項(xiàng)號(hào):2012YQ030142)資助的課題.

        ?通信作者.E-mail:zhaoyanying@pku.edu.cn

        *Project supported by the National Natural Science Foundation of China(Grant No.11504009)and the National Grand Instrument Project,China(Grant No.2012YQ030142).

        ?Corresponding author.E-mail:zhaoyanying@pku.edu.cn

        猜你喜歡
        輸出特性功率密度色散
        “光的折射”“光的色散”知識(shí)鞏固
        “光的折射”“光的色散”知識(shí)鞏固
        “光的折射”“光的色散”知識(shí)鞏固
        『光的折射』『光的色散』隨堂練
        光伏組件輸出特性研究及在線預(yù)測(cè)方法
        脈沖單頻Nd∶YVO4激光器及其倍頻輸出特性研究
        基于DMC-PID的Buck型DC/DC變換器的輸出特性控制
        高效高功率密度低噪聲電機(jī)研究
        PrimePACKTM結(jié)合最新IGBT5和.XT模塊工藝延長(zhǎng)產(chǎn)品壽命,提高功率密度
        磁致伸縮導(dǎo)波激勵(lì)傳感器模型及輸出特性
        澳门精品一区二区三区| 欧美日韩一卡2卡三卡4卡 乱码欧美孕交 | 亚洲av日韩av无码av| 久久综合给合久久狠狠狠9| 人妻av在线一区二区三区| 4455永久免费视频| 国产精品国产午夜免费看福利| 免费国产一级特黄aa大片在线| 日韩一区中文字幕在线| 免费av片在线观看网址| 国产熟妇人妻精品一区二区动漫 | 国产自在自线午夜精品视频在| 精品中文字幕精品中文字幕 | 男女视频在线观看一区二区| 色翁荡息又大又硬又粗视频| 亚洲欧美成人一区二区在线电影| 九九九影院| 在线观看国产激情免费视频| 男人扒开女人双腿猛进视频| 四房播播在线电影| 国产精品不卡无码AV在线播放| 亚洲av日韩专区在线观看| 国产免费拔擦拔擦8x高清在线人| 欧美日韩在线免费看| 热门精品一区二区三区| 人妻少妇中文字幕在线| 性色av无码一区二区三区人妻| 波多野结衣一区二区三区免费视频| 蜜桃久久综合一区二区| 最新日本一道免费一区二区| 亚洲成人中文| 亚洲天堂一区二区精品| av区无码字幕中文色| 丰满女人又爽又紧又丰满| 无码高潮少妇毛多水多水免费| 风骚人妻一区二区三区| 国产探花在线精品一区二区| 国产资源在线视频| 男女互舔动态视频在线观看| 久久久久99精品成人片直播 | 国内自拍视频一区二区三区|