熊煒,楊波,劉薇茵,王荃,孔曉聰,靳亞軍,梁閃閃,欒維江,張泗舉
(天津師范大學(xué)生命科學(xué)學(xué)院/天津市動(dòng)植物抗性重點(diǎn)實(shí)驗(yàn)室,天津 300387)
水稻順式還原酮加雙氧酶基因的表達(dá)及功能分析
熊煒,楊波,劉薇茵,王荃,孔曉聰,靳亞軍,梁閃閃,欒維江,張泗舉
(天津師范大學(xué)生命科學(xué)學(xué)院/天津市動(dòng)植物抗性重點(diǎn)實(shí)驗(yàn)室,天津 300387)
【目的】農(nóng)作物對(duì)逆境脅迫的耐受能力與產(chǎn)量息息相關(guān),是作物育種要考慮的重要因素。文中對(duì)水稻順式還原酮加雙氧酶基因OsARD1進(jìn)行研究,分析其表達(dá)模式,明確其在水稻應(yīng)對(duì)非生物脅迫中的功能,為水稻耐旱品種的分子設(shè)計(jì)及育種提供參考依據(jù)?!痉椒ā刻崛〔煌M織器官的總RNA,利用RT-PCR方法分析OsARD1表達(dá)的組織特異性。利用不同的非生物脅迫處理14 d大小的野生型(中花11)植株,在不同時(shí)間點(diǎn)提取總RNA,利用RT-PCR方法分析OsARD1表達(dá)的受誘導(dǎo)情況。通過農(nóng)桿菌遺傳轉(zhuǎn)化法轉(zhuǎn)化水稻愈傷組織,經(jīng)過一系列分子檢測(cè)后獲得穩(wěn)定遺傳的T1代OsARD1的過量表達(dá)轉(zhuǎn)基因植株,以轉(zhuǎn)入空載體的野生型植株作為對(duì)照。將在營養(yǎng)液中正常培養(yǎng)的12 d大小的野生型和過表達(dá)幼苗移出營養(yǎng)液進(jìn)行缺水處理并進(jìn)行恢復(fù)試驗(yàn)。將催芽后的野生型和過表達(dá)轉(zhuǎn)基因植株種子種在含有5% PEG6000的agar培養(yǎng)基中進(jìn)行滲透脅迫處理,以不含PEG6000的agar培養(yǎng)基作為對(duì)照,觀察二者的表型?!窘Y(jié)果】組織特異性表達(dá)分析表明OsARD1主要在根及成熟的組織中表達(dá),尤其在衰老的組織中有較高表達(dá)。非生物脅迫處理表明OsARD1的表達(dá)明顯受機(jī)械損傷、高鹽和滲透脅迫的誘導(dǎo)。獲得6個(gè)獨(dú)立株系的可穩(wěn)定遺傳的OsARD1過量表達(dá)轉(zhuǎn)基因植株。對(duì)過量表達(dá)轉(zhuǎn)基因植株及空載體野生型對(duì)照進(jìn)行干旱脅迫處理,缺水處理5 h后,野生型植株葉片卷曲皺縮成針狀表現(xiàn)出嚴(yán)重的缺水癥狀,但此時(shí)過表達(dá)轉(zhuǎn)基因植株葉片仍處于舒展?fàn)顟B(tài);缺水處理8 h后開始復(fù)水培養(yǎng)3 d,野生型植株的存活率僅為10%,而過表達(dá)植株存活率為80%,遠(yuǎn)遠(yuǎn)高于野生型,說明過量表達(dá)OsARD1提高了水稻對(duì)缺水的耐受能力。用PEG滲透脅迫模擬干旱脅迫處理6 d后發(fā)現(xiàn),不含PEG6000對(duì)照組中野生型和過表達(dá)植株的幼苗生長情況沒有明顯的差別;在PEG處理組中,野生型幼苗根的生長受到嚴(yán)重抑制,而過表達(dá)植株幼苗根的生長受到抑制較小,根長明顯長于野生型對(duì)照植株,說明過量表達(dá)OsARD1增強(qiáng)了水稻耐受干旱脅迫的能力?!窘Y(jié)論】OsARD1主要在水稻根及成熟的組織中表達(dá),并且受機(jī)械損傷、高鹽和滲透脅迫的誘導(dǎo)。過量表達(dá)OsARD1提高了水稻抗旱性能。
水稻;OsARD1;過量表達(dá);干旱脅迫;乙烯
【研究意義】農(nóng)作物的產(chǎn)量會(huì)受到生長環(huán)境的影響。目前,全球作物產(chǎn)量由于土地缺水和鹽漬化受到嚴(yán)重地制約,作物的抗逆性成了育種中需要考慮的重要方面。干旱是目前最普遍的環(huán)境脅迫,植物應(yīng)對(duì)干旱通常包括4種機(jī)制:避旱性(drought avoidance)、耐旱性(drought tolerance)、逃旱性(drought escape)和復(fù)水旱性(drought recovery)。其中最主要的是避旱性,主要表現(xiàn)為以葉片卷曲來減少水分散失、利用發(fā)達(dá)的根系來提高水分吸收能力和減慢營養(yǎng)生長到生殖生長的轉(zhuǎn)變,以免在干旱時(shí)造成減產(chǎn)[1]。當(dāng)植物受到極端環(huán)境脅迫時(shí),會(huì)產(chǎn)生應(yīng)答反應(yīng)。環(huán)境脅迫首先被植物感應(yīng),然后通過一系列信號(hào)轉(zhuǎn)導(dǎo)途徑,誘導(dǎo)植物內(nèi)源抗逆基因的表達(dá)從而影響植物的生長發(fā)育。研究植物逆境信號(hào)通路,分離和鑒定脅迫相關(guān)基因,對(duì)作物抗逆育種和利用轉(zhuǎn)基因策略來提高作物的抗逆能力起著十分重要的作用[2]。【前人研究進(jìn)展】研究表明植物激素在逆境脅迫中起到關(guān)鍵作用,如ABA及乙烯。植物激素ABA信號(hào)轉(zhuǎn)導(dǎo)途徑在逆境脅迫中的機(jī)制已較為清晰[3-4]。轉(zhuǎn)錄因子是參與逆境脅迫的一類重要的調(diào)節(jié)子[5-7],很多與干旱和耐鹽相關(guān)的轉(zhuǎn)錄因子均能夠被ABA誘導(dǎo),如一些bZIP類型轉(zhuǎn)錄因子[8-10]。這些轉(zhuǎn)錄因子的啟動(dòng)子中含有ABA響應(yīng)元件,參與ABA介導(dǎo)的逆境信號(hào)通路。水稻中OsbZIP23能夠被多種非生物脅迫誘導(dǎo),過表達(dá)OsbZIP23明顯提高了水稻對(duì)干旱、高鹽的耐受性和對(duì)ABA的敏感性。OsbZIP23能正向調(diào)控OsPP2C49和OsNCED4 的表達(dá)提高水稻對(duì)干旱和高鹽的抗性[11-12]。在擬南芥(Arabidopsis thaliana)中,WRKY轉(zhuǎn)錄因子家族成員ABO3的突變體植株abo3對(duì)ABA極度敏感,相較于野生型,abo3的耐旱能力減弱,分析發(fā)現(xiàn),在abo3中ABA響應(yīng)轉(zhuǎn)錄因子ABF2/AREB1表達(dá)明顯降低。經(jīng)ABA處理后,發(fā)現(xiàn)在處理早期abo3中ABF2、RD29A和COR47的表達(dá)明顯受抑制,表明ABO3與這些ABA誘導(dǎo)基因的表達(dá)相關(guān)[13]。目前,乙烯在逆境脅迫中的調(diào)控通路還不清楚。有研究發(fā)現(xiàn),干旱、高鹽、低溫、水淹、機(jī)械損傷等非生物脅迫都能誘導(dǎo)植物體內(nèi)乙烯含量的增加[14]。受到干旱脅迫時(shí),植物體內(nèi)乙烯含量的升高,能促進(jìn)對(duì)干旱的抵抗能力[15]。乙烯參與植物耐旱主要是通過乙烯信號(hào)轉(zhuǎn)導(dǎo)通路下游ERF轉(zhuǎn)錄因子家族,很多ERF轉(zhuǎn)錄因子均參與植物耐旱。在水稻中,ERF家族轉(zhuǎn)錄因子TSRF1通過調(diào)控MYB、MYC以及脯氨酸合成等相關(guān)基因來增強(qiáng)干旱和滲透脅迫的耐受性[16]。OsERF71也具有抗旱的功能[17],在根部過表達(dá)OsERF71能夠提高水稻干旱耐受性,在干旱脅迫下過表達(dá)OsERF71能改變根部的形態(tài)結(jié)構(gòu),并且OsERF71能夠直接結(jié)合木質(zhì)素合成基因OsCCR1的啟動(dòng)子,表明OsERF71可能與細(xì)胞壁的合成、木質(zhì)素合成相關(guān)基因共同作用來參與水稻耐旱調(diào)節(jié)。上述轉(zhuǎn)錄因子都是受激素調(diào)控的下游基因,本文報(bào)道一個(gè)乙烯合成途徑上游基因的功能。在著名的Yang Cycle中[18-19],與Fe2+結(jié)合的順式還原酮加雙氧酶(acireductone dioxygenase,ARD)催化順式還原酮生成KMTB (2-Keto-4-methylthiobutyrate),KMTB進(jìn)而被催化生成甲硫氨酸(Met)。Met是乙烯合成途徑中的重要物質(zhì),植物中乙烯的合成是首先通過催化Met形成S-腺苷甲硫氨酸,S-腺苷甲硫氨酸由ACC合成酶催化生成乙烯前體ACC(1-aminocyclopropane-1-carboxylic acid),ACC被氧化后生成乙烯[18],所以ARD位于乙烯合成的上游。在細(xì)菌里,DAI等[20]發(fā)現(xiàn)在肺炎克雷伯菌(Klebsiela pneumoniae)中有2種ARD酶,這兩種酶的蛋白質(zhì)構(gòu)成完全相同,由同一個(gè)基因編碼,但由于結(jié)合的金屬離子不同,卻行使了完全相反的功能。很多研究表明真核生物中參與甲硫氨酸循環(huán)的2個(gè)ARD蛋白同樣行使完全不同的功能,F(xiàn)e-ARD催化順式還原酮生成KMTB進(jìn)而促進(jìn)Met的合成;Ni-ARD參與催化順式還原酮生成甲基丙酸乙酯,順式還原酮的消耗使Met的合成減少[21]。ARD1在真核生物中高度保守,水稻中ARD家族有2個(gè)成員OsARD1和OsARD2(OsARD),OsARD1與Fe2+結(jié)合參與甲硫氨酸循環(huán)的補(bǔ)救途徑催化形成KMTB進(jìn)而生成Met,OsARD2則與Ni+結(jié)合[22-23]。SAUTER等[22]還發(fā)現(xiàn)OsARD1的表達(dá)受到乙烯和水淹的誘導(dǎo),表明OsARD1可能與乙烯信號(hào)轉(zhuǎn)導(dǎo)相關(guān)?!颈狙芯壳腥朦c(diǎn)】OsARD1是乙烯合成通路的上游基因,能夠催化順式還原酮形成酮酸促進(jìn)甲硫氨酸的合成,進(jìn)而乙烯合成增加,而且它還能被乙烯反饋誘導(dǎo),然而OsARD1在水稻中的生物學(xué)功能仍然未知。【擬解決的關(guān)鍵問題】本研究利用反向遺傳學(xué)的方法對(duì)OsARD1的生物學(xué)功能進(jìn)行探究。利用RT-PCR方法,分析OsARD1在水稻不同組織和器官中的表達(dá)特異性。通過構(gòu)建過表達(dá)載體獲得過表達(dá)轉(zhuǎn)基因植株,通過多種非生物脅迫處理,研究OsARD1的功能,為水稻耐旱機(jī)制的研究及耐旱品種的選育提供參考。
1.1 材料
研究材料為粳稻品種中花11(Oryza sativa L. ssp. Japonica cv. Zhonghua 11)及其轉(zhuǎn)基因植株,田間材料均種植于天津市天津師范大學(xué)試驗(yàn)田,保持日常管理。用于處理的材料均種植于人工氣候箱中(Climacell MMM,德國)。
1.2 OsARD1過表達(dá)載體的構(gòu)建及遺傳轉(zhuǎn)化
從60 d的成熟水稻葉片中提取總RNA,用M-MLV反轉(zhuǎn)錄酶(Vazyme,南京)反轉(zhuǎn)錄合成cDNA,以其為模板,用OsARD1特異性引物(OsARD1-OV-F:5′-TTAggtaccTTCCACCCCGCAATCCACAT-3′和OsARD1-OV-R:5′-GTTgtcgacGTGCAGGAGCCCAA CAAAAC-3′,小寫字母部分為酶切位點(diǎn)序列)進(jìn)行PCR擴(kuò)增,獲得OsARD1完整的ORF(open reading frame)。PCR擴(kuò)增程序?yàn)?5℃ 1 min;94℃ 30 s,62℃ 30 s,72℃ 30 s,35個(gè)循環(huán)。所用DNA聚合酶為高保真特性的酶(Vazyme,南京)。凝膠檢測(cè)正確后純化(Promega,上海)回收目的片段,與pCAMBIA2300空載體連接。對(duì)重組載體進(jìn)行酶切及測(cè)序驗(yàn)證后轉(zhuǎn)入農(nóng)桿菌(EHA105)中,通過農(nóng)桿菌遺傳轉(zhuǎn)化法獲得OsARD1過表達(dá)轉(zhuǎn)基因植株,同時(shí)轉(zhuǎn)入pCAMBIA2300空載體作為對(duì)照,轉(zhuǎn)化方法參照HIEI等[24]。
1.3 轉(zhuǎn)基因植株的分子檢測(cè)
T0代過表達(dá)轉(zhuǎn)基因植株在田間生長到約60 d后,進(jìn)行轉(zhuǎn)基因分子檢測(cè)。用CTAB法[25]提取葉片基因組DNA,對(duì)pCAMBIA2300載體中特有的新霉素磷酸轉(zhuǎn)移酶基因(NPTⅡ)進(jìn)行擴(kuò)增。所用引物為NPTⅡ-F:5′-TTCTCACTGAAGCGGGAAGGG-3′和NPTⅡ-R:5′-GCGATACCGTAAAGCACCAGG-3′,PCR擴(kuò)增程序?yàn)?4℃ 4 min;94℃ 30 s,57℃ 30s,72℃ 30 s,30個(gè)循環(huán)。
1.4 OsARD1的表達(dá)分析
對(duì)于組織特異性表達(dá)分析,從水稻不同組織器官(莖頂端分生組織、根、莖、幼葉、葉鞘)和不同時(shí)期的幼穗中提取總RNA;對(duì)于水稻不同生長時(shí)期葉片中目的基因表達(dá)分析,從田間不同時(shí)期水稻倒二葉中提取總RNA,時(shí)期分別為:14 d大小幼苗期、抽穗期及成熟衰老期(葉片已大面積黃化的水稻植株),取樣時(shí)間均為上午10點(diǎn);對(duì)于過表達(dá)轉(zhuǎn)基因植株中目的基因表達(dá)分析,從65 d大小的水稻葉片中提取總RNA。提取的總RNA經(jīng)DNaseⅠ進(jìn)行去基因組處理后,用M-MLV反轉(zhuǎn)錄酶進(jìn)行反轉(zhuǎn)錄獲得cDNA,以cDNA為模板進(jìn)行PCR擴(kuò)增。所用目的基因引物為OsARD1-F:5′-GCGAGAACCTGAAGAGAATC-3′和OsARD1-R:5′-CCTCCTTTCTTCAGTGCTAT-3′,PCR擴(kuò)增程序?yàn)?4℃ 4 min;94℃ 30 s,56℃ 30 s,72℃30 s,30個(gè)循環(huán)。以水稻的OsActin1作為內(nèi)參基因,所用引物為OsActin1-F:5′-GACTCTGGTGATGGTGT CAGC-3′和OsActin1-R:5′-GGCTGGAAGAGGACCT CAGG-3′,PCR擴(kuò)增程序?yàn)椋?4℃ 4 min;94℃ 30 s,55℃ 30 s,72℃ 30 s,24個(gè)循環(huán)。
1.5 缺水處理及PEG滲透脅迫處理
缺水處理試驗(yàn):將催芽后的野生型和OsARD1-OV過表達(dá)轉(zhuǎn)基因T1代種子種植在木村營養(yǎng)液(國際水稻所)里生長,12 d后撤去營養(yǎng)液進(jìn)行缺水處理,觀察記錄表型,干旱處理后將干旱處理的植株重新放入營養(yǎng)液中培養(yǎng),復(fù)水培養(yǎng)3 d后統(tǒng)計(jì)植株的存活率。
滲透脅迫試驗(yàn):將催芽后的野生型和OsARD1-OV過表達(dá)轉(zhuǎn)基因種子分別種在含有5% PEG6000(滲透勢(shì)為-0.05 MPa[26])及無PEG6000的agar培養(yǎng)基中生長,并進(jìn)行表型觀察記錄。
1.6 不同非生物脅迫處理及表達(dá)分析
機(jī)械損傷:將營養(yǎng)液中培養(yǎng)的14 d大小的野生型幼苗用鑷子對(duì)葉片及莖進(jìn)行機(jī)械損傷,沒有進(jìn)行機(jī)械損傷的幼苗作為對(duì)照,分別提取處理0、3、6、12和24 h后處理組和對(duì)照組幼苗的總RNA進(jìn)行表達(dá)分析。
鹽脅迫:將營養(yǎng)液中培養(yǎng)的14 d大小的野生型幼苗,轉(zhuǎn)入含有200 mmol·L-1NaCl營養(yǎng)液中進(jìn)行處理,以在正常營養(yǎng)液中生長的幼苗作為對(duì)照,分別提取處理0、3、6、12和24 h后處理組和對(duì)照組幼苗的總RNA進(jìn)行表達(dá)分析。
滲透脅迫:將營養(yǎng)液中培養(yǎng)的14 d大小的野生型幼苗,轉(zhuǎn)入含有20% PEG6000營養(yǎng)液(滲透勢(shì)為-0.49 MPa[26])中進(jìn)行處理,以在正常營養(yǎng)液中生長的幼苗作為對(duì)照,分別提取處理0、6、12、24、和48 h后處理組和對(duì)照組幼苗的總RNA進(jìn)行表達(dá)分析。
非生物脅迫處理后提取總RNA,經(jīng)DNaseⅠ進(jìn)行處理,反轉(zhuǎn)錄合成cDNA,利用qRT-PCR方法分析不同非生物脅迫處理下目的基因的表達(dá)規(guī)律,每次試驗(yàn)設(shè)置3個(gè)重復(fù)。
2.1 OsARD1的表達(dá)模式分析
通過研究OsARD1在水稻不同器官中的表達(dá), 發(fā)現(xiàn)OsARD1在各個(gè)組織器官中均有表達(dá),但在不同器官中的表達(dá)量有明顯差異。OsARD1在根和已開花的穗(P3)中高表達(dá),在莖頂端分生組織和14 cm長的穗中(P1)表達(dá)量較高,在幼葉、葉鞘、莖和4 cm長的幼穗(P2)中表達(dá)量較低(圖1-A)。進(jìn)一步分析OsARD1在不同時(shí)期水稻葉片中的表達(dá)情況,結(jié)果表明,OsARD1在幼嫩的葉片(L1)中表達(dá)量較低,在成熟的葉片(L2)中表達(dá)量較高,而在衰老的葉片(L3)中表達(dá)量最高(圖1-B),表明OsARD1在植株成熟的組織高表達(dá)。
上述時(shí)空特異性表達(dá)結(jié)果表明,OsARD1在衰老的葉片中表達(dá)明顯升高,表明OsARD1的表達(dá)可能受某些環(huán)境因素的誘導(dǎo)。通過對(duì)野生型幼苗進(jìn)行了多種非生物脅迫處理,結(jié)果表明,OsARD1受機(jī)械損傷、高鹽和滲透脅迫的誘導(dǎo)。機(jī)械損傷處理3 h后,OsARD1的表達(dá)開始升高,處理6 h后達(dá)到峰值(圖1-C)。高鹽脅迫處理3 h后OsARD1表達(dá)量明顯上升,處理12 h后達(dá)到峰值(圖1-D)。PEG滲透脅迫處理6 h后,OsARD1的表達(dá)明顯升高,處理12 h后達(dá)到峰值(圖1-E)。上述結(jié)果表明OsARD1的表達(dá)明顯受到非生物脅迫處理的誘導(dǎo),表明OsARD1可能參與了水稻對(duì)非生物脅迫耐受的調(diào)節(jié)途徑。
2.2 OsARD1過表達(dá)載體的構(gòu)建
利用RT-PCR的方法獲得OsARD1的全長ORF,經(jīng)瓊脂糖凝膠電泳檢測(cè)后(圖2-B)切膠回收。將純化回收后的目的片段與含有2×35S啟動(dòng)子的空載體pCAMBIA2300經(jīng)限制性內(nèi)切酶KpnⅠ和SalⅠ進(jìn)行雙酶切,利用T4 DNA連接酶16℃過夜連接獲得重組載體。雙酶切后電泳檢測(cè),有預(yù)期的目的條帶(圖2-C),表明OsARD1的全長ORF片段已成功與過表達(dá)空載體連接(圖2-A)。為了進(jìn)一步確保載體的正確性,將構(gòu)建好的過表達(dá)載體進(jìn)行測(cè)序驗(yàn)證后,轉(zhuǎn)入農(nóng)桿菌中以備后續(xù)轉(zhuǎn)基因試驗(yàn)。
2.3 過表達(dá)轉(zhuǎn)基因植株的獲得及表達(dá)分析
圖1 OsARD1的表達(dá)模式分析Fig. 1 The expression pattern of OsARD1
圖2 OsARD1過表達(dá)載體的構(gòu)建Fig. 2 Construction of OsARD1 overexpression vector
利用農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化方法,將重組載體轉(zhuǎn)入野生型中花11中獲得OsARD1過表達(dá)轉(zhuǎn)基因植株。通過轉(zhuǎn)化獲得6個(gè)獨(dú)立株系共40株T0代轉(zhuǎn)基因植株,經(jīng)分子檢測(cè)后發(fā)現(xiàn)有37株為轉(zhuǎn)基因陽性植株(圖3-A)。田間觀察過表達(dá)轉(zhuǎn)基因植株與空載體對(duì)照轉(zhuǎn)基因植株,二者沒有明顯生長發(fā)育表型差異。用RT-PCR方法分析6個(gè)獨(dú)立株系的18個(gè)轉(zhuǎn)基因植株中目的基因OsARD1的表達(dá),結(jié)果表明,相較于野生型轉(zhuǎn)基因植株中目的基因的表達(dá)均有明顯升高(圖3-B),說明過表達(dá)載體在轉(zhuǎn)基因植株中正常工作。收獲T0代轉(zhuǎn)基因植株種子后,選取4個(gè)過表達(dá)株系第二年在大田里進(jìn)行種植獲得T1代轉(zhuǎn)基因株系,并檢測(cè)了T1代植株中目的基因的表達(dá)情況,發(fā)現(xiàn)OsARD1在4個(gè)過表達(dá)株系中表達(dá)量均明顯升高(圖3-C),表明過表達(dá)性狀可以穩(wěn)定遺傳。與對(duì)照組相比,T1代轉(zhuǎn)基因植株仍未見明顯生長發(fā)育表型差異(圖3-D)。
2.4 過表達(dá)OsARD1增強(qiáng)水稻的抗旱能力
圖3 OsARD1過表達(dá)轉(zhuǎn)基因植株的表型及表達(dá)分析Fig. 3 Phenotype and expression analysis of OsARD1 overexpressing transgenic lines
由于OsARD1受機(jī)械損傷、高鹽及滲透脅迫的誘導(dǎo),推測(cè)OsARD1可能與非生物脅迫相關(guān)。用脫水和PEG模擬干旱處理過表達(dá)轉(zhuǎn)基因植株及空載體對(duì)照轉(zhuǎn)基因植株,觀察過表達(dá)轉(zhuǎn)基因植株及對(duì)照的表型。選取過表達(dá)株系中的5號(hào)株系(#5),進(jìn)行干旱和滲透處理試驗(yàn)。將水培生長12 d的水稻幼苗進(jìn)行缺水處理(圖4-A),處理3.5 h后,對(duì)照植株葉片開始卷曲,而過表達(dá)轉(zhuǎn)基因植株沒有明顯變化。處理5 h后,對(duì)照植株葉片已經(jīng)完全失水卷曲呈針狀,表現(xiàn)出嚴(yán)重的缺水癥狀,但是此時(shí)過表達(dá)轉(zhuǎn)基因植株大部分生長正常,葉片仍處于舒展?fàn)顟B(tài)(圖4-B和圖4-C)。處理7 h后對(duì)照植株葉片失水嚴(yán)重,而過表達(dá)轉(zhuǎn)基因植株仍然有舒展的葉片(圖4-D),在缺水處理8 h后開始復(fù)水,將缺水處理的幼苗放入營養(yǎng)液中正常培養(yǎng)。培養(yǎng)3 d后,統(tǒng)計(jì)植株的存活率,發(fā)現(xiàn)野生型植株的存活率僅為10%,而過表達(dá)植株的存活率為80%,存活率遠(yuǎn)遠(yuǎn)高于野生型(表1)。這一結(jié)果表明過量表達(dá)OsARD1明顯增強(qiáng)了水稻抗旱耐缺水能力。
此外,將催芽后的對(duì)照和OsARD1過表達(dá)轉(zhuǎn)基因種子分別種在含有5% PEG6000及不含PEG6000的瓊脂培養(yǎng)基中。處理6 d后發(fā)現(xiàn),不含PEG的agar培養(yǎng)基中對(duì)照和過表達(dá)的幼苗生長情況沒有明顯的差別(圖4-F);在PEG處理組中,對(duì)照幼苗根的生長受到嚴(yán)重抑制,而過表達(dá)植株幼苗根的生長受到的抑制較小,根長明顯長于對(duì)照植株(圖4-F)。對(duì)野生型和過表達(dá)轉(zhuǎn)基因植株的根長進(jìn)行了測(cè)定,結(jié)果表明,過表達(dá)轉(zhuǎn)基因植株的根長比野生型植株長近一倍(圖4-G)。滲透試驗(yàn)中過表達(dá)植株對(duì)PEG處理的耐受力更強(qiáng),表明過量表達(dá)OsARD1明顯提高了水稻對(duì)滲透脅迫的耐受能力。
表1 脫水處理后恢復(fù)澆水培養(yǎng)后幼苗存活率Table 1 Survival rate of seedlings after recovery of irrigation in water deficit treatment
圖4 缺水及PEG處理情況下表型分析Fig. 4 Phenotypic analysis under water deficit and osmotic stress treatment
通過分析OsARD1的時(shí)空表達(dá)特性,發(fā)現(xiàn)OsARD1在根及成熟的組織器官中表達(dá)較高,在植株衰老時(shí)期的葉片中表達(dá)量明顯升高。用不同的非生物脅迫處理野生型中花11幼苗,發(fā)現(xiàn)OsARD1還受到機(jī)械損傷、高鹽和滲透脅迫的誘導(dǎo),這表明OsARD1可能與水稻的非生物脅迫應(yīng)答有關(guān)。因此,進(jìn)一步構(gòu)建OsARD1過表達(dá)載體,獲得了轉(zhuǎn)基因植株,并分析OsARD1在過量表達(dá)條件下的功能。研究結(jié)果表明,過表達(dá)OsARD1可以增加水稻對(duì)水分虧缺和滲透脅迫的耐受能力。在植物中,F(xiàn)e-ARD能參與甲硫氨酸補(bǔ)救途徑,促進(jìn)甲硫氨酸的合成[21],而甲硫氨酸又是乙烯合成途徑中的初始底物[27],因此,過表達(dá)OsARD1,能夠促進(jìn)KMTB的形成,進(jìn)而增加甲硫氨酸合成,從而促進(jìn)下游乙烯的合成,所以在乙烯合成途徑中ARD1位于乙烯合成的上游。而水分脅迫初期乙烯含量的升高可以提高植物對(duì)干旱的適應(yīng),增加植物對(duì)干旱的抵抗能力[15],這與本研究結(jié)果相吻合。
植物受到逆境脅迫并對(duì)脅迫信號(hào)產(chǎn)生響應(yīng),進(jìn)而引發(fā)體內(nèi)一系列分子水平的變化,相關(guān)轉(zhuǎn)錄因子會(huì)調(diào)控逆境脅迫相關(guān)基因的表達(dá)來提高植物對(duì)逆境的耐受能力[3],其中一類重要的轉(zhuǎn)錄因子AP2/ERF在乙烯的信號(hào)轉(zhuǎn)導(dǎo)途徑中具有重要作用。目前很多研究發(fā)現(xiàn),植物AP2/ERF家族中的許多成員均能響應(yīng)植物逆境脅迫[28]。在水稻中,ERF家族成員OsERF3是乙烯合成的負(fù)調(diào)控基因,其突變體中乙烯合成基因ACO2、ACS2和ACS6表達(dá)量均升高,并且突變體表現(xiàn)出比野生型和過表達(dá)植株更強(qiáng)的耐旱能力[29];OsERF3過表達(dá)植株中乙烯合成基因表達(dá)量及乙烯的合成量均減少,ACC處理后一定程度上恢復(fù)了OsERF3過表達(dá)植株的耐旱能力[30]。另一個(gè)ERF類轉(zhuǎn)錄因子OsDERF1是干旱脅迫的負(fù)調(diào)控因子,與野生型植株相比,過表達(dá)OsDERF1后對(duì)干旱的耐受能力減弱而OsDERF1的RNAi轉(zhuǎn)基因植株對(duì)干旱的耐受能力增強(qiáng),進(jìn)一步分析發(fā)現(xiàn)OsDERF1過表達(dá)轉(zhuǎn)基因植株中乙烯合成相關(guān)基因(OsACS2、OsACS6、OsACO2和OsACO3)表達(dá)量減少,而RNAi轉(zhuǎn)基因植株中這些基因表達(dá)量升高,RNAi轉(zhuǎn)基因植株中乙烯含量高于野生型,過表達(dá)植株中乙烯含量低于野生型[30]。DU等[31]發(fā)現(xiàn)OsETOL1過表達(dá)轉(zhuǎn)基因植株耐旱能力相較于野生型更弱,并且發(fā)現(xiàn)OsETOL1能夠與乙烯合成相關(guān)基因OsACS2相互作用負(fù)調(diào)控乙烯的合成來影響植株耐旱能力。這些ERF類轉(zhuǎn)錄因子均能通過調(diào)節(jié)水稻中乙烯合成相關(guān)基因的表達(dá),從而調(diào)控乙烯的合成來影響干旱脅迫耐受能力,說明乙烯在水稻耐旱脅迫機(jī)制中起著重要作用。本研究發(fā)現(xiàn)OsARD1是水稻耐旱的正調(diào)控因子。因?yàn)镺sARD1位于乙烯合成通路的上游,推測(cè)過表達(dá)OsARD1可以促進(jìn)乙烯的合成,從而提高了過表達(dá)轉(zhuǎn)基因植株的抗旱能力。
在擬南芥中,過量表達(dá)AP2/ERF類轉(zhuǎn)錄因子RAP2.4不僅增強(qiáng)了植株的耐旱能力,并且在長日照下過表達(dá)材料相較于野生型早開花,RAP2.4不僅參與了乙烯信號(hào)途徑還同時(shí)參與光信號(hào)途徑,可能在光信號(hào)和乙烯信號(hào)通路的下游來共同調(diào)節(jié)植物的生長和脅迫應(yīng)答[32]。大量研究表明乙烯信號(hào)轉(zhuǎn)導(dǎo)參與了植物非生物脅迫響應(yīng)調(diào)控[33],推測(cè)OsARD1可能通過和某些轉(zhuǎn)錄因子或脅迫相關(guān)基因相互作用來提高水稻對(duì)非生物脅迫的耐受能力。因此,后期還要?jiǎng)?chuàng)建OsARD1的RNAi和CRISPR轉(zhuǎn)基因植株,與過表達(dá)轉(zhuǎn)基因植株一起進(jìn)行不同的脅迫處理觀察對(duì)表型的影響。同時(shí)篩選與OsARD1相互作用的基因,從而進(jìn)一步揭示OsARD1在非生物脅迫方面的精確功能。
OsARD1主要在根及成熟的組織器官中表達(dá),在植株衰老時(shí)期葉片中表達(dá)量較高。OsARD1受機(jī)械損傷、高鹽和滲透脅迫的強(qiáng)烈誘導(dǎo),參與多種逆境脅迫應(yīng)答。過量表達(dá)OsARD1水稻轉(zhuǎn)基因植株比野生型表現(xiàn)出更強(qiáng)的對(duì)水分脅迫和PEG滲透脅迫的耐受能力。提高了水稻抗旱性能。
[1] FANG Y J, XIONG L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
[2] XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress. The Plant Cell, 2002, 14(Suppl):S165-S183.
[3] NAKASHIMA K, ITO Y, YAMAGUCHI-SHINOZAKI K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 2009, 149(1): 88-95.
[4] NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development. Plant Cell Reports, 2013, 32(7): 959-970.
[5] CHEN X, WANG Y, LV B, LI J, LUO L, LU S, ZHANG X, MA H, MING F. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiology, 2014, 55(3): 604-619.
[6] CASTILHOS G, LAZZAROTTO F, SPAGNOLO-FONINI L, BODANESE-ZANETTINI M H, MARGIS-PINHEIRO M. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Science, 2014, 223: 1-7.
[7] YANG A, DAI X Y, ZHANG W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012, 63(7): 2541-2556.
[8] NIJHAWAN A, JAIN M, TYAGI A K, KHURANA J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 2008, 146(2): 333-350.
[9] LIANG C Z, MENG Z H, MENG Z G, MALIK W, YAN R, LWIN K M, LIN F Z, WANG Y, SUN G Q, ZHOU T, ZHU T, LI J Y, JIN S X, GUO S D, ZHANG R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific Reports, 2006, 6: 35040.
[10] HU W, YANG H B, YAN Y, WEI Y X, TIE W W, DING Z H, ZUO J, PENG M, LI K M. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Scientific Reports, 2016, 6: 22783.
[11] XIANG Y, TANG N, DU H, YE H Y, XIONG L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 2008, 148(4): 1938-1952.
[12] ZONG W, TANG N, YANG J, PENG L, MA S Q, XU Y, LI G L, XIONG L Z. Feedback regulation of ABA signaling and biosynthesis by a bzip transcription factor targets drought-resistance-related genes. Plant Physiology, 2016, 171(4): 2810-2825.
[13] REN X Z, CHEN Z Z, LIU Y, ZHANG H R, ZHANG M, LIU Q, HONG X H, ZHU J K, GONG Z Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic and drought tolerance in Arabidopsis. The Plant Journal, 2010, 63(3): 417-429.
[14] Morgan P W, Drew M C. Ethylene and plant responses to stress. Physiologia Planarumt, 1997, 100(3): 620-630.
[15] 于延文, 黃榮峰. 乙烯與植物抗逆性. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2013, 15(2): 70-75. YU Y W, HUANG R F. Ethylene and plant resistance to adversity. Journal of Agriculture Science and Technology, 2013, 15(2): 70-75. (in Chinese)
[16] QUAN R D, HU S J, ZHANG Z L, ZHANG H W, ZHANG Z J, HUANG R F. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal, 2010, 8(4): 476-488.
[17] LEE D K, JUNG H, JANG G, JEONG J S, KIM Y S, HA S H, DO CHOI Y, KIM J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiology, 2016, 172(1): 575-588.
[18] RZEWUSKI G, SAUTER M. Ethylene biosynthesis and signaling in rice. Plant Science, 2008, 175(1): 32-42.
[19] POMMERRENIG B, FEUSSNER K, ZIERER W, RABINOVYCH V, KLEBL F, FEUSSNER I, SAURE N. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. The Plant Cell, 2011, 23(5): 1904-1919.
[20] DAI Y, WENSINK P C, ABELES R H. One protein, two enzymes. Journal of Biological Chemistry, 1998, 274(3): 1193-1195.
[21] FRIEDMAN E J, WANG H X, JIANG K, PEROVIC I, DESHPANDE A, POCHAPSKY T C, TEMPLE B R, HICKS S N, HARDEN T K, JONES A M. Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein beta subunit in Arabidopsis. Journal of Biological Chemistry, 2011, 286(34): 30107-30118.
[22] SAUTER M, LORBIECKE R, OUYANG B, POCHAPSKY T C, RZEWUSKI G. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. The Plant Journal, 2005, 44(5): 718-729.
[23] LIN T, HE X W, YANG L, SHOU H X, WU P. Identification and characterization of a novel water-deficit-supressed gene OsARD encoding an aci-reductone-dioxygenase-like protein in rice. Gene, 2005, 360(1): 27-34.
[24] HIEI Y, OHTA S, KOMARI T, KUMASHIRO T. Efficienttransformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6(2): 271-282.
[25] 張鳳娟, 張滿良, 朱水芳. 一種改進(jìn)的水稻總DNA的快速提取方法. 植物檢疫, 2004, 18(6): 330-332.
ZHANG F J, ZHANG M L, ZHU S F. An improved rapid method of plant total DNA extraction. Plant Quarantine, 2004, 18(6): 330-332. (in Chinese)
[26] MICHEL B E, KAUFMANN M R. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 1973, 51(5): 914-916.
[27] BURSTENBINDER K, RZEWUSKI G, WIRTZ M, HELL R, SAUTER M. The role of methionine recycling for ethylene synthesis in Arabidopsis. The Plant Journal, 2007, 49(2): 238-249.
[28] FAN W, HAI M R, GUO Y L, DING Z H, TIE W W, DING X P, YAN Y, WEI Y X, LIU Y, WU C L, SHI H T, LI K M, HU W. The ERF transcription factor family in cassava: Genome-wide characterization and expression analyses against drought stress. Scientific Reports, 2016, 6: 37379.
[29] ZHANG H W, ZHANG J F, QUAN R D, PAN X W, WAN L Y, HUANG R F. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237(6): 1443-1451.
[30] WAN L Y, ZHANG J F, ZHANG H W, ZHANG Z H, QUAN R D, ZHOU S R, HUANG R F. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE, 2011, 6(9): e25216.
[31] DU H, WU N, CUI F, YOU L, LI X H, XIONG L Z. A homolog of ETHYLENE OVERPRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. The Plant Journal, 2014, 78(5): 834-849.
[32] LIN R C, PARK H J, WANG H Y. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediate developmental processes and drought stress tolerance. Molecular Plant, 2008, 1(1): 42-57.
[33] 趙赫, 陳受宜, 張勁松. 乙烯信號(hào)轉(zhuǎn)導(dǎo)與植物非生物脅迫反應(yīng)調(diào)控研究進(jìn)展. 生物技術(shù)通報(bào), 2016, 32(10): 1-10.
ZHAO H, CHEN S Y, ZHANG J S. Ethylene signaling pathway in regulating plant response to abiotic stress. Biotechnology Bulletin, 2016, 32(10): 1-10. (in Chinese)
(責(zé)任編輯 李莉)
Expression and Functional Analysis of Acireductone Dioxygenase Gene in Rice
XIONG Wei, YANG Bo, LIU WeiYin, WANG Quan, KONG XiaoCong, JIN YaJun, LIANG ShanShan, LUAN WeiJiang, ZHANG SiJu
(College of Life Science, Tianjin Normal University/Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin 300387)
【Objective】 The tolerance to biotic/abiotic stress is highly associated with grain yield, which is a very important goal in crop breeding. The objective of this study was to analyze the expression pattern of OsARD1, to investigate its function to abiotic stress, and to provide a theoretical basis for rice breeding. 【Method】 To analyze the expression of OsARD1 in different tissues, total RNAs were isolated from different organs. To analyze the expression pattern of OsARD1, RNAs were isolated fromwild type seedlings at 14-day-old under different abiotic stress, including PEG, high salinity and mechanical damage. RT-PCR method was used to analyze the expression of OsARD1 in different organs and under abiotic stress. An overexpressing vector of OsARD1 was constructed and OsARD1 overexpression transgenic plants were produced following the Agrobacterium-mediated transformation procedure. Transgenic plants with empty vector were also generated as a control. For drought stress, T1generation transgenic plants and wild type at 12-day-old were subjected to water deficit treatment and then cultured in nutrition solution for 3 days to recover. For PEG osmotic stress experiment, wild type and OsARD1-overexpressing (OsARD1-OV) seeds were planted in agar medium containing 5% PEG6000 whose osmotic potential was -0.05 MPa. For control group, no PEG was added into agar medium. The phenotypes of wild type and OsARD1-OV plants were observed and recorded. 【Result】The tissue-specific expression analysis showed that OsARD1 expressed highly in root and mature organs, especially in senescent organs. OsARD1 gene transcript levels were strongly induced by PEG6000, high salinity and mechanical damage. Six independent OsARD1-OV lines were generated by Agrobacterium-mediated transformation method. RT-PCR expression analysis showed that the expression level of OsARD1 was significantly increased in OsARD1-OV lines of T0and T1generation plant compared with that in wild type, suggesting that overexpression vector worked and inherited stably. The experiments of water deficit of OsARD1-OV of T1generation and wild type plants were further carried out. The results showed that the wild type plants exhibited severe dehydration symptoms with rolled and withered leaves after five hours of water deficit treatment, while OsARD1-OV plants were growing normally. After 8 hours of water deficit treatment and recovery culture for 3 days, there were only 10% wild type plants survived, while 80% transgenic plants survived. In PEG6000 osmotic stress experiment, it was found that the shoot and root length of wild type and OsARD1-OV plants had no significant difference with that in control group. However, the growth of WT roots was strongly inhibited in 5% PEG6000 treatment group compared with OsARD1-OV lines, and the root length of wide type was shorter than that of OsARD1-OV lines, indicating that the overexpression of OsARD1 improved drought tolerance in rice.【Conclusion】OsARD1 displayed higher expression in roots and mature tissues of rice, and was strongly induced by PEG, high salinity and mechanical damage. Overexpression of OsARD1 significantly improved the tolerance to water deficit and osmotic stress in rice, suggesting that OsARD1 plays a key role in drought tolerance.
rice; OsARD1; overexpression; drought stress; ethylene
2017-01-12;接受日期:2017-03-14
天津市自然科學(xué)基金重點(diǎn)項(xiàng)目(16JCZDJC33400)、天津市中青年骨干教師創(chuàng)新培養(yǎng)計(jì)劃(ZX110GG017)、天津師范大學(xué)博士基金(52XB1612, 52XB1611)
聯(lián)系方式:熊煒,E-mail:xwelva1991@163.com。通信作者張泗舉,E-mail:zhangsiju@126.com。通信作者欒維江,E-mail:lwjzsq@163.com