李廣浩,劉娟,董樹亭,劉鵬,張吉旺,趙斌,石德楊
(山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018)
密植與氮肥用量對不同耐密型夏玉米品種產(chǎn)量及氮素利用效率的影響
李廣浩,劉娟,董樹亭,劉鵬,張吉旺,趙斌,石德楊
(山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018)
【目的】探究密度與氮肥用量對不同耐密型夏玉米品種籽粒產(chǎn)量及氮素利用效率的影響。【方法】以稀植大穗型品種魯單981(LD981)和緊湊耐密型品種鄭單958(ZD958)為供試材料,設(shè)置52 500和82 500 株/hm2兩個種植密度,同時設(shè)置0、90、180、270和360 kg·hm-25個施氮水平,研究密度與氮肥用量對不同耐密型夏玉米品種單株及群體干物質(zhì)積累特性、氮素轉(zhuǎn)運(yùn)效率、氮素利用效率、產(chǎn)量及其構(gòu)成因素的影響?!窘Y(jié)果】增加種植密度,相同施氮水平處理的千粒重和穗粒數(shù)顯著降低,單位面積穗數(shù)、空稈率、倒伏率顯著提高,不耐密品種空稈率、倒伏率增加更顯著。其中,ZD958與LD981各施氮處理的平均千粒重、穗粒數(shù)分別降低6.24%、6.77%和7.52%、18.09%,LD981空稈率、倒伏率高達(dá)17.0%、27.6%,顯著高于ZD958。高密度條件下,籽粒產(chǎn)量隨施氮量增加而增加,施氮270和360 kg·hm-2處理的產(chǎn)量差異不顯著;低密度條件下,隨施氮量增加,籽粒產(chǎn)量先上升后下降,施氮量270 kg·hm-2處理產(chǎn)量達(dá)到最大值。增加種植密度,夏玉米單株干物質(zhì)積累量呈降低趨勢,群體干物質(zhì)積累量呈增加的趨勢。隨施氮量增加,單株和群體干物質(zhì)積累量均顯著增加,花后干物質(zhì)貢獻(xiàn)率呈上升趨勢。相同氮素水平下,高密度處理顯著提高夏玉米總氮素積累量、氮素轉(zhuǎn)運(yùn)量及其對籽粒的貢獻(xiàn)率。增加種植密度,ZD958和LD981各施氮處理的平均總氮素積累量、氮肥農(nóng)學(xué)利用率、氮肥利用率分別增加15.94%、39.01%、26.22%和1.96%、5.79%、14.92%。相同種植密度水平下,總氮素積累量和花后氮素同化量隨施氮量增加呈上升趨勢,而氮肥農(nóng)學(xué)效率、氮肥利用率和氮肥偏生產(chǎn)力呈下降趨勢。增加種植密度,營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量和氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率顯著增加。高密度種植條件下,氮素轉(zhuǎn)運(yùn)效率及貢獻(xiàn)率隨施氮量增加而增加,而低密度種植條件下,隨施氮量增加而降低。【結(jié)論】本試驗(yàn)條件下,增密施氮顯著提高不同耐密型夏玉米干物質(zhì)積累量,但密度對籽粒產(chǎn)量的影響,品種間差異顯著。增密后,LD981 籽粒產(chǎn)量增加不顯著,ZD958 籽粒產(chǎn)量顯著提高。高密度條件下,增加施氮量,不同耐密型玉米籽粒產(chǎn)量均顯著增加,而 LD981 空稈率、倒伏率顯著提高,是限制 LD981 籽粒產(chǎn)量提高的主要原因。增密顯著提高不同耐密型玉米氮素利用率,提高營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量;增加種植密度,ZD958 花后氮素同化量增加,LD981 則降低。施氮降低了植株氮素利用效率,但可以提高高密度條件下植株氮素吸收量,提高花后氮素同化量。增密與施氮相結(jié)合,有利于耐密型玉米產(chǎn)量與氮肥利用率協(xié)同提高。綜合考慮產(chǎn)量和氮效率兩方面,ZD958適宜種植密度為82 500株/hm2,施氮量為270 kg·hm-2;LD981適宜種植密度為52 500株/hm2,施氮量為180 kg·hm-2。
夏玉米;耐密性;種植密度;施氮量;氮素利用率
【研究意義】玉米(Zea may L.)是世界上重要的集糧、經(jīng)、飼于一體的優(yōu)勢作物,是中國第一大作物,在糧食生產(chǎn)中的地位越來越重要。選育耐密型品種和采用高密度栽培措施是當(dāng)前進(jìn)一步提高玉米產(chǎn)量的主要途徑[1]。然而,在玉米生產(chǎn)過程中,種植密度過大容易造成群體內(nèi)資源分配不合理,增加倒伏風(fēng)險(xiǎn),導(dǎo)致增密不增產(chǎn)甚至減產(chǎn)等嚴(yán)重后果,因此,玉米品種的耐密性日益受到育種和栽培工作者的重視[2]。氮肥是玉米生產(chǎn)中的重要生產(chǎn)資料,在現(xiàn)代農(nóng)業(yè)生產(chǎn)體系中發(fā)揮著重要作用[3]。氮肥生產(chǎn)會耗費(fèi)大量的資源和能量,而目前玉米肥料施用量大,利用率不高,不僅造成大量資源和能量的浪費(fèi),而且嚴(yán)重影響農(nóng)業(yè)生態(tài)環(huán)境[4-5]。因此,根據(jù)品種特性,制定合理的栽培措施,對實(shí)現(xiàn)玉米優(yōu)質(zhì)、高效、高產(chǎn)至關(guān)重要?!厩叭搜芯窟M(jìn)展】前人研究認(rèn)為,增加種植密度,可以提高光、溫資源的利用效率,依靠群體發(fā)揮增產(chǎn)潛力[6]。然而,高密度群體加大了內(nèi)部個體之間對光、水、肥等競爭壓力,導(dǎo)致單株地上部干物質(zhì)積累量、抗倒伏能力均呈現(xiàn)降低的趨勢,空稈率提高、禿尖增長,個體產(chǎn)量下降[7-10]。孟戰(zhàn)贏等[11]研究認(rèn)為,適量施用氮肥,有利于植株光合生理活性的改善,有利于花后保綠,延長光合與灌漿時間,提高玉米單株生產(chǎn)能力。王宜倫等[12]研究認(rèn)為,施氮量300 kg·hm-2條件下的產(chǎn)量和收益最佳,且有利于促進(jìn)氮素的吸收積累,繼續(xù)增施氮肥會導(dǎo)致玉米倒伏率升高,限制玉米產(chǎn)量潛力的發(fā)揮[13]?!颈狙芯壳腥朦c(diǎn)】前人關(guān)于種植密度和氮素對高產(chǎn)夏玉米產(chǎn)量、光合特性、根系生長和碳氮代謝的影響已進(jìn)行了許多研究[14-20],但關(guān)于不同耐密型夏玉米品種產(chǎn)量及氮素利用情況等對增密及施氮量響應(yīng)的研究較少?!緮M解決的關(guān)鍵問題】本文選用不同耐密型夏玉米品種,設(shè)置不同的種植密度和施氮量,探究增密與施氮對不同耐密型夏玉米品種籽粒產(chǎn)量及氮素利用效率的影響機(jī)理,以期為耐密高產(chǎn)型夏玉米生產(chǎn)上的氮肥使用提供理論依據(jù)。
1.1 試驗(yàn)地狀況
試驗(yàn)于2014—2015年在山東農(nóng)業(yè)大學(xué)黃淮海區(qū)域玉米技術(shù)創(chuàng)新中心(36°10′ N,117°09′ E)和山東農(nóng)業(yè)大學(xué)作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。試驗(yàn)地位于黃淮海平原地區(qū),屬半濕潤暖溫帶大陸性季風(fēng)氣候區(qū)。試驗(yàn)地土壤為棕壤土,耕層0—20 cm土壤pH 6.5,有機(jī)質(zhì)11.31 g·kg-1、全氮0.88 g·kg-1、堿解氮91.72 mg·kg-1、速效磷 62. 67 mg·kg-1和速效鉀118 mg·kg-1。
1.2 試驗(yàn)設(shè)計(jì)
選用稀植大穗型品種魯單981(LD981)和緊湊耐密型品種鄭單958(ZD958)為試驗(yàn)材料。設(shè)置52 500及82 500株/hm22個種植密度;設(shè)置0(N0)、90(N90)、180(N180)、270(N270)和360(N360)kg·hm-25個施氮水平。試驗(yàn)采用裂區(qū)試驗(yàn)設(shè)計(jì),品種為主區(qū),密度為副區(qū),施氮量為副副區(qū),共20個處理,每個處理重復(fù)3次,隨機(jī)排列。小區(qū)面積 45 m2,行距60 cm,等行距種植。施用氮肥為普通尿素(46%),分別在拔節(jié)期和大喇叭口期,按1﹕1 比例施入。所有處理均在播前施磷肥120 kg P2O5·hm-2和鉀肥240 kg K2O·hm-2。兩年試驗(yàn)均于6月18日播種,10月2日收獲,其他管理措施按高產(chǎn)田進(jìn)行。
1.3 試驗(yàn)取樣
分別于抽雄期(VT)和成熟期(R6)取3株長勢均勻一致的植株,抽雄期分為莖、葉片、鞘、雄穗4部分,成熟期分為莖、葉片、鞘、雄穗、苞葉、籽粒和穗軸7部分,105℃殺青30 min,80℃烘干至恒重,稱重后磨粉保存待測。成熟期(苞葉枯黃、乳線消失、黑層出現(xiàn))收獲各處理,室內(nèi)考種測產(chǎn),調(diào)查穗長、穗粗、禿頂長、穗行數(shù)、行粒數(shù)、千粒重,并對小區(qū)植株進(jìn)行倒伏情況調(diào)查。
植株和籽粒全氮含量采用濃H2SO4-H2O2聯(lián)合消煮,用BRAN+LUEBBE公司的AA3連續(xù)流動分析儀測定。
1.4 測定指標(biāo)
地上部干物質(zhì)積累量(dry matter accumulation,DMA)=成熟期單株總干重×成熟期實(shí)收株數(shù)[21];
花后單株干物質(zhì)積累量(amount of dry matter per plant after anthesis,ADMA)=成熟期單株干物質(zhì)積累量-開花期單株干物質(zhì)積累量[21];
花后單株干物質(zhì)貢獻(xiàn)率(contribution proportion of the dry matter after anthesis,CPDMA)=花后單株干物質(zhì)積累量/成熟期單株干物質(zhì)積累量[21];
花后群體干物質(zhì)積累量(amount of dry matter of groups after anthesis,ADMGA)=成熟期群體干物質(zhì)積累量-開花期群體干物質(zhì)積累量[21];
花后群體干物質(zhì)貢獻(xiàn)率(contribution proportion of the dry matter of groups after anthesis,CPDMGA)=花后群體干物質(zhì)積累量/成熟期群體干物質(zhì)積累量[21];
植株總氮素積累量(total nitrogen accumulation amount in plant,TNAA)=成熟期單株干重×成熟期植株含氮量[21];
氮肥農(nóng)學(xué)利用率(nitrogen agronomic efficiency,NAE)=(施氮區(qū)籽粒產(chǎn)量-不施氮區(qū)籽粒產(chǎn)量)/施氮量[22];
氮肥利用率(nitrogen utilization efficiency,NUE)=(施氮區(qū)氮素吸收量-不施氮區(qū)氮素吸收量)/施氮量×100%[22];
氮肥偏生產(chǎn)力(nitrogen partial factor productivity,NPFP)=施氮區(qū)產(chǎn)量/施氮量[21];
營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量(nitrogen translocation amount,NTA)=開花期氮素積累量-成熟期營養(yǎng)器官氮素積累量[23];
氮素轉(zhuǎn)運(yùn)效率(nitrogen translocation efficiency,NTE)=營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量/開花期營養(yǎng)器官氮素積累量×100%[23];
氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率(nitrogen contribution proportion,NCP)=營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量/成熟期籽粒氮素積累量×100%[23];
開花后氮素同化量(assimilating amount of nitrogen after anthesis,AANAA)=成熟期籽粒氮素積累量-營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量[24]。
1.5 數(shù)據(jù)統(tǒng)計(jì)與分析
采用Microsoft Excel 2003處理數(shù)據(jù)。用DPS 7.05軟件統(tǒng)計(jì)分析,在α=0.05水平進(jìn)行顯著性檢驗(yàn)(least significant difference test,LSD)。兩年試驗(yàn)結(jié)果趨勢一致,若無特別說明,均以兩年數(shù)據(jù)平均值進(jìn)行分析。
2.1 不同耐密型夏玉米品種的產(chǎn)量及其構(gòu)成因素
增密與施氮對不同耐密型夏玉米產(chǎn)量影響顯著(表1),增密條件下,ZD958產(chǎn)量提高32.94%,差異顯著;LD981產(chǎn)量提高7.74%,差異不顯著。高密度條件下,ZD958產(chǎn)量比LD981高16.24%,低密度處理,ZD958產(chǎn)量比LD981低7.19%。高密度條件下,ZD958和LD981的籽粒產(chǎn)量N90、N180、N270及N360處理分別比N0增加12.11%、21.43%、29.31%、31.43%和15.88%、29.82%、34.97%、37.32%,兩品種N360處理的產(chǎn)量最高,但與N270處理產(chǎn)量差異不顯著。低密度條件下,施氮量過高,籽粒產(chǎn)量提高不顯著或略有降低,LD981的N270處理產(chǎn)量最高,為9 595 kg·hm-2,N180、N270及N360處理間的產(chǎn)量差異不顯著。
表1 密植與氮肥用量對夏玉米產(chǎn)量及其構(gòu)成的影響Table 1 Effects of close planting and nitrogen application rate on grain yield and yield composition of summer maize
增加種植密度,相同施氮水平處理的千粒重和穗粒數(shù)顯著降低,單位面積穗數(shù)、空稈率、倒伏率顯著提高,不耐密品種空稈率、倒伏率增加更顯著。其中,ZD958與LD981各施氮處理的平均千粒重、穗粒數(shù)分別降低6.24%、6.77%和7.52%、18.09%,LD981空稈率、倒伏率高達(dá)17.0%、27.6%,顯著高于ZD958。增加施氮量,千粒重、穗粒數(shù)增加,空稈率、倒伏率下降。增密條件下,施氮量在0—270 kg·hm-2范圍內(nèi),隨施氮量增加,穗粒數(shù)、千粒重增加,空稈率、倒伏率降低;繼續(xù)增施氮肥,穗粒數(shù)和千粒重增加不顯著或略有降低,兩品種變化趨勢相同。低密度條件下,施氮量在0—180 kg·hm-2范圍內(nèi),隨施氮量增加,穗粒數(shù)和千粒重增加,空稈率、倒伏率降低,180—360 kg·hm-2范圍內(nèi),增施氮肥,穗粒數(shù)和千粒重增加不顯著或略有降低(表1)。
2.2 不同耐密型夏玉米品種的干物質(zhì)積累特性
增加種植密度,夏玉米單株干物質(zhì)積累量呈降低趨勢,群體干物質(zhì)積累量呈增加的趨勢。高密度種植條件下,ZD958與LD981各施氮處理平均單株干物質(zhì)積累量降低12.84%和16.48%,群體干物質(zhì)積累量增加31.91%和23.02%。與LD981相比,ZD958增密條件下,單株干物質(zhì)積累量下降比例低,群體干物質(zhì)積累量增加比例大,為產(chǎn)量提高奠定了基礎(chǔ)。隨施氮量增加,單株和群體干物質(zhì)積累量均顯著增加,花后干物質(zhì)貢獻(xiàn)率呈上升趨勢。高、低密度條件下,施氮量0—270 kg·hm-2范圍內(nèi),兩品種單株和群體干物質(zhì)積累量顯著增加,施氮量270—360 kg·hm-2范圍內(nèi),增加不顯著。抽雄期(VT)及其之后增密與施氮對干物質(zhì)積累影響逐漸顯著,抽雄及抽雄期后的干物質(zhì)積累是成熟期干物質(zhì)積累差異形成的關(guān)鍵(表2—3)。
2.3 不同耐密型夏玉米品種的氮素利用效率
由表4可以看出,總氮素積累量、氮肥農(nóng)學(xué)利用率和氮肥利用率隨種植密度的增大而升高。增密條件下,ZD958和LD981各施氮處理的平均總氮素積累量、氮肥農(nóng)學(xué)利用率、氮肥利用率分別增加15.94%、39.01%、26.22%和1.96%、5.79%、14.92%。總氮素積累量隨施氮量增加而顯著增加,氮肥農(nóng)學(xué)利用率、氮肥利用率、氮肥偏生產(chǎn)力隨施氮量增加而顯著降低。ZD958在增密條件下,N270處理的氮肥農(nóng)學(xué)利用率、氮肥利用率和氮肥偏生產(chǎn)力顯著高于N360。LD981在低密度條件下,N180處理的氮肥農(nóng)學(xué)利用率、氮肥利用率和氮肥偏生產(chǎn)力顯著高于高密度條件下N270和N360處理。
2.4 不同耐密型夏玉米品種的氮素轉(zhuǎn)運(yùn)效率
從表5可以看出,增加種植密度,營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量和氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率顯著增加。與低密度處理相比,增密條件下,ZD958各施氮處理平均營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量、氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率、氮素轉(zhuǎn)運(yùn)效率和花后氮素同化量分別增加31.96%、9.84%、3.95%和2.92%;而LD981營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量和氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率分別增加10.19%和19.11%,氮素轉(zhuǎn)運(yùn)效率和花后氮素同化量分別降低4.37%和29.05%。營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量、花后氮素同化量隨著施氮量的增加而逐漸增加;過量施氮,花后氮素同化量增加不顯著或略有下降。高密度種植條件下,增施氮肥氮素轉(zhuǎn)運(yùn)效率和氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率增加,而低密度種植條件下二者隨著施氮量的增加而降低。
3.1 密植與氮肥用量對不同耐密型夏玉米品種產(chǎn)量及其構(gòu)成因素的影響
前人研究表明,產(chǎn)量隨密度的增加呈先增加后降低的趨勢[25],增加種植密度可顯著提高玉米產(chǎn)量[26]。本試驗(yàn)研究表明,增加種植密度,耐密型品種籽粒產(chǎn)量增加顯著,不耐密品種產(chǎn)量增加不顯著。高密度條件下,ZD958產(chǎn)量高于LD981,低密度條件下,則相反。增加種植密度,LD981穗粒數(shù)、千粒重顯著降低,倒伏率、空稈率顯著升高,從而降低了單位面積穗數(shù)的增加量,導(dǎo)致籽粒產(chǎn)量增加不顯著;而ZD958倒伏率、空稈率顯著低于LD981。孟戰(zhàn)贏等[10]研究表明,單位面積穗數(shù)、穗粒數(shù)和千粒重的大小決定玉米籽粒產(chǎn)量的高低。本試驗(yàn)研究表明,增加種植密度,單位
不同生育時期單株干物質(zhì)積累量
Dry matter accumulation of different growth stage (g/plant)
品種Cultivar
密度
Planting density
(plant/hm2)施氮量
N application
VT:抽雄期;R6:成熟期;ADMA:花后單株干物質(zhì)積累量;CPDMA:花后單株干物質(zhì)貢獻(xiàn)率。下同VT: Vegetative tasseling stage; R6: Maturity stage; ADMA: Amount of dry matter per plant after anthesis; CPDMA: Contribution proportion of the dry matter after anthesis. The same as below
rate (kg·hm-2) VT R6花后單株干物質(zhì)積累量ADMA (g/plant)花后單株干物質(zhì)貢獻(xiàn)率CPDMA (%)面積穗數(shù)、籽粒產(chǎn)量增加顯著。低密度條件下,LD981穗粒數(shù)顯著高于ZD958,千粒重、單位面積穗數(shù)差異不顯著。因此,增密后耐密型品種群體優(yōu)勢顯著,產(chǎn)量顯著增加,而不耐密品種在低密度條件下,更有利于單株產(chǎn)量潛力的發(fā)揮。
申麗霞等[14,27]研究表明,隨施氮量增加,玉米產(chǎn)量呈先上升后下降的趨勢,適量施氮可以促進(jìn)玉米果穗頂部籽粒發(fā)育,增加穗粒數(shù),提高產(chǎn)量;氮肥對玉米產(chǎn)量的影響主要體現(xiàn)在對穗粒數(shù)和穗粒重的影響上,施氮量180 kg·hm-2可以顯著促進(jìn)玉米穗粒數(shù)和穗粒重的增加,增施氮肥至240 kg·hm-2,促進(jìn)作用減弱。本研究表明,增密與施氮對不同耐密型夏玉米品種產(chǎn)量的影響差異顯著。高密度條件下,隨施氮量增加,籽粒產(chǎn)量呈增加的趨勢,而施氮量270 kg·hm-2與360 kg·hm-2的籽粒產(chǎn)量差異不顯著,LD981與ZD958籽粒產(chǎn)量隨施氮量變化規(guī)律基本一致;低密度條件下,在施氮量180—360 kg·hm-2范圍內(nèi),LD981與ZD958籽粒產(chǎn)量增加不顯著。高密度條件下,施氮量主要通過影響穗粒數(shù)和單位面積穗數(shù)影響產(chǎn)量;低密度條件下,施氮量主要通過影響千粒重、穗粒數(shù)和單位面積穗數(shù)對產(chǎn)量產(chǎn)生影響,施氮量過高,千粒重、穗粒數(shù)和單位面積穗數(shù)降低。高密度條件下,空稈率、倒伏率隨施氮量的增加而降低;不耐密品種的空稈率、倒伏率仍維持較高的水平,降低了單位面積穗數(shù)的增加量,從而限制了籽粒產(chǎn)量的提高。因此選擇適宜的種植密度是不耐密品種獲得高產(chǎn)的前提。
表3 密植與氮肥用量對夏玉米群體干物質(zhì)積累特性的影響Table 3 Effects of close planting and nitrogen application rate on dry matter accumulation of summer maize
表4 密植與氮肥用量對夏玉米氮素利用效率的影響Table 4 Effects of close planting and nitrogen application rate on nitrogen utilization efficiency of summer maize
群體干物質(zhì)積累量增加是玉米產(chǎn)量提高的基礎(chǔ),并受到經(jīng)濟(jì)系數(shù)的影響[28]。增加種植密度,群體干物質(zhì)積累量顯著增加,但高密度條件下,單株干物質(zhì)積累量呈降低趨勢,限制群體干物質(zhì)積累量的大幅增加[21]。本試驗(yàn)研究表明,種植密度增加,群體干物質(zhì)積累量顯著增加,單株干物質(zhì)積累量、花后干物質(zhì)積累量顯著降低;相同氮素水平下,ZD958單株及群體干物質(zhì)積累量、花后干物質(zhì)積累量均顯著高于LD981?;ê蟾晌镔|(zhì)積累量的顯著降低,是影響LD981干物質(zhì)的積累量增加的關(guān)鍵因素。前人研究認(rèn)為在高密條件下,葉片光合速率下降,光合產(chǎn)物降低,葉片衰老加快[29-30],而光合速率降低、葉片衰老加快均影響植株干物質(zhì)積累。施氮量增加,玉米植株的氮素積累量、葉片葉綠素含量、植株中硝態(tài)氮和可溶性蛋白含量均增加,葉片光合活性增加,延緩葉片衰老,提高光合速率,有利于促進(jìn)光合產(chǎn)物合成,進(jìn)一步提高干物質(zhì)積累量。不同耐密型品種高低密度下,施氮對其光合速率及葉片衰老的影響,值得進(jìn)一步研究。
表5 密植與氮肥用量對夏玉米氮素轉(zhuǎn)運(yùn)的影響Table 5 Effects of close planting and nitrogen application rate on nitrogen translocation of summer maize
3.2 密植與氮素用量對不同耐密型夏玉米品種氮素利用效率及轉(zhuǎn)運(yùn)效率的影響
前人關(guān)于種植密度和施氮量對夏玉米氮素利用效率的影響做了大量研究[26,31-34],而關(guān)于增密與施氮對不同耐密型夏玉米品種產(chǎn)量及氮素利用效率影響的研究較少。曹勝彪等[26]研究表明,適宜的種植密度既可增加玉米產(chǎn)量,又可提高氮素利用效率。趙洪祥等[31]研究認(rèn)為高密度有利于氮量積累,氮肥比例高的處理,玉米生育后期的氮素吸收速率提高。本試驗(yàn)研究結(jié)果與前人研究結(jié)果一致,增加種植密度,總氮素積累量、氮素利用效率和氮肥偏生產(chǎn)力顯著提高;增加施氮量,總氮素積累量顯著增加。孫滸等[32]研究認(rèn)為,中國華北地區(qū)玉米的適宜施氮量為180 kg·hm-2左右,可實(shí)現(xiàn)玉米高產(chǎn)高效。本試驗(yàn)研究表明,高密度條件下,兩品種施氮量360 kg·hm-2時,產(chǎn)量最高,但其氮肥利用率最低。綜合玉米籽粒產(chǎn)量和氮肥利用率,ZD958適宜施氮量為270 kg·hm-2,LD981適宜施氮量為180 kg·hm-2。
營養(yǎng)器官氮素轉(zhuǎn)運(yùn)及分配、花后氮素同化量反映植株體內(nèi)氮素向籽粒轉(zhuǎn)移情況,影響作物氮素利用效率高低。前人研究表明玉米營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量、氮素轉(zhuǎn)運(yùn)效率、氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率均隨種植密度和施氮量的增加而增大[34-35]。何萍等[36]研究表明適宜的施氮量能夠促進(jìn)營養(yǎng)體氮素轉(zhuǎn)運(yùn)對籽粒氮的貢獻(xiàn)率。本試驗(yàn)研究表明,增加種植密度,營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量、氮素轉(zhuǎn)運(yùn)效率、氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率均升高,而氮素轉(zhuǎn)運(yùn)效率和營養(yǎng)器官氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率,在增密條件下,隨施氮量增加而增加。表明高密度種植條件下,氮素供應(yīng)不足會降低花后氮素同化量,使氮素轉(zhuǎn)運(yùn)效率、營養(yǎng)器官氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率降低;而低密度種植條件下,過量施氮會導(dǎo)致營養(yǎng)器官生長過快,花后干物質(zhì)積累量增加,但運(yùn)往籽粒的氮素減少,使氮素轉(zhuǎn)運(yùn)效率、營養(yǎng)器官氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率降低。因此,適宜的施氮量既能夠保持較高的碳、氮運(yùn)轉(zhuǎn)效率,又能避免生育后期葉片早衰,從而維持了生長中后期葉片的高光合能力,增加產(chǎn)量的同時提高氮肥利用率。
本試驗(yàn)研究表明,不同耐密型品種產(chǎn)量及氮素利用效率,對增密與施氮的響應(yīng)不同。增密后,LD981籽粒產(chǎn)量增加不顯著;ZD958籽粒產(chǎn)量顯著提高。高密度條件下,增加施氮量,不同耐密型玉米籽粒產(chǎn)量均顯著增加,而LD981空稈率、倒伏率顯著提高,是限制LD981籽粒產(chǎn)量提高的主要原因。增密顯著提高不同耐密型玉米氮素利用率,提高營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量,提高氮素轉(zhuǎn)運(yùn)對籽粒的貢獻(xiàn)率;增加種植密度,ZD958氮素轉(zhuǎn)運(yùn)效率、花后氮素同化量增加,LD981則降低。施氮降低了植株氮素利用效率,但可以提高高密度條件下植株氮素吸收量,提高花后氮素同化量。增密與施氮相結(jié)合,有利于耐密型玉米產(chǎn)量與氮肥利用率協(xié)同提高。本試驗(yàn)條件下,綜合產(chǎn)量、氮素利用效率兩方面,不同耐密型品種高產(chǎn)的適宜種植密度及施氮量分別為:ZD958密度82 500株/hm2,施氮量270 kg·hm-2;LD981密度52 500株/hm2,施氮量180 kg·hm-2。
[1] 趙久然, 孫世賢. 對超級玉米育種目標(biāo)及技術(shù)路線的再思考. 玉米科學(xué), 2007, 15(1): 21-23, 28.
ZHAO J R, SUN S X. Re-thinking on breeding objective and technical route of super maize. Journal of Maize Sciences, 2007, 15(1): 21-23, 28. (in Chinese)
[2] 薛吉全, 梁宗鎖, 馬國勝, 路海東, 任建宏. 玉米不同株型耐密性的群體生理指標(biāo)研究. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(1): 55-59.
XUE J Q, LIANG Z S, MA G S, LU H D, REN J H. Population physiological indices on density-tolerance of maize in different plant type. Chinese Journal of Applied Ecology, 2002, 13(1): 55-59. (in Chinese)
[3] 劉弋菊, 孔箐鋅, 蘇勝寶. 玉米氮素代謝機(jī)制的研究進(jìn)展. 玉米科學(xué), 2009, 17(1): 135-138.
LIU Y J, KONG Q X, SU S B. Study progress on maize nitrogen metabolism. Journal of Maize Sciences, 2009, 17(1): 135-138. (in Chinese)
[4] MOSISA W, MARIANNE B, GUNDA S, DENNIS F, ALPHA O D, WALTER J H. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Science, 2007, 47(2): 519-528.
[5] JUDITH N, ADRIEN N D, MARTIN H C, MARC R L. Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices. Soil Science Society of America, 2009, 73(1): 317-327.
[6] 段民孝. 從農(nóng)大108和鄭單958中得到的玉米育種啟示. 玉米科學(xué), 2005, 13(4): 49-52.
DUAN M X. Some advice on corn breeding obtained from the elite varieties of Nongda108 and Zhengdan 958. Journal of Maize Sciences, 2005, 13(4): 49-52. (in Chinese)
[7] 呂麗華, 陶洪斌, 夏來坤, 張雅杰, 趙明, 趙久然, 王璞. 不同種植密度下的夏玉米冠層結(jié)構(gòu)及光合特性. 作物學(xué)報(bào), 2008, 34(3): 447-455.
Lü L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)
[8] 豐光, 李妍妍, 景希強(qiáng), 王亮, 黃長玲. 玉米不同種植密度對主要農(nóng)藝性狀和產(chǎn)量的影響. 玉米科學(xué), 2011, 19(1): 109-111.
FENG G, LI Y Y, JING X Q, WANG L, HUANG C L. Effects on agronomic characteristics and yield of maize planting density. Journal of Maize Sciences, 2011, 19(1): 109-111. (in Chinese)
[9] 豐光, 劉志芳, 李妍妍, 邢錦豐, 黃長玲. 玉米莖稈耐穿刺強(qiáng)度的倒伏遺傳研究. 作物學(xué)報(bào), 2009, 35(11): 2133-2138.
FENG G, LIU Z F, LI Y Y, XING J F, HUANG C L. Genetics of lodging in tolerance to maize stem puncture. Acta Agronomica Sinica, 2009, 35(11): 2133-2138. (in Chinese)
[10] 李宗新,王慶成,劉霞, 劉開昌, 張慧. 種植密度對魯單981產(chǎn)量及其產(chǎn)量建成的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2007, 16(6): 80-84.
LI Z X, WANG Q C, LIU X, LIU K C, ZHANG H. Effects of plant densities on the yield and yield shaping of Ludan 981. Acta Agricultura Boreali-Occidentalis Sinica, 2007, 16(6): 80-84. (in Chinese)
[11] 孟戰(zhàn)贏, 王育紅, 王向陽, 沈東風(fēng). 密度對夏玉米灌漿特性及產(chǎn)量的影響. 河南農(nóng)業(yè)科學(xué), 2011, 40(12): 48-51.
MENG Z Y, WAND Y H, WAND X Y, SHEN D F. Effects of increasing density on summer grouting characteristics and yield. Journal of Henan Agricultural Sciences, 2011, 40(12): 48-51. (in Chinese)
[12] 王宜倫, 劉天學(xué), 趙鵬, 張?jiān)S, 譚金芳, 李潮海. 施氮量對超高產(chǎn)夏玉米產(chǎn)量與氮素吸收及土壤硝態(tài)氮的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46(12): 2483-2491.
WANG Y L, LIU T X, ZHAO P, ZHANG X, TAN J F, LI C H. Effect of nitrogen fertilizer application on yield, nitrogen absorption and soil nitric N in super-high-yield summer maize. Scientia Agricultura Sinica, 2013, 46(12): 2483-2491. (in Chinese)
[13] 張倩, 張明才, 劉明, 譚偉明, 肖佳雷, 來永才, 李召虎, 段留生.氮肥-生長調(diào)節(jié)劑對寒地春玉米植株形態(tài)及產(chǎn)量的互作效應(yīng)研究.中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2014, 19(5): 29-37.
ZHANG Q, ZHANG M C, LIU M, TAN W M, XIAO J L, LAI Y C, LI Z H, DUAN L S. Interaction of nitrogen fertilizer and plant growth regular on plant morphology and yield in spring maize of cold region. Journal of China Agricultural University, 2014, 19(5): 29-37. (in Chinese)
[14] 申麗霞, 王璞, 蘭林旺, 孫西歡. 施氮對夏玉米碳氮代謝及穗粒形成的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2007, 13(6): 1074-1079.
SHEN L X, WANG P, LAN L W, SUN X H. Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1074-1079. (in Chinese)
[15] 王帥, 韓曉日, 戰(zhàn)秀梅, 楊勁峰, 王月, 劉軼飛, 李娜. 氮肥水平對玉米灌漿期穗位葉光合功能的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2014, 20(2): 280-289.
WANG S, HAN X R, ZHAN X M, YANG J F, WANG Y, LIU Y F, LI N. Effect of nitrogen fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 280-289. (in Chinese)
[16] 徐麗娜, 黃收兵, 陶洪斌, 王云奇, 祁利潘, 王璞. 不同氮肥模式對夏玉米冠層結(jié)構(gòu)及部分生理和農(nóng)藝性狀的影響. 作物學(xué)報(bào), 2012, 38(2): 301-306.
XU L N, HUANG S B, TAO H B, WANG Y Q, QI L P, WANG P. Effects of different nitrogen regimes on canopy structure and partial physiological and agronomic traits in summer maize. Acta Agronomica Sinica, 2012, 38(2): 301-306. (in Chinese)
[17] 呂麗華, 趙明, 趙久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠層結(jié)構(gòu)及光合特性的變化. 中國農(nóng)業(yè)科學(xué), 2008, 41(9): 2624-2632.
Lü L H, ZHAO M, ZHAO J R, TAO H B, WANG P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. (in Chinese)
[18] 陳傳永, 侯玉虹, 孫銳, 朱平, 董志強(qiáng), 趙明. 密植對不同玉米品種產(chǎn)量性能的影響及其耐密性分析. 作物學(xué)報(bào), 2010, 36(7): 1153-1160.
CHEN C Y, HOU Y H, SUN R, ZHU P, DONG Z Q, ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)
[19] 陳延玲, 吳秋平, 陳曉超, 陳范駿, 張永杰, 李前, 袁力行, 米國華.不同耐密性玉米品種的根系生長及其對種植密度的響應(yīng). 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(1): 52-59.
CHEN Y L, WU Q P, CHEN X C, CHEN F J, ZHANG Y J, LI Q, YUAN L X, MI G H. Root growth and its response to increasing planting density in different maize hybrids. Plant Nutrition and Fertilizer Science, 2012, 18(1): 52-59. (in Chinese)
[20] 馮海娟, 張善平, 馬存金, 劉鵬, 董樹亭, 趙斌, 張吉旺, 楊今勝.種植密度對夏玉米莖稈維管束結(jié)構(gòu)及莖流特性的影響. 作物學(xué)報(bào), 2014, 40(8): 1435-1442.
FENG H J, ZHANG S P, MA C J, LIU P, DONG S T, ZHAO B, ZHANG J W, YANG J S. Effect of plant density on microstructure of stalk vascular bundle of summer maize (Zea mays L.) and its characteristics of sap flow. Acta Agronomica Sinica, 2014, 40(8): 1435-1442. (in Chinese)
[21] 曹勝彪, 張吉旺, 董樹亭, 劉鵬, 趙斌, 楊今勝. 施氮量和種植密度對高產(chǎn)夏玉米產(chǎn)量和氮素利用效率的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(6): 1343-1353.
CAO S B, ZHANG J W, DONG S T, LIU P, ZHAO B, YANG J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1343-1353. (in Chinese)
[22] 劉立軍, 桑大志, 劉翠蓮, 王志琴, 楊建昌, 朱慶森. 實(shí)時實(shí)地氮肥管理對水稻產(chǎn)量和氮素利用率的影響. 中國農(nóng)業(yè)科學(xué), 2003, 36(12): 1456-1461.
LIU L J, SANG D Z, LIU C L, WANG Z Q, YANG J C, ZHU Q S. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Scientia Agricultura Sinica, 2003,36(12): 1456-1461. (in Chinese)
[23] 霍中洋, 葛鑫, 張洪程, 戴其根, 許軻, 龔振愷. 施氮方式對不同專用小麥氮素吸收及氮肥利用率的影響. 作物學(xué)報(bào), 2004, 30(5): 449-454.
HUO Z Y, GE X, ZHANG H C, DAI Q G, XU K, GONG Z K. Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat. Acta Agronomica Sinica, 2004, 30(5): 449-454. (in Chinese)
[24] 石玉, 于振文, 王東, 李延奇, 王雪. 施氮量和底追比例對小麥氮素吸收轉(zhuǎn)運(yùn)及產(chǎn)量的影響. 作物學(xué)報(bào), 2006, 32(12): 1860-1866.
SHI Y, YU Z W, WANG D, LI Y Q, WANG X. Effects of nitrogen rate and ratio of base fertilizer and topdressing on uptake, translocation of nitrogen and yield in wheat. Acta Agronomica Sinica, 2006, 32(12): 1860-1866. (in Chinese)
[25] 王瑞, 李中青, 李齊霞, 祁麗婷, 王敏, 任先忠. 種植密度對不同品種玉米農(nóng)藝性狀、品質(zhì)及產(chǎn)量的影響. 安徽農(nóng)業(yè)科學(xué), 2015, 43(23): 72-73.
WANG R, LI Z Q, LI Q X, QI L T, WANG M, REN X Z. Effects of different planting densities on the agronomic traits, quality and yield of maize. Journal of Anhui Agricultural Science, 2015, 43(23): 72-73. (in Chinese)
[26] 曹勝彪, 張吉旺, 楊今勝, 劉偉, 董樹亭, 劉鵬, 趙斌. 密度對高產(chǎn)夏玉米產(chǎn)量和氮素利用效率的影響. 玉米科學(xué), 2012, 20(5): 106-110, 120.
CAO S B, ZHANG J W, YANG J S, LIU W, DONG S T, LIU P, ZHAO B. Effects of plant density on grain yield and nitrogen use efficiency of the summer maize with high yield. Journal of Maize Sciences, 2012, 20(5): 106-110, 120. (in Chinese)
[27] 申麗霞, 魏亞萍, 王璞, 易鎮(zhèn)邪, 張紅芳, 蘭林旺. 施氮對夏玉米頂部籽粒早期發(fā)育及產(chǎn)量的影響. 作物學(xué)報(bào), 2006, 32(11): 1746-1751.
SHEN L X, WEI Y P, WANG P, YI Z X, ZHANG H F, LAN L W. Effect of nitrogen supply on early kernel development and yield in summer maize(Zea mays L.). Acta Agronomica Sinica, 2006, 32(11): 1746-1751. (in Chinese)
[28] 陳國平. 玉米的干物質(zhì)生產(chǎn)與分配. 玉米科學(xué), 1994, 2(1): 48-53.
CHEN G P. Accumulation and distribution of dry matter of maize. Maize Science, 1994, 2(1): 48-53. (in Chinese)
[29] ANDRADE F H, VEGA C, UHART S, CIRILO A, CANTARERO M, VALENTINUZ O. Kernel number determination in maize. Crop Science, 1999, 39(2): 453- 459.
[30] VEGA C R C, ANDRADE F H, SADRAS V O, UHART S A, VALENTINUZ O R. Seed number as a function of growth. A comparative study in soybean, sunflower and maize. Crop Science, 2001, 41(3): 748-754.
[31] 趙洪祥, 邊少鋒, 孫寧, 蔡紅梅, 楊洪亮, 邱菊, 韓喜國, 管俊, 苑景平. 氮肥運(yùn)籌對玉米氮素動態(tài)變化和氮肥利用的影響. 玉米科學(xué), 2012, 20(3): 122-129.
ZHAO H X, BIAN S F, SUN N, CAI H M, YANG H L, QIU J, HAN X G, GUAN J, YUAN J P. Effects of nitrogen application on nitrogen dynamic changes and nitrogen use efficiency in maize. Journal of Maize Sciences, 2012, 20(3): 122-129. (in Chinese)
[32] 孫滸, 張吉旺, 靳立斌. 玉米高產(chǎn)與氮肥高效協(xié)同實(shí)現(xiàn)存在的問題及其途徑. 玉米科學(xué), 2014, 22(1): 143-148.
SUN H, ZHANG J W, JIN L B. Problems and approaches of achieving high yield and high nitrogen use efficiency in maize production. Journal of Maize Sciences, 2014, 22(1): 143-148. (in Chinese)
[33] 呂麗華, 陶洪斌, 王璞, 趙明, 趙久然, 魯來清. 施氮量對夏玉米碳、氮代謝和氮利用效率的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2008, 14(4): 630-637.
Lü L H, TAO H B, WANG P, ZHAO M, ZHAO J R, LU L Q. The effect of nitrogen application rate on carbon and nitrogen metabolism and nitrogen use efficiency of summer maize. Plant Nutrition and Fertilizer Science, 2008, 14(4): 630-637. (in Chinese)
[34] 易鎮(zhèn)邪, 王璞, 申麗霞, 張紅芳, 劉明, 戴明宏. 不同類型氮肥對夏玉米氮素累積、轉(zhuǎn)運(yùn)與氮肥利用的影響. 作物學(xué)報(bào), 2006, 32(5): 772-778.
YI Z X, WANG P, SHEN L X, ZHANG H F, LIU M, DAI M H. Effects of different types of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen fertilizer utilization in summer maize. Acta Agronomica Sinica, 2006, 32(5): 772-778. (in Chinese)
[35] 胡富亮, 郭德林, 高杰, 路海東, 張仁和, 薛吉全. 種植密度對春玉米干物質(zhì)、氮素積累與轉(zhuǎn)運(yùn)及產(chǎn)量的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2013, 22(6): 60- 66.
HU F L, GUO D L, GAO J, LU H D, ZHANG R H, XUE J Q. Effects of planting densities on dry matter and nitrogen accumulation and grain yield in spring maize. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(6): 60-66. (in Chinese)
[36] 何萍, 金繼運(yùn), 林葆. 氮肥用量對春玉米葉片衰老的影響及其機(jī)理研究. 中國農(nóng)業(yè)科學(xué), 1998, 31(3): 1-4.
HE P, JIN J Y, LIN B. Effects of nitrogen application rate on leaf senescence characteristics of spring maize. Scientia Agricultura Sinica, 1998, 31(3): 1-4. (in Chinese)
(責(zé)任編輯 楊鑫浩)
Effects of Close Planting and Nitrogen Application Rates on Grain Yield and Nitrogen Utilization Efficiency of Different Density-Tolerance Maize Hybrids
LI GuangHao, LIU Juan, DONG ShuTing, LIU Peng, ZHANG JiWang, ZHAO Bin, SHI DeYang
(College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong)
Abstract: 【Objective】The objective of this experiment is to study the effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids. 【Method】Two summer maize cultivars, density-resistant hybrid (ZD958) and non-density resistant hybrid (LD981), were used as experiment materials to study the effects of different planting densities ( 52 500, 82 500 plant/hm2) and nitrogen rates (0, 90, 180, 270, 360 kg N·hm-2) on dry matter accumulation, nitrogen translocation efficiency, nitrogen use efficiency, yield and its components of different density-tolerance summer maize.【Result】 The 1000-grain weight and kernels per ear were significantly decreased with the increase of planting density at the same nitrogen application level, but the ear number, barrenness and lodging rate were significantly increased. The barrenness and lodging rate of non-density resistant hybrid were increased more significantly. The average 1000-grain weight and kernels per ear of ZD958 and LD981 were decreased by 6.24% and 6.77%, 7.52% and 18.09%, respectively, and barrenness and lodging rate of LD981 were as high as 17% and 27.6%, significantly higher than ZD958. The grain yield increased with increase of N application rate under high density condition, but the difference between N application rate at 270 kg·hm-2and 360 kg·hm-2was not significant. Under low density condition, the grain yield increased first and then decreased with increase of N application rate, and reached the maximum at N application rate of 270 kg·hm-2. The dry matter accumulation per plant decreased with the increase of planting density, while the population dry matter accumulation increased. Both of them increased with increase of N application rate, and the dry matter contribution rate increased after anthesis. Under the same nitrogen level, the high density treatments significantly increased the total N accumulation, N translocation and its contribution rate to grain. With the increase of planting density, the average total N accumulation, N agronomic efficiency and nitrogen utilization efficiency of ZD958 and LD981 were increased by 15.94%, 39.01%, 26.22% and 1.96%, 5.79%, 14.92%, respectively. Under the same planting density, the increase of nitrogen rate could improve the total N accumulation and assimilating amount of nitrogen after anthesis, while the nitrogen agronomic efficiency, nitrogen utilization efficiency and nitrogen partial factor productivity were decreased. With increase of planting density, the N translocation rate and N translocation rate of nutrient organs increased significantly. Under high planting density condition, the N translocation efficiency and contribution rate increased with increase of N application rate, while it decreased under low planting density condition. 【Conclusion】Under this experimental field condition, increased density and nitrogen application rate could significantly improve the dry matter accumulation of ZD958 and LD981. The effect of density on grain yield was significant between the two summer maize cultivars. Under the conditions of high density, increasing the amount of N fertilizer, the yields of two cultivars were increased significantly, while barrenness and lodging rate of LD981 increased significantly, which was the main reason for limiting grain yield increasing. Increasing density could significantly improve the nitrogen utilization rate and N translocation of vegetative organs. N assimilating amount after anthesis increased with increasing density in ZD958, and decreased in LD981. Nitrogen use efficiency decreased with increasing nitrogen application, but which could increase plant N uptake and nitrogen assimilation after anthesis under high density. Combination of density and nitrogen could improve the yield and nitrogen utilization rate together. As far as the grain yield and nitrogen efficiency are concerned, the most optimal plant density and nitrogen rate of ZD958 were 82 500 plants/hm2and 270 kg·hm-2, and the most optimal plant density and nitrogen rate of LD981 were 52 500 plants/hm2and 180 kg·hm-2.
summer maize; density-tolerance; planting density; nitrogen application; nitrogen utilization efficiency
2016-08-05;接受日期:2017-02-24
國家自然科學(xué)基金(31171497)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-02-20)、國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(“973”計(jì)劃)(2011CB100105)、國家自然科學(xué)基金青年基金(31301274)
聯(lián)系方式:李廣浩,E-mail:guanghaoli@126.com。劉娟,E-mail:nongxue09liujuan@qq.com。李廣浩和劉娟為同等貢獻(xiàn)作者。通信作者董樹亭,E-mail:stdong@sdau.edu.cn