亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        乳酸菌食品級(jí)質(zhì)粒及應(yīng)用的研究進(jìn)展

        2017-07-24 15:24:05韋云路李平蘭北京食品營(yíng)養(yǎng)與人類健康高精尖創(chuàng)新中心中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院北京100083
        食品科學(xué) 2017年13期
        關(guān)鍵詞:食品級(jí)菌種乳酸菌

        王 瑤,韋云路,李平蘭*(北京食品營(yíng)養(yǎng)與人類健康高精尖創(chuàng)新中心,中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院,北京 100083)

        乳酸菌食品級(jí)質(zhì)粒及應(yīng)用的研究進(jìn)展

        王 瑤,韋云路,李平蘭*
        (北京食品營(yíng)養(yǎng)與人類健康高精尖創(chuàng)新中心,中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院,北京 100083)

        乳酸菌是食品發(fā)酵工業(yè)中重要的益生菌,利用分子生物學(xué)技術(shù)構(gòu)建的菌種對(duì)食品產(chǎn)業(yè)發(fā)展及人類健康具有重要影響。本文主要通過介紹乳酸菌食品級(jí)系統(tǒng)的基本要求、食品級(jí)質(zhì)粒的元件組成、食品級(jí)質(zhì)粒構(gòu)建策略及其應(yīng)用的研究進(jìn)展,展示了乳酸菌食品級(jí)分子操作系統(tǒng)的建立對(duì)乳酸菌的深層次開發(fā)利用所具有的重要意義。

        乳酸菌;食品級(jí)系統(tǒng);質(zhì)粒

        乳酸菌(lactic acid bacteria,LAB)是食品產(chǎn)業(yè)中應(yīng)用最為廣泛的革蘭氏陽性菌,主要包括乳球菌屬(Lactococcus) 、乳桿菌屬(Lactobacillus)、鏈球菌屬(Strptococcus)、明串珠菌屬(Leuconostoc)等19 個(gè)屬[1]。在食品領(lǐng)域可以應(yīng)用于發(fā)酵性食品,例如奶制品、肉制品、果蔬與谷物類食品的發(fā)酵[2],并且是微生物學(xué)中公認(rèn)的具有益生功能的益生菌,因而被公認(rèn)為是安全的(generally recognized as safe,GRAS)食品級(jí)微生物[3-4]。

        目前,采用分子生物學(xué)技術(shù)提升菌種潛在的優(yōu)良性能,構(gòu)建新型工程菌種是比較受關(guān)注的研究方向?;蚬こ碳夹g(shù)可以對(duì)宿主菌種進(jìn)行基因編輯,發(fā)掘功能基因,調(diào)控代謝途徑,從而提升菌種潛在的益生功能,因此分子生物學(xué)對(duì)食品科學(xué)及人類的健康具有促進(jìn)作用[5-6];然而基因工程菌種的選育過程一般采用抗生素抗性基因作為選擇性標(biāo)記,抗性標(biāo)記易向環(huán)境中擴(kuò)散,危害生物安全[7],因此研究人員也一直研究獲取無毒副作用的食品級(jí)分子操作系統(tǒng)。

        基于分子生物學(xué)及合成生物學(xué)相關(guān)技術(shù)的不斷突破,乳酸菌相關(guān)的各類分子調(diào)控元件也已經(jīng)得到驗(yàn)證,相繼研究出了新的克隆載體、表達(dá)載體及整合載體,食品級(jí)分子表達(dá)系統(tǒng)得到了不斷完善,因此本文主要對(duì)最新的食品級(jí)菌種與質(zhì)粒的背景、分子操作技術(shù)及相關(guān)應(yīng)用進(jìn)行綜述。

        1 食品級(jí)系統(tǒng)的要求

        由于乳酸菌在食品工業(yè)中的應(yīng)用特殊性,要求食品級(jí)分子生物學(xué)所涉及的元件必須具有安全的特性,滿足如下基本標(biāo)準(zhǔn)[8]:1)載體必須是食品級(jí),載體的相關(guān)元件必須由同源宿主或密切相關(guān)的安全型微生物的DNA 組成,不含有非食品級(jí)的DNA片段;2)宿主菌必須為食品級(jí),宿主菌為可鑒定及穩(wěn)定的菌種,經(jīng)過先進(jìn)的分類方法鑒定過,以及運(yùn)用適當(dāng)?shù)姆肿由飳W(xué)技術(shù)確認(rèn)過宿主菌的遺傳組成;3)選擇性標(biāo)記必須為食品級(jí),傳統(tǒng)的乳酸菌載體選擇性標(biāo)記為紅霉素或氯霉素的抗性基因,但因抗性因子的轉(zhuǎn)移,將其投放到環(huán)境、人或動(dòng)物體內(nèi)會(huì)帶來嚴(yán)重的生物安全性后果,因此必須采用食品級(jí)選擇性標(biāo)記代替抗生素標(biāo)記;4)外源誘導(dǎo)物必須為食品級(jí),外源誘導(dǎo)物主要用于誘導(dǎo)啟動(dòng)子的啟動(dòng),從而使外源基因進(jìn)行表達(dá),如乳糖、蔗糖、嘧啶、乳酸菌肽等可食用物質(zhì)都是外源誘導(dǎo)蛋白表達(dá)常用的誘導(dǎo)物。

        2 食品級(jí)質(zhì)粒

        質(zhì)粒是存在于微生物中染色體以外的、能夠獨(dú)立復(fù)制的遺傳因子?;蚬こ藤|(zhì)粒是分子生物學(xué)研究的重要工具,主要包括復(fù)制區(qū)、選擇標(biāo)記區(qū)及蛋白表達(dá)區(qū),復(fù)制區(qū)是保證質(zhì)粒生存復(fù)制的必備元件,選擇標(biāo)記區(qū)是重組質(zhì)粒與菌種篩選的重要標(biāo)記,蛋白表達(dá)區(qū)是外源蛋白表達(dá)的區(qū)域[9]。

        2.1 質(zhì)粒復(fù)制原理

        質(zhì)粒的復(fù)制原理與其宿主菌的特點(diǎn)、穩(wěn)定性及拷貝數(shù)具有密不可分的聯(lián)系。根據(jù)環(huán)形質(zhì)粒復(fù)制中間體的結(jié)構(gòu),可以分為滾動(dòng)環(huán)式復(fù)制(rolling circle replication,RCR)及θ型復(fù)制(theta-replication)兩種方式。滾環(huán)復(fù)制的引導(dǎo)鏈和延遲鏈在合成的啟動(dòng)時(shí)間和空間上相互獨(dú)立。復(fù)制蛋白將一股在正鏈起點(diǎn)處切開一個(gè)小口,在置換合成期間,形成多個(gè)單股中間體,延遲鏈在負(fù)鏈起點(diǎn)合成的啟動(dòng)之后,置換合成,最終轉(zhuǎn)化為雙股螺旋分子[10];θ型復(fù)制在復(fù)制過程中產(chǎn)生雙鏈復(fù)制叉,可以單向復(fù)制又可以雙向復(fù)制,不僅保證了質(zhì)粒結(jié)構(gòu)的穩(wěn)定,而且可以插入大片段DNA[11],如Lb. reuteri的質(zhì)粒pTC82[12]、Lb. plantarum的質(zhì)粒pLP2000和pLP9000[13]以及Lb. delbrueckii的質(zhì)粒pN42和pJBL2[14]等。

        2.2 食品級(jí)選擇性標(biāo)記

        基因工程質(zhì)粒為了在其宿主菌體內(nèi)存活復(fù)制,必須攜帶一個(gè)或者多個(gè)抗性基因防止質(zhì)粒丟失,而抗生素抗性基因不僅不被允許在食品中使用,而且容易引起抗性轉(zhuǎn)移,危害生態(tài)環(huán)境,因此最有效的策略就是利用食品級(jí)的選擇性標(biāo)記,此標(biāo)記均來源于對(duì)人體及生態(tài)環(huán)境安全的食品級(jí)微生物,這些食品級(jí)選擇性標(biāo)記與復(fù)制區(qū)、蛋白表達(dá)區(qū)進(jìn)行整合,可構(gòu)建出不同應(yīng)用的食品級(jí)質(zhì)粒,所應(yīng)用的食品級(jí)選擇性標(biāo)記見表1。

        表1 食品級(jí)選擇性標(biāo)記及相關(guān)菌種Table 1 Food-grade selective markers and corresponding bacteria

        2.2.1 細(xì)菌素抗性或免疫性標(biāo)記

        細(xì)菌素中的乳鏈菌肽(Nisin)研究最深,目前已被50 個(gè)國(guó)家認(rèn)可用作食品防腐劑,因此可以將乳鏈菌肽作為選擇性標(biāo)記,Li Ruiqing等[15]將L. lactisTML 01菌種中新的乳鏈菌肽抗性基因nsr整合至pLEB590質(zhì)粒,成功構(gòu)建食品級(jí)質(zhì)粒pLEB690,包括pSH71復(fù)制子、nsr基因和組成型啟動(dòng)子P45;lafI基因是Lb. johnsonii VPI 11088產(chǎn)生Lactacin F免疫基因,將含有l(wèi)afI基因的質(zhì)粒pTRK434轉(zhuǎn)化到Lb. fermentumNCDO 1750后,于含有Lactacin F的培養(yǎng)基中進(jìn)行選擇培養(yǎng)轉(zhuǎn)化子[16]。這些為細(xì)菌素作為食品級(jí)的選擇性標(biāo)記提供了基礎(chǔ)。

        菌體對(duì)細(xì)菌素具有免疫抗性,為了解決此問題,可以將一個(gè)以上的細(xì)菌素作為選擇性標(biāo)記,或者將細(xì)菌素與其余選擇性標(biāo)記聯(lián)合使用,然后于培養(yǎng)基中進(jìn)行選擇性篩選,可以降低免疫抗性發(fā)生的頻率,Liu Chunqiang等[17]利用Nisin抗性與鎘抗性基因相結(jié)合,構(gòu)建新型質(zhì)粒pND968,于菌種L. lactis LM0230中存活40代依然保持穩(wěn)定性。

        2.2.2 糖類選擇性標(biāo)記

        糖是乳酸菌食品發(fā)酵工業(yè)中重要的碳源,因此可以將糖類作為選擇性標(biāo)記,研究比較深入的是乳糖操縱子,MacCormick等[18]于L. lactis MG5276菌株中證明了乳糖可以作為選擇性標(biāo)記;在此基礎(chǔ)之上,Platteeuw等[19]將乳糖操縱子(lacA)與選擇性標(biāo)記(lacF)進(jìn)行整合,構(gòu)建了食品級(jí)質(zhì)粒pNZ2122/pNZ2123與其相適應(yīng)的宿主菌L. lactis NZ3000(lacF-);此外,Takara等[20]于Lb. casei中構(gòu)建了含有乳糖篩選標(biāo)記的質(zhì)粒pLEB600。

        乳酸菌中少數(shù)株系同樣可以將木糖與蔗糖作為碳源,Posno等[21]將Lb. pentosusMD353的木糖選擇性標(biāo)記(xyl)整合至pLP3573質(zhì)粒,于Lb. casei ATCC 393與Lb. plantarum NCDO 1193中證明了木糖作為選擇性標(biāo)記的可行性;Leenhouts等[22]將P. pentosaceus PPE1.0中的蔗糖選擇性標(biāo)(scrA/scrB)整合至L. lactis LL108/LL302,證明了蔗糖作為選擇性標(biāo)記的可行性。

        2.2.3 營(yíng)養(yǎng)缺陷型標(biāo)記

        營(yíng)養(yǎng)缺陷型標(biāo)記一般建立在tRNA抑制基因基礎(chǔ)上,因此容易引發(fā)多效效應(yīng),但是此種方法使用方便,并且其主要產(chǎn)物是RNA,而不是蛋白質(zhì),也不會(huì)有酶活性改變或抑菌作用。Ross等[23]將L. lactis的腺苷酸合成酶(thyA)基因整合至pGD500質(zhì)粒進(jìn)行回補(bǔ),證明了thyA可以作為菌體的選擇性標(biāo)記;并且,Zhu Duolong等[24]利用Cre/loxP技術(shù)構(gòu)建了食品級(jí)的L. lactis NZ9000(thyA-)營(yíng)養(yǎng)缺陷菌;Glenting等[25]將L. lactis MG1613中的蘇氨酸合成酶基因(hom、thrB)進(jìn)行敲除,構(gòu)建營(yíng)養(yǎng)缺陷型菌種L. lactis MG1613(hom-、thyB-),同時(shí)將選擇性標(biāo)記高絲氨酸脫氫酶與高絲氨酸激酶整合至質(zhì)粒pJAG5進(jìn)行回補(bǔ),證明了此基因可以用于選擇性標(biāo)記。

        2.2.4 其他類型選擇性標(biāo)記

        細(xì)菌素、糖類以及營(yíng)養(yǎng)缺陷型是常用的食品級(jí)標(biāo)記,金屬離子、溫度以及噬菌體抗性也可以應(yīng)用于食品級(jí)抗性標(biāo)記。Liu Chunqiang等[26]將L.lactis M71中的鎘抗性基因(CdR)整合至L.lactis LMO230中,通過質(zhì)粒pND302與pND625證明了鎘抗性基因可以應(yīng)用于食品標(biāo)記;Demerdash等[27]將S. thermophilus中內(nèi)生質(zhì)粒pSt04的熱休克蛋白(small heat shock protein,SHSP)基因整合至pHRM1質(zhì)粒,證明溫度可以作為選擇性標(biāo)記;質(zhì)粒pNP40[28]與pAH90[29]于L. lactis中的應(yīng)用充分證明了噬菌體抗性基因的食品級(jí)應(yīng)用,并且Millen等[30]證明CRISPR(clustered regularly interspaced short palindromic repeat)/ Cas9技術(shù)可以提升L. lactis的噬菌體抗性基因選擇性。

        2.3 食品級(jí)誘導(dǎo)物及表達(dá)系統(tǒng)

        質(zhì)粒中的蛋白質(zhì)表達(dá)區(qū)主要用于基因的表達(dá),啟動(dòng)子是促使外源基因表達(dá)的核心區(qū)域,可以分為組成型啟動(dòng)子與誘導(dǎo)型啟動(dòng)子,組成型啟動(dòng)子的調(diào)控不受外界條件的影響,所啟動(dòng)基因的表達(dá)具有持續(xù)性;誘導(dǎo)型啟動(dòng)子由于受外源誘導(dǎo)物調(diào)控,可以將菌體生長(zhǎng)與外源基因表達(dá)區(qū)分[31]。為了滿足食品工業(yè)與生物技術(shù)的應(yīng)用,不同類型的啟動(dòng)子得到了不斷的完善,適合啟動(dòng)子的選擇對(duì)外源基因的表達(dá)具有重要影響[32-33]。常用的食品級(jí)誘導(dǎo)物及表達(dá)系統(tǒng)見表2。

        表2 食品級(jí)誘導(dǎo)物及表達(dá)系統(tǒng)Table 2 Food-grade inducers and corresponding expression systems

        2.3.1 細(xì)菌素誘導(dǎo)的雙組分表達(dá)系統(tǒng)

        細(xì)菌素可以作為雙組分表達(dá)系統(tǒng)的誘導(dǎo)物。研究比較深入的是NICE與pSIP表達(dá)系統(tǒng)[34-35],其誘導(dǎo)物分別為乳酸鏈球菌素(Nisin)與米酒乳桿菌素(sakacin P/A)[34,36],pSIP表達(dá)系統(tǒng)已經(jīng)在L.lactis中成功表達(dá)了β-葡萄糖醛酸酶、氨肽酶、淀粉酶及β-半乳糖苷酶[35-37],Sanati等[38]將pSIP表達(dá)系統(tǒng)的選擇性標(biāo)記整合為丙氨酸消旋酶抗性,于Lb. plantarum WCFS1與Lb. reuteri L103中表達(dá)了β-半乳糖苷酶。

        NICE表達(dá)系統(tǒng)是乳酸菌中應(yīng)用最為廣泛的食品級(jí)表達(dá)系統(tǒng),具有調(diào)控嚴(yán)謹(jǐn)性、表達(dá)高效性及產(chǎn)量高產(chǎn)性的優(yōu)勢(shì)[39],在此基礎(chǔ)上得到了不斷的優(yōu)化改進(jìn),Wu Chiming等[40]將nis A(P nisiA)啟動(dòng)子與nis R/K調(diào)節(jié)因子整合至質(zhì)粒pSTE32,不需外源添加誘導(dǎo)物,于Lb. reuteri中成功表達(dá)淀粉酶;Pavan等[41]將nis R/K調(diào)節(jié)因子整合至Lb. plantarum NCIMB8826基因組中,制備出破傷風(fēng)毒素的疫苗。

        NICE與pSIP表達(dá)系統(tǒng)是研究比較清楚的雙組分表達(dá)系統(tǒng),可以與糖[42]、pH值[43]及有機(jī)酸[44]誘導(dǎo)的表達(dá)系統(tǒng)相結(jié)合,從而提高啟動(dòng)子的嚴(yán)謹(jǐn)性。

        2.3.2 糖誘導(dǎo)的表達(dá)系統(tǒng)

        糖進(jìn)入菌體主要依賴PTS(phosphoenolpyruvatedependent sugar phosphotransferase systems)、ABC(ATP-binding cassette transporters)與GPH(galactoside pentose hexuronide)轉(zhuǎn)運(yùn)系統(tǒng)[45-47],不僅可以調(diào)節(jié)糖的攝入控制啟動(dòng)子誘導(dǎo)的外源基因的表達(dá),并且部分與糖轉(zhuǎn)運(yùn)和代謝相關(guān)的基因都為糖調(diào)節(jié)的操縱子,可以在轉(zhuǎn)錄水平對(duì)基因表達(dá)水平進(jìn)行調(diào)控[48]。Ma Shijie等[49]將乳糖誘導(dǎo)的啟動(dòng)子(Plac)與Lb. brevis中的S層分泌信號(hào)肽整合,于Lb. casei中利用乳糖誘導(dǎo)表達(dá)豬α-干擾素;Miyoshi等[50]將木糖啟動(dòng)子(PxylT)與信號(hào)肽Usp45整合,于L. lactis中利用木糖誘導(dǎo)表達(dá)金黃色葡萄球菌核酸酶(nuc);Duong等[31]構(gòu)建了果聚糖(Pfos)、乳糖(Plac)及海藻糖(Ptre)的啟動(dòng)子,利用β-葡萄糖苷酸酶(GusA3)作為報(bào)告基因,于L. lactis中對(duì)啟動(dòng)子強(qiáng)弱進(jìn)行了分析。

        2.3.3 其余誘導(dǎo)物誘導(dǎo)的表達(dá)系統(tǒng)

        對(duì)于誘導(dǎo)型啟動(dòng)子而言,溫度、pH值(酸)及金屬離子也可以作為外源誘導(dǎo)因子。D’Souza等[51]將含有溫敏型啟動(dòng)子P1與P2的質(zhì)粒,轉(zhuǎn)移至40 ℃培養(yǎng)解除抑制因子Rro12抑制,目的蛋白表達(dá)產(chǎn)量提高了500 倍;P170與Pgad啟動(dòng)子可分別由乳酸與谷氨酸誘導(dǎo),并且利用此啟動(dòng)子構(gòu)建的工程菌,將目的蛋白的生產(chǎn)應(yīng)用到工業(yè)級(jí)別的分批發(fā)酵[33,52];金屬離子可以通過ABC轉(zhuǎn)運(yùn)系統(tǒng)進(jìn)入菌體內(nèi)部,調(diào)節(jié)菌體內(nèi)部離子平衡[53],Llull等[54]構(gòu)建的pVE6008誘導(dǎo)系統(tǒng),通過EDTA去除二價(jià)離子,解除zitR抑制因子的抑制作用,增強(qiáng)了PZn啟動(dòng)子的效應(yīng),提高了蛋白質(zhì)的表達(dá)產(chǎn)量。

        3 食品級(jí)質(zhì)粒構(gòu)建及轉(zhuǎn)化

        質(zhì)粒的不同區(qū)域具有不同的功能,只有將各個(gè)功能區(qū)域相互組裝才能發(fā)揮其生理功能,并且轉(zhuǎn)化到相對(duì)應(yīng)的宿主菌中,才能開展進(jìn)一步的科學(xué)研究。傳統(tǒng)的DNA限制性內(nèi)切酶酶切及連接酶連接技術(shù)是經(jīng)典的組裝方法,近幾年,高效的組裝系統(tǒng)已被廣泛應(yīng)用于質(zhì)粒組裝,如Gibson組裝及同源重組組裝系統(tǒng)[55-56],然而轉(zhuǎn)化方法依然是傳統(tǒng)的化學(xué)轉(zhuǎn)化或電轉(zhuǎn)化方法。

        3.1 質(zhì)粒構(gòu)建

        對(duì)于小片段DNA分子可以應(yīng)用傳統(tǒng)的酶切連接組裝體系,Takala等[11]利用細(xì)菌素nis I作為選擇標(biāo)記,組裝了新的食品級(jí)質(zhì)粒,由此提供了比較標(biāo)準(zhǔn)的質(zhì)粒構(gòu)建體系,將質(zhì)粒pVS2的復(fù)制子pSH71與質(zhì)粒pLEB415的抗性標(biāo)記nisⅠ、啟動(dòng)子P45同時(shí)用ClaⅠ與SmaⅠ酶切,并利用T4連接酶進(jìn)行組裝,轉(zhuǎn)化E. coli TG1與L. lactis MG1614,于乳酸鏈球菌素(nisin)抗性培養(yǎng)基篩選轉(zhuǎn)化子,構(gòu)建食品級(jí)質(zhì)粒pLEB590;乳酸菌的轉(zhuǎn)化效率比較低,尤其對(duì)于大片段的組裝,目前Gibson組裝體系廣泛應(yīng)用于質(zhì)粒構(gòu)建,其體系具有核酸外切酶、DNA連接酶及DNA聚合酶混合酶體系,于體外50 ℃恒溫條件,利用堿基互補(bǔ)實(shí)現(xiàn)高效率組裝[57-59],Jee等[55]利用此組裝體系,將Cas9基因(4 107 bp)整合至質(zhì)粒中,于L. reuteri與L. lactis NZ9000構(gòu)建了CRISPR/Cas9的打靶質(zhì)粒pVPL3004等。

        3.2 質(zhì)粒轉(zhuǎn)化

        轉(zhuǎn)化是外源基因進(jìn)入菌體內(nèi)部的重要途徑,高效的轉(zhuǎn)化效率為菌體轉(zhuǎn)化的庫容量提供了充分條件,因此是陽性轉(zhuǎn)化子獲得的重要影響條件。相對(duì)于化學(xué)轉(zhuǎn)化,電轉(zhuǎn)化過程繁瑣,耗時(shí)較長(zhǎng),但具有轉(zhuǎn)化效率高及適應(yīng)宿主菌譜廣的優(yōu)勢(shì)。革蘭氏陽性菌細(xì)胞壁的肽聚糖網(wǎng)層比較厚,對(duì)其細(xì)胞壁進(jìn)行適當(dāng)?shù)娜趸兄陔娹D(zhuǎn)化效率的提高,常用的弱化劑主要有:甘氨酸、氨芐青霉素、溶菌酶、醋酸鋰及二硫蘇糖醇等。在制備乳酸菌感受態(tài)時(shí),不僅需要適應(yīng)的弱化劑含量,同時(shí)還要有適宜滲透壓維持劑-蔗糖。然后利用電脈沖對(duì)感受態(tài)細(xì)胞的細(xì)胞膜造成疏水性孔洞,隨著電壓增大,疏水性孔洞轉(zhuǎn)變?yōu)橛H水性,從而介導(dǎo)外部的DNA進(jìn)入胞內(nèi),最后感受態(tài)細(xì)胞于高滲培養(yǎng)基中恢復(fù)細(xì)胞膜,并于抗性標(biāo)記培養(yǎng)基中篩選轉(zhuǎn)化子[60]??傊娹D(zhuǎn)化方法需要在適當(dāng)破壞細(xì)胞壁的基礎(chǔ)上并維持細(xì)胞的高存活率。

        4 食品級(jí)質(zhì)粒的應(yīng)用

        乳酸菌是人體內(nèi)具有重要生理功能的菌群,調(diào)節(jié)著人體腸道菌群的健康,與人體健康有著直接關(guān)系。乳酸菌作為食品級(jí)的菌體制劑,應(yīng)用食品級(jí)的質(zhì)粒構(gòu)建新型的細(xì)胞工廠,從而產(chǎn)生具有生理功能的酶、多肽及中間代謝物等表達(dá)產(chǎn)物,可以應(yīng)用于食品、醫(yī)藥、保健及工業(yè)等領(lǐng)域,有巨大的應(yīng)用前景和潛在的商業(yè)價(jià)值,對(duì)食品、醫(yī)藥和工業(yè)等領(lǐng)域的發(fā)展具有一定的促進(jìn)作用。

        4.1 在基因編輯的應(yīng)用

        食品級(jí)質(zhì)粒在基因編輯中具有質(zhì)粒結(jié)構(gòu)及篩選的不穩(wěn)定性,因此不同的食品級(jí)基因編輯系統(tǒng)不斷進(jìn)行了優(yōu)化。Auvray等[61]將噬菌體的整合酶及特異性識(shí)別位點(diǎn)attP位點(diǎn)應(yīng)用于Lb. delbrueckii,建立了特異性位點(diǎn)重組技術(shù),Martin等[62]利用β-重組酶提高了attP特異性位點(diǎn)重組的重組效率;Serror等[63]建立的pG+host整合系統(tǒng)是目前應(yīng)用最為廣泛的編輯系統(tǒng),其主要利用轉(zhuǎn)座重組將目的基因整合至基因組;Song Li等[64]利用尿嘧啶磷酸核糖基轉(zhuǎn)移酶作為反向篩選標(biāo)記,于L. lactis與Lb. casei也建立了食品級(jí)基因編輯系統(tǒng);最近CRISPR/Cas9系統(tǒng)已經(jīng)被廣泛應(yīng)用于生物體的基因編輯,Oh等[55]已經(jīng)于Lb. reuteri中建立了CRISPR/Cas9系統(tǒng),利用質(zhì)粒pVPL3017誘導(dǎo)RecT蛋白的表達(dá),從而提升了外源DNA進(jìn)入菌體的效率,由sgRNA(signal guided RNA,sgRNA)的引導(dǎo),質(zhì)粒pVPL3004誘導(dǎo)的Cas9蛋白實(shí)現(xiàn)了對(duì)特異性基因的編輯,其編輯效率可達(dá)90%~100%。

        4.2 在蛋白質(zhì)表達(dá)的應(yīng)用

        質(zhì)粒對(duì)蛋白質(zhì)的高效表達(dá)具有促進(jìn)作用,因此研究人員可以直接將含有特異性質(zhì)粒的菌種進(jìn)行發(fā)酵生產(chǎn),此種方法是最簡(jiǎn)單高效的方法,雖然食品級(jí)質(zhì)粒的表達(dá)效率比較低,并且一些工業(yè)級(jí)需求并不需要食品級(jí)制備,直接用E.coli或S.cerevisiae的表達(dá)系統(tǒng),將目的蛋白純化即可[65],但是一些研究仍然報(bào)道了食品級(jí)質(zhì)粒的重要性。Liu Guorong等[66]利用食品級(jí)質(zhì)粒于L. lactis NZ9000中高效表達(dá)Enteriocin P細(xì)菌素,抑制了食品中有害微生物的生長(zhǎng),并對(duì)細(xì)菌素性質(zhì)進(jìn)行了分析;Gu Wenliang等[67]將馬檳榔甜蛋白于L. lactis NZ3900與E. coli中表達(dá),發(fā)現(xiàn)L. lactis NZ3900的酶活性明顯高于E. coli;Nguyen等[68]應(yīng)用食品級(jí)質(zhì)粒將Lb. reuteri的β-半乳糖苷酶表達(dá)于Lb. plantarum,為食品級(jí)工業(yè)應(yīng)用奠定了基礎(chǔ)。

        4.3 在代謝工程的應(yīng)用

        乳酸菌是食品發(fā)酵工業(yè)中常用的菌種,利用代謝工程技術(shù)對(duì)其代謝途徑進(jìn)行優(yōu)化,制備目的產(chǎn)物產(chǎn)量高、特異性強(qiáng)的菌種已備受關(guān)注。通過對(duì)L. lactis代謝途徑優(yōu)化,已經(jīng)高產(chǎn)出VB、葉酸及胞外多糖[69],然而所用的分子元件并不滿足食品級(jí)要求,因此不能應(yīng)用于食品工業(yè)。Gosalbes等[70]利用食品級(jí)分子操作系統(tǒng)將L. lactis的乙酰羥酸合成酶基因ilvB/N整合至Lb. casei乳糖操縱子位置,提升了丁二酮的產(chǎn)量;Staudigl等[71]將Lb. reuteri的L-阿拉伯糖異構(gòu)酶及L-木糖異構(gòu)酶基因轉(zhuǎn)化至Lb.plantarum中,可以通過代謝過程檢測(cè)食品工業(yè)中糖的轉(zhuǎn)化反應(yīng),從而控制發(fā)酵過程;透明質(zhì)酸可以應(yīng)用于醫(yī)藥、化妝品及疫苗制備,Sheng Juzheng等[72]利用NICE系統(tǒng)將S. zooepidemicus透明質(zhì)酸合成酶基因轉(zhuǎn)化至L. lactis,成功構(gòu)建其代謝合成途徑,生產(chǎn)出食品級(jí)的透明質(zhì)酸。

        4.4 在人體健康的應(yīng)用

        乳酸菌是腸道菌群中的益生菌,能夠促使機(jī)體產(chǎn)生特異性或非特異性的免疫應(yīng)答,因此可以開發(fā)對(duì)機(jī)體安全且產(chǎn)生持續(xù)免疫力的口服型質(zhì)粒[73];并且具備酸耐受性及黏膜黏附性的優(yōu)勢(shì),可以作為疫苗的傳遞載體[74]。Hoang等[75]制備了含有單鏈抗體3D8的重組菌L. paracasei (scFv 3D8),為腸道菌群抵抗病毒因子的侵?jǐn)_提供了可能;Shi Shaohua等[76]將構(gòu)建的質(zhì)粒NC8-pSIP409-HA于L. plantarum表達(dá)禽流感病毒H9N2的血細(xì)胞凝集素(hemagglutinin,HA)蛋白,成功誘發(fā)機(jī)體的免疫應(yīng)答,并為H9N2病毒口服疫苗的制備奠定基礎(chǔ);Guo Shanguang等[77]將梭狀芽胞桿菌感染毒素TcdA與TcdB整合至L. lactis,制備的疫苗對(duì)動(dòng)物治療具有顯著作用,從而為口服疫苗的制備提供了技術(shù)保障;Alvarez等[78]將Myxococcus xanthus的肽鏈內(nèi)切酶(prolyl endopeptidases,PEP)整合至L. casei,通對(duì)機(jī)體腸道菌群的調(diào)節(jié),患者的腹腔疾病得到治療。

        5 結(jié) 語

        乳酸菌作為益生菌,應(yīng)用前景廣泛,對(duì)人體有益的益生菌菌株在不斷地研究,因此新菌種的遺傳背景及相關(guān)功能基因并不清楚,通過特異性重組質(zhì)??梢詫?duì)其功能基因進(jìn)行研究,并進(jìn)一步解析其調(diào)控機(jī)理,對(duì)乳酸菌的基礎(chǔ)型及應(yīng)用型研究具有推動(dòng)作用。

        目前,已經(jīng)有許多的食品級(jí)質(zhì)粒構(gòu)建成功,并應(yīng)用于食品與醫(yī)療,但是其應(yīng)用仍然比較受限,許多工業(yè)用菌株帶有Nisin抗性,因此含有Nisin標(biāo)記的菌種或質(zhì)粒不能應(yīng)用Nisin選擇體系;金屬離子雖可以應(yīng)用于篩選標(biāo)記,可是金屬離子對(duì)機(jī)體具有一定毒性;對(duì)于其誘導(dǎo)系統(tǒng)而言,糖誘導(dǎo)系統(tǒng)的嚴(yán)謹(jǐn)性有所限制,pH值與溫度控制誘導(dǎo)系統(tǒng)不利于工業(yè)的大規(guī)模應(yīng)用,因此在制備實(shí)驗(yàn)室及產(chǎn)業(yè)化所需的質(zhì)粒與宿主菌時(shí),需要綜合考慮復(fù)制系統(tǒng)、選擇標(biāo)記與誘導(dǎo)系統(tǒng)。

        食品級(jí)質(zhì)粒的研究及應(yīng)用,對(duì)推動(dòng)乳酸菌的分子生物學(xué)研究起到關(guān)鍵作用。由于乳酸菌是腸道菌群的益生菌,腸道菌群對(duì)調(diào)節(jié)人體各個(gè)器官的健康具有重要作用,許多研究人員重點(diǎn)關(guān)注益生菌在腸道菌群中的重要性,但是益生菌對(duì)腸道菌群的調(diào)控機(jī)理,及菌體自身的益生機(jī)理還未深入解析,利用食品級(jí)質(zhì)??梢詫?duì)菌體的調(diào)控及益生機(jī)理進(jìn)行解析,從而增強(qiáng)其益生功能,可以作為食品級(jí)質(zhì)粒未來應(yīng)用的一個(gè)方向。因此食品級(jí)質(zhì)粒對(duì)乳酸菌工程菌株的利用與研發(fā)發(fā)揮著重要作用。

        [1] STILE M E, HOLZAPFEL W H. Lactic acid bacteria of foods and their current taxonomy[J]. International Journal of Food Microbiology, 1997, 36(1): 1-29. DOI:10.1016/s0168-1605(96)01233-0.

        [2] ROSENBERG E, DELONG E F, LORY S, et al. The prokaryotes applied bacteriology and biotechnology[M]. Berlin Heidelberg: Springer-Verlag, 2013: 241-256. DOI:10.1007/978-3-642-38922-1.

        [3] IQBAL M Z, QADIR M I, HUSSAIN T, et al. Review: probiotics and their beneficial effects against various diseases[J]. Pakistan Journal of Pharmaceutical Sciences, 2014, 27(2): 405-415. DOI:10.1007/978-3-319-28079-0_2.

        [4] BORGES S, SILVA J, TEIXEIRA P. The role of lactobacilli and probiotics in maintaining vaginal health[J]. Arch Gynecol Obstet, 2014, 289(3): 479-489. DOI:10.1007/s00404-013-3064-9.

        [5] BERMUDEZ H L G, AUBRY C, MOTTA J P, et al. Engineering lactococci and lactobacilli for human health[J]. Curr Opin Microbiol, 2013, 16(3): 278-283. DOI:10.1016/j.mib.2013.06.002.

        [6] LEBLANC J G, AUBRY C, CORTES P N G, et al. Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update[J]. FEMS Microbiol Lett, 2013, 344(1): 1-9. DOI:10.1111/1574-6968.12159.

        [7] TROMBERT A. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination?[J]. Benef Microbes, 2015, 6(3): 313-324. DOI:10.3920/bm2014.0068.

        [8] VOS W M D. Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria[J]. International Dairy Journal, 1999, 9(1): 3-10. DOI:10.1016/S0958-6946(99)00038-2.

        [9] LANDETE J M. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application[J]. Critical Reviews in Biotechnology, 2016: 1-13. DOI:10.3109/07388551.2016.1144044.

        [10] SHARECK J, CHOI Y, LEE B, et al. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology[J]. Critical Reviews in Biotechnology, 2004, 24(4): 155-208.

        [11] TAKALA T M, SARIS P E. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI[J]. Applied Microbiology and Biotechnology, 2002, 59(4/5): 467-471. DOI:10.1007/s00253-002-1034-4.

        [12] LIN C F, HO Jinlin, CHUNG T C. Characterization of the replication region of the Lactobacillus reuteri plasmid pTC82 potentially used in the construction of cloning vector[J]. Bioscience Biotechnology & Biochemistry, 2001, 65(7): 1495-1503. DOI:10.1271/bbb.65.1495.

        [13] DAMING R, YINYU W, ZILAI W, et al. Complete DNA sequence and analysis of two cryptic plasmids isolated from Lactobacillus plantarum[J]. Plasmid, 2003, 50(1): 70-73. DOI:10.1016/s0147-619x(03)00010-6.

        [14] BOURNIQUEL A A, CASEY M G, MOLLET B, et al. DNA sequence and functional analysis of Lactobacillus delbrueckii subsp. lactis plasmids pN42 and pJBL2[J]. Plasmid, 2002, 47(2): 153-157. DOI:10.1006/plas.2001.1560.

        [15] LI Ruiqing, TAKALA T M, QIAO Mingqiang, et al. Nisin-selectable food-grade secretion vector for Lactococcus lactis[J]. Biotechnology Letters, 2011, 33(4): 797-803. DOI:10.1007/s10529-010-0503-6.

        [16] ALLISON G E, KLAENHAMMER T R. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker[J]. Applied Environmental Microbiology, 1996, 62(12): 4450-4460.

        [17] LIU Chunqiang, SU P, KHUNAJAKER N, et al. Development of food-grade cloning and expression vectors for Lactococcus lactis[J]. Journal of Applied Microbiology, 2005, 98(1): 127-135. DOI:10.1111/ j.1365-2672.2004.02441.x.

        [18] MacCORMICK C A, GRIFFIN H G, GASSON M J. Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon[J]. Fems Microbiology Letters, 1995, 127(1/2): 105-109. DOI:10.1016/0378-1097(95)00045-7.

        [19] PLATTEEUW C, van ALEN B I, van SCHALKWIJK S, et al. Foodgrade cloning and expression system for Lactococcus lactis[J]. Applied Environmental Microbiology, 1996, 62(3): 1008-1013.

        [20] TAKARA T M, SARIS P E, TYNKKYNEN S S. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 564-570. DOI:10.1007/s00253-002-1153-y.

        [21] POSNO M, HEUVELMANS P T, van GIEZEN M J, et al. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus[J]. Applied Environmental Microbiology, 1991, 57(9): 2764-2766.

        [22] LEENHOUTS K, BOLHUIS A, VENEMA G, et al. Construction of a food-grade multiple-copy integration system for Lactococcus lactis[J]. Applied Microbiology and Biotechnology, 1998, 49(4): 417-423. DOI:10.1007/s002530051192.

        [23] ROSS P, O’GARA F, CONDON S. Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes[J]. Applied Environmental Microbiology, 1990, 56(7): 2164-2169.

        [24] ZHU Duolong, ZHAO Kai, XU Haijin, et al. Construction of thyA deficient Lactococcus lactis using the Cre-loxP recombination system[J]. Annals of Microbiology, 2015, 65(3): 1659-1665. DOI:10.1007/s13213-014-1005-x.

        [25] GLENTING J, MADSEN S M, VRANG A, et al. A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts[J]. Applied Environmental Microbiology, 2002, 68(10): 5051-5056.

        [26] LIU Chunqiang, LEE L V, HARVEY L M, et al. Cloning vectors for Lactococci based on a plasmid encoding resistance to cadmium[J]. Current Microbiology, 1996, 33(1): 35-39. DOI:10.1007/ s002849900070.

        [27] DEMERDASH H A M, HELLER K J, GEIS A. Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria[J]. Applied Environmental Microbiology, 2003, 69(8): 4408-4412. DOI:10.1128/aem.69.8.4408-4412.2003.

        [28] HARRINGTON A, HILL C. Construction of a bacteriophage-resistant derivative of Lactococcus lactis subsp. lactis 425A by using the conjugal plasmid pNP40[J]. Applied Environmental Microbiology, 1991, 57(12): 3405-3409.

        [29] SULLIVAN D O, ROSS R P, TWOMEY D P, et al. Naturally occurring lactococcal plasmid pAH90 links bacteriophage resistance and mobility functions to a food-grade selectable marker[J]. Applied Environmental Microbiology, 2001, 67(2): 929-937. DOI:10.1128/ aem.67.2.929-937.2001.

        [30] MILLEN A M, HORVATH P, BOYAVAL P, et al. Mobile CRISPR/ Cas-mediated bacteriophage resistance in Lactococcus lactis[J]. PLoS ONE, 2012, 7(12): e51663. DOI:10.1371/journal.pone.0051663.

        [31] DUONG T, MILLER M J, BARRANGOU R, et al. Construction of vectors for inducible and constitutive gene expression in Lactobacillus[J]. Microbial Biotechnology, 2011, 4(3): 357-367. DOI:10.1111/j.1751-7915.2010.00200.x.

        [32] TAUER C, HEINL S, EGGER E, et al. Tuning constitutive recombinant gene expression in Lactobacillus plantarum[J]. Microbial Cell Factories, 2014, 13(1): 1-11. DOI:10.1186/s12934-014-0150-z.

        [33] JORGENSEN C M, VRANG A, MADSEN S M. Recombinant protein expression in Lactococcus lactis using the P170 expression system[J]. Fems Microbiology Letters, 2014, 351(2): 170-178. DOI:10.1111/1574-6968.12351.

        [34] de RUYTER P G, KUIPERS O P, de VOS W M. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin[J]. Applied Environmental Microbiology, 1996, 62(10): 3662-3667. [35] SORVIG E, GRONQVIST S, NATERSTAD K, et al. Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum[J]. Fems Microbiology Letters, 2003, 229(1): 119-126. DOI:10.1016/s0378-1097(03)00798-5.

        [36] AXEISSON L, HOLCK A. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706[J]. Journal of Bacteriology, 1995, 177(8): 2125-2137.

        [37] THAIWONG N, THAIUDUM S, HALTRICH D, et al. Production of recombinant β-galactosidase in Lactobacillus plantarum, using a pSIP-based food-grade expression system[J]. Advanced Materials Research, 2014, 931/932: 1518-1523. DOI:10.4028.AMR.931-932.1518.

        [38] SANATI N A, GHANBARI M, AGUDELO C G, et al. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis[J]. Biomedical Microdevices, 2014, 16(1): 23-33. DOI:10.1007/s10544-013-9802-8.

        [39] MIERAU I, OLIEMAN K, MOND J, et al. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications[J]. Microbial Cell Factories, 2005, 4(1): 1-12. DOI:10.1186/1475-2859-4-16.

        [40] WU Chiming, LIN C F, CHANG Y C, et al. Construction and characterization of nisin-controlled expression vectors for use in Lactobacillus reuteri[J]. Bioscience Biotechnology & Biochemistry, 2006, 70(4): 757-767. DOI:10.1271/bbb.70.757.

        [41] PAVAN S, HOLS P, DELCOUR J, et al. Adaptation of the nisincontrolled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects[J]. Applied Environmental Microbiology, 2000, 66(10): 4427-4432. DOI:10.1128/ aem.66.10.4427-4432.2000.

        [42] BOUCHER I, PSRROT M, GAUDREAU H, et al. Novel foodgrade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis[J]. Applied Environmental Microbiology, 2002, 68(12): 6152-6161. DOI:10.1128/ aem.68.12.6152-6161.2002.

        [43] O’CONNELL M M, van SINDEREN D, MOREL D F, et al. Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363[J]. Microbiology, 2000, 146 (Pt4): 935-947. DOI:10.1002/jsfa.3346.

        [44] LANDETE J M, GARCIA H L, BLASCO A, et al. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway[J]. Applied Environmental Microbiology, 2010, 76(1): 84-95. DOI:10.1128/aem.02145-09.

        [45] POSTMA P W, LENGELER J W, JACOBSON G R. Phosphoeno lpyruvate:carbohydrate phosphotransferase systems of bacteria[J]. Microbiological Reviews, 1993, 57(3): 543-594.

        [46] HIGGINS C F. ABC transporters: from microorganisms to man[J]. Annual Review of Cell Biology, 1992, 8: 67-113. DOI:10.1146/ annurev.cb.08.110192.000435.

        [47] ANDERSEN J M, BARRANGOU R, HACHEM M A, et al. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM[J]. PLoS ONE, 2012, 7(9): 1-12. DOI:10.1371/journal.pone.0044409.

        [48] de VOS W M, KUIPERS O P, van der MEER J R, et al. Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria[J]. Molecular Microbiology, 1995, 17(3): 427-437. DOI:10.1111/j.1365-2958.1995.mmi_17030427.x.

        [49] MA Shijie, LI Kun, LI Xinsheng, et al. Expression of bioactive porcine interferon-alpha in Lactobacillus casei[J]. World Journal of Microbiology and Biotechnology, 2014, 30(9): 2379-2386. DOI:10.1007/s11274-014-1663-7.

        [50] MIYOSHI A, JAMET E, COMMISSAIRE J, et al. A xylose-inducible expression system for Lactococcus lactis[J]. Fems Microbiology Letters, 2004, 239(2): 205-212. DOI:10.1016/j.femsle.2004.08.018.

        [51] D’SOUZA R, PANDEYA D R, HONG S T. Review: Lactococcus lactis: an efficient Gram positive cell factory for the production and secretion of recombinant protein[J]. Biomedical Research, 2012, 23(1): 1-7.

        [52] CHANG Shiaoming, YAN Tsongrong. Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase[J]. Biotechnology Letters, 2014, 36(2): 327-335. DOI:10.1007/s10529-013-1363-7.

        [53] SOLIOZ M, STOYANOV J V. Copper homeostasis in Enterococcus hirae[J]. FEMS Microbiology Reviews, 2003, 27(2/3): 183-195. DOI:10.1016/S0168-6445(03)00053-6.

        [54] LLULL D, POQUET I. New expression system tightly controlled by zinc availability in Lactococcus lactis[J]. Applied Environmental Microbiology, 2004, 70(9): 5398-5406. DOI:10.1128/aem.70.9.5398-5406.2004.

        [55] OH J H, PIJKEREN J P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J]. Nucleic Acids Research, 2014, 42(17): e131. DOI:10.1093/nar/gku623.

        [56] KONG W, KAPUGANTI V S, LU T. A gene network engineering platform for lactic acid bacteria[J]. Nucleic Acids Research, 2016, 44(4): e37. DOI:10.1093/nar/gkv1093.

        [57] GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345. DOI:10.1038/nmeth.1318.

        [58] GIBSON D G, SMITH H O, HUTCHISON C A, et al. Chemical synthesis of the mouse mitochondrial genome[J]. Nature Methods, 2010, 7(11): 901-903. DOI:10.1038/nmeth.1515.

        [59] BAENES W M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(6): 2216-2220. DOI:10.1073/pnas.91.6.2216.

        [60] YOSHIDA N, SATO M. Plasmid uptake by bacteria: a comparison of methods and efficiencies[J]. Applied Microbiology and Biotechnology, 2009, 83(5): 791-798. DOI:10.1007/s00253-009-2042-4.

        [61] AUVRAY F, CODDEVILLE M, RITZENTHALER P, et al. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4[J]. Journal of Bacteriology, 1997, 179(6): 1837-1845.

        [62] MARTIN M C, ALONSO J C, SUAREZ J E, et al. Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination[J]. Applied Environmental Microbiology, 2000, 66(6): 2599-2604. DOI:10.1128/aem.66.6.2599-2604.2000.

        [63] SERROR P, ILAMI G, CHOUAYEKH H, et al. Transposition in Lactobacillus delbrueckii subsp. bulgaricus: identification of two thermosensitive replicons and two functional insertion sequences[J]. Microbiology, 2003, 149(Pt 6): 1503-1511. DOI:10.1099/ mic.0.25827-0.

        [64] SONG Li, CUI Hongyu, TANG Lijie, et al. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid[J]. Journal of Microbiological Methods, 2014, 102: 37-44. DOI:10.1016/j.mimet.2014.04.011.

        [65] SCHMIDT F R. Recombinant expression systems in the pharmaceutical industry[J]. Applied Microbiology and Biotechnology, 2004, 65(4): 363-372. DOI:10.1007/s00253-004-1656-9.

        [66] LIU Guorong, WANG Haifeng, GRIFFITHS M W, et al. Heterologous extracellular production of enterocin P in Lactococcus lactis by a foodgrade expression system[J]. European Food Research and Technology, 2011, 233(1): 123-129. DOI:10.1007/s00217-011-1494-9.

        [67] GU Wenliang, XIA Qiyu, YAO Jing, et al. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and foodgrade Lactococcus lactis[J]. World Journal of Microbiology & Biotechnology B, 2015, 31(4): 557-567. DOI:10.1007/s11274-015-1809-2.

        [68] NGUYEN T T, NGUYEN H M, GEIGER B, et al. Heterologous expression of a recombinant lactobacillal beta-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system[J]. Microbial Cell Factories, 2015, 14: 30. DOI:10.1186/s12934-015-0214-8.

        [69] SYBESMA W, STARRENBURG M, KLEEREBEZEM M, et al. Increased production of folate by metabolic engineering of Lactococcus lactis[J]. Applied Environmental Microbiology, 2003, 69(6): 3069-3076. DOI:10.1128/AEM.69.6.3069-3076.2003.

        [70] GOSALBES M J, ESTEBAN C D, GALAN J L, et al. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei[J]. Applied Environmental Microbiology, 2000, 66(11): 4822-4828. DOI:10.1128/AEM.66.11.4822-4828.2000.

        [71] STAUDIGL P, HALTRICH D, PETERBAUER C K. L-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucose[J]. Journal of Agricultural and Food Chemistry, 2014, 62(7): 1617-1624. DOI:10.1021/jf404785m.

        [72] SHENG Juzheng, LING Peixue, WANG Fengshan. Constructing a recombinant hyaluronic acid biosynthesis operon and producing foodgrade hyaluronic acid in Lactococcus lactis[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(2): 197-206. DOI:10.1007/ s10295-014-1555-8.

        [73] FAN Hongying, WU Xianbo, YU Fang, et al. Oral immunization with recombinant Lactobacillus acidophilus expressing the adhesin Hp0410 of Helicobacter pylori induces mucosal and systemic immune responses[J]. Clinical and Vaccine Immunology: CVI, 2014, 21(2): 126-132. DOI:10.1128/cvi.00434-13.

        [74] AHMED B, LOOS M, VANROMPAY D, et al. Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization[J]. Vaccine, 2014, 32(31): 3909-3916. DOI:10.1016/ j.vaccine.2014.05.054.

        [75] HOANG P M, CHO S, KIM K E, et al. Development of Lactobacillus paracasei harboring nucleic acid-hydrolyzing 3D8 scFv as a preventive probiotic against murine norovirus infection[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2793-2803. DOI:10.1007/s00253-014-6257-7.

        [76] SHI Shaohua, YANG Wentao, YANG Guilian, et al. Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarum NC8 expressing hemagglutinin in BALB/c mice[J]. Virology, 2014, 464/465: 166-176. DOI:10.1016/ j.virol.2014.07.011.

        [77] GUO Shanguang, YAN Weiwei, MCDONOUGH S P, et al. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model[J]. Vaccine, 2015, 33(13): 1586-1595. DOI:10.1016/j.vaccine.2015.02.006.

        [78] ALVAREZ S P, MARTIN M C, REDRUELLO B, et al. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase[J]. Applied Microbiology and Biotechnology, 2014, 98(15): 6689-6700. DOI:10.1007/s00253-014-5730-7.

        A Review of Research on Lactic Acid Bacteria Food-Grade Vectors and Their Applications

        WANG Yao, WEI Yunlu, LI Pinglan*
        (Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China)

        Lactic acid bacteria (LAB) are important probiotic microorganisms used in food fermentation industry. Molecular biological manipulation of these microorganisms has great potential for the development of food industry and human health. Based on the characteristics of lactic acid bacteria and the development of molecular biology, this review aims at the basic principles of a food-grade vector system for LAB, the components of a food-grade plasmid, the strategies to construct and transform a food-grade plasmid, and recent applications of food-grade plasmids. This review highlights that food-grade molecular biology could have a major positive impact on further development and application of LAB.

        lactic acid bacteria; food-grade system; plasmid

        10.7506/spkx1002-6630-201713044

        TS201.3

        A

        1002-6630(2017)13-0269-08

        王瑤, 韋云路, 李平蘭. 乳酸菌食品級(jí)質(zhì)粒及應(yīng)用的研究進(jìn)展[J]. 食品科學(xué), 2017, 38(13): 269-276. DOI:10.7506/ spkx1002-6630-201713044. http://www.spkx.net.cn

        WANG Yao, WEI Yunlu, LI Pinglan. A review of research on lactic acid bacteria food-grade vectors and their applications[J]. Food Science, 2017, 38(13): 269-276. (in Chinese with English abstract)

        10.7506/spkx1002-6630-201713044. http://www.spkx.net.cn

        2016-06-14

        國(guó)家自然科學(xué)基金面上項(xiàng)目(31271827;31671831)

        王瑤(1989—),男,博士研究生,研究方向?yàn)槭称肺⑸?。E-mail:wangyao897@126.com

        *通信作者:李平蘭(1964—),女,教授,博士,研究方向?yàn)槭称肺⑸?。E-mail:lipinglan@cau.edu.cn

        猜你喜歡
        食品級(jí)菌種乳酸菌
        水利工程專用食品級(jí)液壓油在液壓?jiǎn)㈤]機(jī)上的應(yīng)用
        石油商技(2023年3期)2023-12-11 03:52:08
        食品級(jí)二氧化碳工藝路線技術(shù)創(chuàng)新
        云南化工(2021年11期)2022-01-12 06:06:32
        螞蟻琥珀中發(fā)現(xiàn)新蘑菇菌種
        軍事文摘(2021年18期)2021-12-02 01:28:04
        禽用乳酸菌SR1的分離鑒定
        “食品級(jí)”化妝品是個(gè)“坑”
        揭秘“食品級(jí)”肌膚營(yíng)養(yǎng)素
        手外傷感染的菌種構(gòu)成及耐藥性分析
        食用菌液體菌種栽培技術(shù)的探討
        乳酸菌成乳品市場(chǎng)新寵 年增速近40%
        乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
        久久不见久久见免费影院www| 亚洲AV秘 无码一区二p区三区| 国产免费久久精品99re丫y| 免费在线观看亚洲视频| 国产后入内射在线观看| 久久久黄色大片免费看| 日本免费久久高清视频| 亚洲最大一区二区在线观看| 无码国内精品人妻少妇蜜桃视频| 97人人模人人爽人人少妇| 久久久久久好爽爽久久| 夜夜被公侵犯的美人妻| 日本熟女人妻一区二区三区| 国产大屁股白浆一区二区三区 | 欧美人与禽交zozo| 久久激情人妻中文字幕| 中国av一区二区三区四区| 老岳肥屁熟女四五十路| 免费观看91色国产熟女| 成人免费a级毛片无码片2022| 男男性恋免费视频网站| 欧美精品aaa久久久影院| 亚洲精品女同在线观看| 特级黄色大片性久久久| 国产91色综合久久高清| 情人伊人久久综合亚洲| 色猫咪免费人成网站在线观看| 成黄色片视频日本秘书丝袜| 中文字幕亚洲精品第一页| 国产亚洲午夜精品久久久| 免费看男女做羞羞的事网站| 亚洲人成人77777网站| 久久精品国产亚洲AV高清wy| 亚洲熟妇一区二区蜜桃在线观看| av无码国产精品色午夜| 国产午夜毛片v一区二区三区 | 人妻无码Aⅴ中文系列| a级国产精品片在线观看| 亚洲一区二区视频免费看| 亚洲乱码中文在线观看| 成 人免费va视频|