張仁和,王博新,楊永紅,楊曉軍,馬向峰,張興華,郝引川,薛吉全
(1西北農(nóng)林科技大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部西北旱區(qū)玉米生物學(xué)與遺傳育種國家重點實驗室,陜西楊凌 712100;2榆林市農(nóng)業(yè)科學(xué)院,陜西榆林 719000)
陜西灌區(qū)高產(chǎn)春玉米物質(zhì)生產(chǎn)與氮素積累特性
張仁和1,王博新1,楊永紅1,楊曉軍2,馬向峰2,張興華1,郝引川1,薛吉全1
(1西北農(nóng)林科技大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部西北旱區(qū)玉米生物學(xué)與遺傳育種國家重點實驗室,陜西楊凌 712100;2榆林市農(nóng)業(yè)科學(xué)院,陜西榆林 719000)
【目的】探明陜西灌區(qū)高產(chǎn)春玉米栽培下干物質(zhì)積累和氮素吸收的動態(tài)特征,為陜西春玉米高產(chǎn)栽培技術(shù)提供理論依據(jù)?!痉椒ā恳愿弋a(chǎn)玉米品種陜單609為材料,設(shè)置普通大田栽培、高產(chǎn)栽培和超高產(chǎn)栽培3個栽培處理,于2013—2015年在陜西灌溉春玉米試驗站進行試驗,研究分析玉米產(chǎn)量等級群體的干物質(zhì)積累、氮素吸收、葉面積指數(shù)與SPAD值、產(chǎn)量構(gòu)成特性?!窘Y(jié)果】普通大田栽培、高產(chǎn)栽培和超高產(chǎn)栽培下玉米籽粒平均產(chǎn)量分別為11.1、13.1和16.1 t·hm-2,與普通大田栽培(對照)比,高產(chǎn)栽培和超高產(chǎn)栽培下籽粒產(chǎn)量增加18.0%和45.1%;穗粒數(shù)和千粒重低于對照,而單位面積穗數(shù)極顯著高于對照,單位面積較多穗數(shù),是玉米高產(chǎn)潛力的關(guān)鍵。高產(chǎn)栽培和超高產(chǎn)栽培下群體收獲指數(shù)也顯著高于普通大田栽培。高產(chǎn)和超高產(chǎn)栽培群體干物質(zhì)和氮素積累量較對照增加18.5%、41.8%和20.5%、24.5%。春玉米吐絲后,高產(chǎn)和超高產(chǎn)栽培群體干物質(zhì)量對籽粒產(chǎn)量貢獻(xiàn)率較對照提高10.0%和20.1%;氮素積累量對籽粒氮貢獻(xiàn)率較對照提高30.2%和61.6%。相關(guān)分析顯示,干物質(zhì)量和氮素積累量與籽粒產(chǎn)量呈極顯著正相關(guān)(r=0.998;r=0.927)。春玉米花后,高產(chǎn)栽培和超高產(chǎn)栽培下葉面積指數(shù)和SPAD值顯著高于普通大田。【結(jié)論】與普通大田栽培和高產(chǎn)栽培相比,超高產(chǎn)栽培顯著提高了春玉米吐絲后生物量積累和氮素積累量,及其對籽粒的貢獻(xiàn)率。維持葉片較強的光合生產(chǎn)能力,是其實現(xiàn)春玉米高產(chǎn)的生理基礎(chǔ)。在陜西灌區(qū)春玉米生產(chǎn)中,在篩選耐密品種的基礎(chǔ)上增加種植密度、強化氮肥分次追施,保證高產(chǎn)玉米吐絲后期對氮素的需求,實現(xiàn)春玉米高產(chǎn)。
春玉米;高產(chǎn)栽培;物質(zhì)生產(chǎn);氮素積累;籽粒產(chǎn)量
【研究意義】玉米是陜西省第一大糧食作物。陜北灌溉區(qū)因充足的光熱和灌溉條件,已成為玉米高產(chǎn)創(chuàng)建的重要地區(qū)[1-2],如2008年創(chuàng)造西北灌區(qū)春玉米小面積195 000 kg·hm-2的高產(chǎn)紀(jì)錄。選育高產(chǎn)潛力品種和改進農(nóng)藝管理措施(密度、肥料管理等方面)為玉米高產(chǎn)做出了重要貢獻(xiàn)[3-4],但玉米生產(chǎn)中農(nóng)民實際獲得產(chǎn)量與當(dāng)?shù)赜衩桩a(chǎn)量潛力之間存在較大的產(chǎn)量差[5]。闡明影響陜西灌區(qū)春玉米高產(chǎn)增進的農(nóng)藝技術(shù)和生理機制[6-8],對于大面積持續(xù)提高玉米產(chǎn)量,縮小產(chǎn)量差距具有重要意義?!厩叭搜芯窟M展】前人研究表明高產(chǎn)玉米品種花后氮素吸收量顯著高于低產(chǎn)玉米品種,從而延長葉面積持續(xù)期并且保證較高的光合生產(chǎn)能力[9-10],同時,通過優(yōu)化氮肥管理降低了高產(chǎn)玉米花前氮素吸收累積比例[11]。因此,進一步明確高產(chǎn)玉米氮素吸收特征,實現(xiàn)高產(chǎn)玉米物質(zhì)生產(chǎn)和氮素需求的匹配,是實現(xiàn)玉米高產(chǎn)的重要生理基礎(chǔ)。研究表明,玉米高產(chǎn)的實現(xiàn)不僅僅是髙的生物量累積和氮素吸收一方面決定的;光合產(chǎn)物和氮素向籽粒中的分配也是一個重要因素。例如籽粒形成階段的干物質(zhì)累積和氮素吸收與穗粒數(shù)存在顯著的正相關(guān)關(guān)系[12]。另外,灌漿期同化物和氮素供應(yīng)不足會導(dǎo)致籽粒敗育,從而降低穗粒數(shù)和千粒重[13-15]?!颈狙芯壳腥朦c】前人研究多側(cè)重于玉米高產(chǎn)與吐絲后干物質(zhì)、氮素累積、光合特性的關(guān)系研究[16-19],但是不同農(nóng)藝管理產(chǎn)量水平下玉米吐絲前后干物質(zhì)生產(chǎn)和氮素吸收比率與效率研究相對較少?!緮M解決的關(guān)鍵問題】通過2013—2015年大田試驗分析不同產(chǎn)量栽培管理下玉米干物質(zhì)積累和氮素吸收動態(tài)以及與產(chǎn)量形成的關(guān)系,進而揭示高產(chǎn)栽培下春玉米群體干物質(zhì)和氮素積累特征,為其高產(chǎn)栽培提供理論與技術(shù)支撐。
1.1 試驗區(qū)概況
試驗在西北農(nóng)林科技大學(xué)榆林玉米試驗示范站(37°48′N、109°11′E,海拔1 808 m)進行。試驗地土壤為砂質(zhì)土,0—20 cm 土壤有機質(zhì)平均含量為6.76 g·kg-1、速效氮為42.75 mg·kg-1、速效磷為16.98 mg·kg-1、速效鉀為99.77 mg·kg-1。2013—2015年玉米生育期溫度和降雨量見表1。
1.2 田間試驗與管理
供試材料為陜西灌區(qū)大面積推廣應(yīng)用的玉米品種陜單609(陜審玉2011005;國審玉2016001)。試驗設(shè)置普通大田栽培、高產(chǎn)栽培和超高產(chǎn)栽培3種處理。普通大田栽培(FP):種植密度為60 000株/hm2,等行距種植(60 cm+60 cm),施氮270 kg·hm-2,P2O5105 kg·hm-2為底肥;高產(chǎn)栽培(HY):種植密度為75 000株/hm2,寬窄行種植(80 cm+40 cm),施有機肥30 000 kg·hm-2、N 225 kg·hm-2、P2O5135 kg·hm-2和K2O 90 kg·hm-2,40%氮肥作為基肥,60%氮肥拔節(jié)期追施,有機肥和磷鉀肥整地時一次施用,地膜覆蓋;超高產(chǎn)栽培(SHY):采用寬窄行種植(80 cm+40 cm),密度90 000株/hm2,施有機肥75 000 kg·hm-2、N 450 kg·hm-2、P2O5225 kg·hm-2和K2O 248 kg·hm-2,其中氮肥在底肥、拔節(jié)期、大喇叭口期和灌漿期分4次施入,比例為30%、30%、30%和10%,有機肥和磷鉀肥整地時一次施,地膜覆蓋。試驗重復(fù)4次,小區(qū)面積48 m2。處理間灌水量和次數(shù)相同,維持玉米正常生長水分。2013、2014和2015年分別于4月22日、4月25日和4月23日人工播種,每穴播3粒,于3葉期按設(shè)計密度定苗,每年10月3日收獲。
表1 2013—2015年陜西省榆林春玉米生長季節(jié)月降雨量和溫度的變化Table 1 Changes of monthly rainfall (mm) and monthly maximum temperature (Tmax) and minimum temperature (Tmin) of spring maize in growing period at Yuling of Shaanxi province from 2013 to 2015
1.3 測定項目與方法
1.3.1 葉面積指數(shù) 于拔節(jié)期(V6)、大喇叭口期(V12)、吐絲期(VT)、灌漿期(R3)和成熟期(R6)取5株具有代表性的玉米植株,利用長寬系數(shù)法測定植株葉面積,葉面積指數(shù)(LAI)=單位群體葉面積/單位土地面積。
1.3.2 葉片SPAD值 于拔節(jié)期(V6)、大喇叭口期(V12)、吐絲期(VT)、灌漿期(R3)和成熟期(R6)采用葉綠素快速測定儀(SPAD-502,日本)測定葉片SPAD值。
1.3.3 干物質(zhì)積累量 于拔節(jié)期(V6)、大喇叭口期(V12)、吐絲期(VT)、灌漿期(R3)和成熟期(R6)取5株具有代表性的玉米植株,分為葉片、莖鞘、苞葉、穗軸和籽粒部分,105℃殺青30 min后,80℃烘48 h至恒重,稱干物質(zhì)量。參照COX等[20]方法計算群體干物質(zhì)積累量和吐絲后干物質(zhì)量對籽粒貢獻(xiàn)率。
吐絲后干物質(zhì)積累量(t·hm-2)=成熟期植株干物質(zhì)重-吐絲期干物質(zhì)重;
吐絲后干物質(zhì)量對籽粒貢獻(xiàn)率(%)=吐絲后干物質(zhì)重/成熟期籽粒干重×100%。
1.3.4 氮素積累量 利用Kj8400型凱氏定氮儀測定拔節(jié)期(V6)、大口期(V12)、吐絲期(VT)、灌漿期(R3)和成熟期(R6)植株各部分氮素含量,根據(jù)MOLL[21]公式計算氮素積累量及相關(guān)性狀。
吐絲后氮素積累量(kg·hm-2)=成熟期植株氮素積累量-吐絲期植株氮素積累量
吐絲后氮素積累量對籽粒氮貢獻(xiàn)率(%)=吐絲后氮素積累量/成熟期籽粒氮素積累量×100%
1.3.5 產(chǎn)量及產(chǎn)量構(gòu)成 成熟期統(tǒng)計每個小區(qū)的倒伏株數(shù)、空稈株數(shù),并收獲中間4行計產(chǎn)并考種,其中籽粒含水量統(tǒng)一折算成14%。
1.4 數(shù)據(jù)分析
采用Excel軟件進行數(shù)據(jù)處理,SPSS12.0軟件進行數(shù)據(jù)統(tǒng)計分析。
2.1 不同栽培方式下春玉米產(chǎn)量及其構(gòu)成因素
方差分析表明,栽培方式、年份以及栽培方式與年份的互作對產(chǎn)量有極顯著影響(表2)。不同年份各處理的結(jié)果趨勢表現(xiàn)一致,超高產(chǎn)栽培下產(chǎn)量顯著高于高產(chǎn)栽培和普通大田栽培,在普通大田栽培(CK)、高產(chǎn)栽培、超高產(chǎn)栽培3個處理下,春玉米3年平均產(chǎn)量分別為11.1、13.1和16.1 t·hm-2,其中高產(chǎn)和超高產(chǎn)栽培的玉米產(chǎn)量分別較對照增加18.0%和45.1%,與對照差異顯著(表2);2015年各處理下產(chǎn)量顯著低于2014和2013年,因2015年玉米灌漿期高溫所致(表1)。從產(chǎn)量構(gòu)成因素來看,與普通大田栽培相比,高產(chǎn)和超高產(chǎn)栽培穗粒數(shù)和千粒重顯著降低,而單位面積有效穗數(shù)顯著增加(表2),表明增密增加單位面積穗數(shù)是實現(xiàn)玉米高產(chǎn)的重要途徑。3年結(jié)果顯示,超高產(chǎn)春玉米產(chǎn)量獲得是以足夠的穗數(shù)為前提(89.3穗數(shù)/10m2),同時協(xié)調(diào)較高的穗粒數(shù)(507粒左右)和千粒重(356 g 左右)。
2.2 不同栽培方式下干物質(zhì)積累量
從干物質(zhì)積累動態(tài)變化可以看出(圖1),大喇叭口期前,不同栽培方式下干物質(zhì)積累量之間沒有顯著差異。大喇叭口期后,不同栽培方式下干物質(zhì)積累量差異顯著,成熟期超高產(chǎn)栽培下玉米干物質(zhì)量分別比高產(chǎn)栽培和普通大田栽培提高24.5%和23.9%。由圖2—3可知,吐絲期后,超高產(chǎn)栽培干物質(zhì)積累量占總干重比例(49.3%)顯著高于高產(chǎn)栽培和普通大田栽培(44.0%和40.1%);吐絲期后,超高產(chǎn)栽培下干物質(zhì)積累量對籽粒貢獻(xiàn)率(92.5%)顯著高于高產(chǎn)栽培和普通大田栽培(84.7%和77.0%)。
表2 不同栽培方式下春玉米產(chǎn)量及其構(gòu)成因素Table 2 Grain yield and its components of spring maize under different cultivation patterns in 3 years
圖1 不同栽培群體春玉米干物質(zhì)積累動態(tài)變化Fig. 1 Dry matter accumulation dynamics of spring maize under different cultivation patterns at different growth stages
2.3 不同栽培方式下春玉米氮素積累量
從氮素積累動態(tài)變化可以看出(圖4),大喇叭口期前,不同栽培方式下氮素積累之間沒有顯著差異。而從大喇叭口期到成熟期,超高產(chǎn)栽培下植株氮素積累量分別比高產(chǎn)栽培和普通大田栽培提高了9.7%和21.7%。吐絲期后,超高產(chǎn)栽培下氮素積累量占總氮素積累量比例(24.5%)顯著高于高產(chǎn)栽培和普通大田栽培(20.5%和15.5%)(圖5)。由圖6可知,吐絲期后,超高產(chǎn)栽培下氮素積累量對籽粒氮的貢獻(xiàn)率(41.2%)也顯著高于高產(chǎn)栽培和普通大田栽培(33.2%和25.5%)?;貧w分析表明(圖7),在不同栽培方式下,春玉米產(chǎn)量與吐絲后干物質(zhì)積累量呈極顯著正相關(guān)(r=0.998);籽粒產(chǎn)量與吐絲后氮素積累量也呈極顯著正相關(guān)(r=0.927),這表明吐絲后干物質(zhì)積累和氮素吸收量是獲得高產(chǎn)的關(guān)鍵。
2.4 不同栽培方式下春玉米葉面積指數(shù)和SPAD值
圖2 不同栽培方式下春玉米吐絲前后干物質(zhì)所占干重比例Fig. 2 Ratio of pre- and post-silking dry matter to total biomass of spring maize under different cultivation patterns
圖3 不同栽培方式下春玉米吐絲前后干物質(zhì)對籽粒貢獻(xiàn)率Fig. 3 Contribution of pre- and post-silking dry matter to grain yield of spring maize under different cultivation patterns
圖4 不同栽培方式下春玉米氮素積累動態(tài)變化Fig. 4 Nitrogen accumulation dynamics of spring maize under different cultivation patterns at different growth stages
圖5 不同栽培方式下春玉米吐絲前后氮積累量所占整株氮的比例Fig. 5 Ratio of pre- and post-silking nitrogen accumulation to total nitrogen accumulation of spring maize under different cultivation patterns
圖6 不同栽培方式下春玉米吐絲前后氮積累量干對籽粒氮貢獻(xiàn)率Fig. 6 Contribution of pre- and post-silking nitrogen accumulation to grain N of spring maize under different cultivation patterns
圖7 不同栽培方式下春玉米產(chǎn)量與吐絲后干物質(zhì)積累量(A)和氮素積累量(B)間的相關(guān)性Fig. 7 Relationship between grain yield and dry matter accumulation after silking (A) and nitrogen accumulation after silking (B) of spring maize in 3 years
不同栽培模式下玉米葉面積指數(shù)在吐絲期達(dá)到最大,之后均呈下降趨勢。其中,從吐絲期至成熟期,高產(chǎn)栽培和超高產(chǎn)栽培葉面積指數(shù)下降幅度分別為48.7%和 45.6%,而普通大田栽培下降幅度為52.6%,期間,高產(chǎn)栽培和超高產(chǎn)栽培的葉面積指數(shù)均顯著高于普通大田栽培。另外,在灌漿期,超高產(chǎn)栽培的葉片SPAD值最高,其次為高產(chǎn)栽培,普通大田栽培下SPAD值最低(圖8)。
圖8 2013—2015年不同栽培方式下春玉米葉面積指數(shù)(LAI)和SPAD值Fig. 8 Spring maize canopy leaf area index (LAI) and SPAD at different development stages under different cultivation patterns in 2013-2015
陜西灌溉春玉米區(qū)3年田間試驗結(jié)果表明,在優(yōu)化栽培技術(shù)條件下,產(chǎn)量水平不斷提高,與普通大田栽培相比、高產(chǎn)栽培和超高產(chǎn)栽培籽粒產(chǎn)量分別增加18.0%和45.1%。從產(chǎn)量構(gòu)成看,穗粒數(shù)和粒重是影響產(chǎn)量的重要因素[31]。TOLLERNAAR等[14]研究表明,籽粒產(chǎn)量與穗粒數(shù)顯著正相關(guān),而與粒重相關(guān)性不顯著。而董樹亭[25]認(rèn)為,玉米產(chǎn)量提高是粒重和穗粒數(shù)增加的結(jié)果。本研究中,單位面積穗粒數(shù)的增加提高了玉米產(chǎn)量,可見增穗增粒擴大庫容是實現(xiàn)高產(chǎn)的重要途徑。從同化物分配看,玉米籽粒產(chǎn)量是干物質(zhì)量和收獲指數(shù)的乘積[3],很多研究認(rèn)為玉米生產(chǎn)中收獲指數(shù)很難進一步提高,提高產(chǎn)量主要依靠增加干物質(zhì)量[14,23];也有研究認(rèn)為實現(xiàn)玉米高產(chǎn)是收獲指數(shù)和干物質(zhì)量共同提高的結(jié)果[15,24]。本研究發(fā)現(xiàn),從普通大田栽培到高產(chǎn)栽培的增產(chǎn)過程中,收獲指數(shù)和干物質(zhì)量都發(fā)揮了作用;從高產(chǎn)栽培到超高產(chǎn)栽培增產(chǎn)過程中,干物質(zhì)量增加,而收獲指數(shù)并沒有發(fā)生變化。因此,在較高的收獲指數(shù)基礎(chǔ)上,持續(xù)提高干物質(zhì)量是陜西灌區(qū)高產(chǎn)玉米的調(diào)控目標(biāo)。玉米干物質(zhì)積累量與氮素積累有著密切的關(guān)系,氮素積累是干物質(zhì)量累積的基礎(chǔ),也是玉米產(chǎn)量形成的基礎(chǔ)[8,27]。本研究中,從大喇叭口期開始,高產(chǎn)栽培和超高產(chǎn)栽培下干物質(zhì)積累和氮素吸收量就高于普通大田栽培,隨著生育進程其差距加大。到成熟期,超高產(chǎn)栽培干物質(zhì)累積與氮素吸收量顯著高于高產(chǎn)栽培和普通大田栽培。這與前人報道的高產(chǎn)玉米是由于花后具有更高的干物質(zhì)累積和氮素吸收能力一致[3,9,27],而籽粒產(chǎn)量與花后干物質(zhì)累積和氮素累積量呈顯著正相關(guān)也支持了這一觀點。干物質(zhì)量和氮素吸收也受到氣候條件的影響,在不利于氣候條件下,增加花前干物質(zhì)和氮素積累量有利于增加產(chǎn)量[22,30];2015年玉米灌漿期8—9月高溫,干物質(zhì)量和氮素累積量減少,導(dǎo)致籽粒產(chǎn)量低于2013和2014年,說明玉米產(chǎn)量潛力也依賴良好的氣候條件。從光合生產(chǎn)能力看,玉米籽粒產(chǎn)量的60%以上來自抽穗以后的光合同化物,花后光合效率高和綠葉持續(xù)期長有利于產(chǎn)量形成[27]。本研究發(fā)現(xiàn),與普通大田栽培比,高產(chǎn)栽培和超高產(chǎn)栽培下,玉米維持了高的葉面積指數(shù)持續(xù)期和SPAD值,這說明高產(chǎn)栽培下改善了玉米葉片光合性能,為籽粒灌漿提供較充足的光合同化物。
在陜西灌區(qū)玉米生產(chǎn)中,增加密度和加強養(yǎng)分管理是玉米高產(chǎn)的關(guān)鍵措施。增密主要是截獲更多的太陽輻射,使得群體生產(chǎn)力較高而增產(chǎn)[31]。就超高產(chǎn)栽培而言,單位面積穗數(shù)顯著增加,增密對產(chǎn)量貢獻(xiàn)最大。但高密度下往往導(dǎo)致養(yǎng)分競爭的加劇,限制了單位葉片的光合生產(chǎn)能力[32],因此本試驗中增施氮肥用量,分4次施用可以在生育后期提高氮肥利用效率實現(xiàn)高產(chǎn),這與之前研究報道的通過氮肥分次施用使得玉米氮肥需求和根層養(yǎng)分在時空匹配來提高產(chǎn)量的結(jié)果一致[28,33]。同時,配施磷鉀肥更有利于玉米養(yǎng)分需求平衡實現(xiàn)穩(wěn)產(chǎn)高產(chǎn)[34]。本試驗中氮肥施用量450 kg·hm-2,高于玉米高產(chǎn)氮肥推薦用量[29,33],可能是本試驗田為砂質(zhì)土壤的原因。因此,如何在沙質(zhì)土壤優(yōu)化配置氮肥、密度和水分協(xié)同管理,提高陜西灌區(qū)春玉米產(chǎn)量和資源效率仍需深入研究。
與普通大田栽培和高產(chǎn)栽培相比,超高產(chǎn)栽培顯著提高了春玉米吐絲后生物量和氮素積累量,維持了較強的葉片光合生產(chǎn)能力,這是實現(xiàn)春玉米高產(chǎn)的生理基礎(chǔ)。在陜西灌區(qū)春玉米生產(chǎn)中,篩選耐密品種基礎(chǔ)上增加種植密度、強化氮肥分次追施,保證高產(chǎn)玉米吐絲后期對氮素的需求,實現(xiàn)春玉米高產(chǎn)。
[1] 路海東, 薛吉全, 馬國勝, 郝引川, 張仁和, 馬向峰. 陜西榆林春玉米高產(chǎn)田土壤理化性狀及根系分布. 應(yīng)用生態(tài)學(xué)報, 2010, 21(4): 895-900.
LU H D, XUE J Q, MA G S, HAO Y C, ZHANG R H, MA X F. Soil physical and chemical properties and root distribution in high yielding spring maize fields in Yulin of Shaanxi province. Chinese Journal of Applied Ecology, 2010, 21(4): 895-900. (in Chinese)
[2] 陳國平, 高聚林, 趙明, 董樹亭, 李少昆, 楊祁峰, 劉永紅, 王立春,薛吉全, 柳京國, 李潮海, 王永宏, 王友德, 宋慧欣, 趙久然. 近年我國玉米超高產(chǎn)田的分布、產(chǎn)量構(gòu)成及關(guān)鍵技術(shù). 作物學(xué)報, 2012, 38(1): 80-85.
CHEN G P, GAO J L, ZHAO M, DONG S T, LI S K, YANG Q F, LIU Y H, WANG L C, XUE J Q, LIU J G, LI C H, WANG Y H, WANG Y D, SONG H X, ZHAO J R. Analysis on distribution, yield structure and key culture techniques of maize super-high yield plots in recent years. Acta Agronomica Sinica, 2012, 38(1): 80-85. (in Chinese)
[3] TOLLENAAR M, LEE E A. Strategies for enhancing grain yield in maize. Plant Breeding Reviewer, 2011, 34: 37-82.
[4] DUVICK D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50(3): 193-202.
[5] MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG R S. Understanding production potentials and yields gaps in intensive maize production in China. Field Crops Research, 2013, 143(1): 91-97.
[6] CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, ROMHELD V. Integrated soil-crop system management for food security. Proceedings of the National Academy Sciences of the United States of America, 2011, 108(16): 6399-6404.
[7] LUQUE S F, CIRILO A G, OTEGUI M E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Research, 2006, 95(2/3): 383-397.
[8] LIU J L, ZHAN A, BU L D, ZHU L, LUO S S, CHEN X P, CUI Z L, LI S Q, ROBERT L H, ZHAO Y. Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agronomy Journal, 2014, 106(2): 390-396.
[9] NING P, LI S, YU P, ZHANG Y, LI C J. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties in leaf longevity. Field Crops Research, 2013, 144: 19-27.
[10] ZHAO J, YANG X G, LIN X M, GRETCHEN F S, DAI S W, Lü S, CHEN X C, CHEN F J, MI G H. Radiation interception and use efficiency contribution to higher yields of maize hybrids in Northeast China. Agronomy Journal, 2015, 107(4): 1473-1480.
[11] YAN P, YUE S C, QIU M L, CHEN X P, CUI Z L, CHEN F J. Using maize hybrids and in-season nitrogen managenment to improve grain yield and grain nitrogen concentration. Field Crops Research, 2014, 166(9): 38-45.
[12] SEVERINI A D, BORRDS L, WESTGATE M E, CIRILO A G. Kernel number and kernel weight determination in dent and popcorn maize. Field Crops Research, 2011, 120(3): 360-369.
[13] RACJAN I, TOLLENAAR M. Source-sink ratio and leaf senescence in maize II. Nitrogen metabolism during grain filling. Field Crops Research, 1999, 60(3): 255-265.
[14] TOLLENAAR M, LEE E A. Dissection of physiplogical processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 2006, 51: 399-408.
[15] ECHARTE L, ROTNSTEIN S, TOLLENAAR M. Response of leaf photosythesis and dry matter accumulation to nitrogen supply in old and a new maize hybrids. Crop Science, 2008, 48(2): 656-665.
[16] EGLI D B. Is there a role for sink size in understanding maize population-yield relationship? Crop Science, 2015, 55(6): 2453-2462.
[17] MA B L, DWYER L M, GREGORICH E G. Soil nitrogen amendment effects on nitrogen uptake and grain yield of maize. Agronomy Journal, 1999, 91(4): 650-656.
[18] 張玉芹, 楊恒山, 高聚林, 張瑞富, 王志剛, 徐壽軍, 范秀艷, 楊升輝. 超高產(chǎn)春玉米冠層結(jié)構(gòu)及其生理特性. 中國農(nóng)業(yè)科學(xué), 2011, 44(21): 4367-4376.
ZHANG Y Q, YANG H S, GAO J L, ZHANG R F, WANG Z G, XU S J, FAN X Y, YANG S H. Study on canopy structure and physiological characteristics of super-high yield spring maize. Scientia AgricuturalSinica, 2011, 44(21): 4367-4376. (in Chinese)
[19] 楊恒山, 張玉芹, 徐壽軍, 李國紅, 高聚林, 王志剛. 超高產(chǎn)春玉米干物質(zhì)及養(yǎng)分積累轉(zhuǎn)運特征. 植物營養(yǎng)與肥料學(xué)報, 2012, 18(2): 315-323.
YANG H S, ZHANG Y Q, XU S J, LI G H, GAO J L, WANG Z G. Study on canopy structure and physiological characteristics of super-high yield spring maize. Plant Nutrition and Fertilizer Science, 2012, 18(2): 315-323. (in Chinese )
[20] COX M C, QUALSET C O, RAINS D W. Genetic variation for nitrogen assimilation and translocation in wheat: I. Dry matter and nitrogen accumulation to grain. Crop Science, 1985, 25(3): 430-435.
[21] MOLL R H, KAMPRATH E J, JACKSON W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74(3): 562-564.
[22] CHEN X C, CHEN F J, CHEN Y L, GAO Q, YANG X L, YUAN L X, ZHANG F S, MI G H. Morden maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Globe Change Biology, 2013,19(3): 923-936.
[23] DUVICK D N, CASSMAN K G. Post-green revolution trends in yield potential of temperate maize in the North-central United States. Crop Science, 1999, 39(6): 1622-1630.
[24] SEEBAUER J R, SINGLETARY G W, KRUMPELMAN P M, RUFFO M L, BELOW F E. Relationship of source and sink in determining kernel composition of maize. Journal of Experiment Botany, 2010, 61(2): 511-519.
[25] 董樹亭. 玉米生態(tài)生理與產(chǎn)量品質(zhì)形成. 北京: 高等教育出版社, 2006.
DONG S T. Eco-Physiology and Formation of Yield and Quality in Maize. Beijing: Higher Education Press, 2006. (in Chinese)
[26] WORKU M, BANZIGER M, ERLEY G S A, FRIESEN D, DIALLO A O, HORST W J. Nitrogen uptake and utilization in contrasting nitrogen efficiency tropical maize hybrids. Crop Science, 2007, 47(2): 519-528.
[27] HE P, OSAKI M, TAKEBE M, SHINANO T. Changes of photosynthetic characteristics in relation to leaf senescence in two maize hybrids with different senescent appearance. Photosynthetica, 2002, 40(4): 547-552.
[28] 王宜倫, 李潮海, 譚金芳, 張許, 劉天學(xué). 氮肥后移對超高產(chǎn)夏玉米產(chǎn)量及氮素吸收和利用的影響. 作物學(xué)報, 2011, 37(2): 339-372.
WANG Y L, LI C H, TAN J F, ZHANG X, LIU T X. Effect of postponing N application on yield, nitrogen absorption and utilization in super-high-yield summer maize. Acta Agronomica Sinica, 2011, 37(2): 339-372. (in Chinese)
[29] HOU P, GAO Q, XIE R Z, LI S K, MENG Q F, ERNEST A K, VOLKER R, TORSTEN M, ZHANG F S, CUI Z L, CHEN X P. Grain yields in relation to N requirement: Optimizing nitrogen management for spring maize growth in China. Field Crops Research, 2012, 129(1): 1-6.
[30] 張仁和, 郭東偉, 路海東, 張興華, 李鳳艷, 郝引川, 薛吉全. 吐絲期干旱脅迫對玉米生理特性和物質(zhì)生產(chǎn)的影響. 作物學(xué)報, 2012, 38(10): 1884-1890.
ZHANG R H, GUO D W, LU H D, ZHANG X H, LI F Y, HAO Y C, XUE J Q. Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agronomica Sinica, 2012, 38(10): 1884-1890. (in Chinese)
[31] 王楷, 王克如, 王永宏, 趙健, 趙如浪, 李健, 梁明晰, 李少昆. 密度對玉米產(chǎn)量及其產(chǎn)量構(gòu)成因子的影響. 中國農(nóng)業(yè)科學(xué), 2012, 45(16): 3437-3445.
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, LI J, LIANG M X, LI S K. Effects of density on maize yield and yield components. Scientia Agricutural Sinica, 2012, 45(16): 3437-3445. (in Chinese)
[32] CIAMPITTI I A, VYN T J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plant from vegetative to reproductive stages. Field Crops Research, 2011, 121(1): 2-18.
[33] 葉優(yōu)良, 黃玉芳, 劉春生, 曲日濤, 宋海燕, 崔振嶺. 氮素實時管理對夏玉米產(chǎn)量和氮素利用的影響. 作物學(xué)報, 2011, 37(1): 152-157.
YE Y L, HUANG Y F, LIU C S, QU R T, SONG H Y, CUI Z L. Effect of in-season nitrogen management strategy on maize grain yield and nitrogen use efficiency. Acta Agronomica Sinica, 2011, 37(1): 152-157. (in Chinese )
[34] CIAMPITTI I A, CAMBERATO J J, MURRELL S T, VYN T J. Maize nutrient accunulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agronomy Journal, 2013, 105(3): 783-795.
(責(zé)任編輯 楊鑫浩)
Characteristics of Dry Matter and Nitrogen Accumulation for High-Yielding Maize Production Under Irrigated Conditions of Shaanxi
ZHANG RenHe1, WANG BoXin1, YANG YongHong1, YANG XiaoJun2, MA XiangFeng2, ZHANG XingHua1, HAO YinChuan1, XUE JiQuan1
(1College of Agronomy, Northwest A&F University/Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Yangling 712100, Shaanxi;2Yulin Academy of Agricultural Sciences, Yulin 719000, Shaanxi)
【Objective】The objective of this paper is to study the dry matter and nitrogen accumulation in high-yielding spring maize under irrigated conditions of Shaanxi in order to realize high and stable yield in this area. 【Method】A field experiment was conducted by different agronomic managements with the high-yielding variety shandan609 as materials from 2013 to 2015. High yielding cultivations were practiced, and then the yield and yield component, LAI, SPAD, characteristics of dry matter and nitrogen accumulation were analyzed based on the maize high-yielding cultivation. 【Result】The average yields under farmers’ practice,higher yielding cultivation, super high yielding cultivation were 11.1, 13.1 and 16.1 t·hm-2, respectively, and 18.0% and 45.1% higher than those of control. Compared with the control, the higher yielding and super high-yielding cultivation had lower kernels per ear and thousand-kernel weights, but produced more ear number per hectare. More ears were the key to achieve maize high yield potential. The harvest indexes of higher yielding and super high-yielding cultivation were higher than that of farmers’ practice. Similarly, compared with the control, the higher yielding and super high-yielding cultivation showed more dry matter and nitrogen accumulation from silking to maturity and at maturity. In the super high-yielding cultivation, 41.8% greater dry matter production and 24.5% more nitrogen uptake after silking contributed 20.1% more to grain yield and 61.6% to grain nitrogen. Compared with the control, the higher yielding and super high-yielding cultivation also significantly increased LAI and SPAD values after silking. Grain yield was highly correlated with post-silking dry matter accumulation (r=0.988), and post-silking nitrogen accumulation (r=0.927).【Conclusion】The results indicate that higher grain yield can be achieved by using integrated and optimized cultivation techniques under irrigated conditions of Shaanxi. The super high-yielding cultivation of spring maize has stronger photosynthetic potential, more dry matter and nitrogen accumulation (especially post-silking) and post-silking dry matter and nitrogen accumulation contributing to grain yield, thus providing a basis for production of super high-yield maize. The present study highlighted the benefits of integrating nutrient and agronomic management with matching the supply and demand of nitrogen to achieve maize high yield under irrigated conditions of Shaanxi.
spring maize; high yielding cultivation; dry matter production; nitrogen accumulation; grain yield
2016-08-01;接受日期:2017-01-20
國家重點研發(fā)計劃項目(2016YFD0101204-2)、國家公益性行業(yè)(農(nóng)業(yè))科研專項(201203031-07)、陜西省科技計劃農(nóng)業(yè)攻關(guān)項目(2014K01-02-03,2015NY084)
聯(lián)系方式:張仁和,E-mail:zhangrenhe1975@163.com。王博新,E-mail:wangboxin019@163.com。張仁和和王博新為同等貢獻(xiàn)作者。通信作者薛吉全,E-mail:xjq2934@163.com