王聰聰,張曉紅,王小艷,張盼,范術(shù)麗,龐朝友,馬啟峰,魏恒玲,王寒濤,宿俊吉,喻樹(shù)迅
(中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所/棉花生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,河南安陽(yáng) 455000)
陸地棉開(kāi)花相關(guān)基因GhFLP5的表達(dá)及功能分析
王聰聰,張曉紅,王小艷,張盼,范術(shù)麗,龐朝友,馬啟峰,魏恒玲,王寒濤,宿俊吉,喻樹(shù)迅
(中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所/棉花生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,河南安陽(yáng) 455000)
【目的】克隆陸地棉開(kāi)花促進(jìn)因子家族的一個(gè)基因Flowering Promoting Factor1-like Protein 5(GhFLP5),并對(duì)其時(shí)空表達(dá)模式進(jìn)行研究,解析其在開(kāi)花調(diào)控過(guò)程中的作用,為創(chuàng)制早熟陸地棉材料奠定基礎(chǔ)?!痉椒ā扛鶕?jù)NCBI數(shù)據(jù)庫(kù)中的序列,用Oligo7軟件設(shè)計(jì)引物,以中棉所50(CCRI50)的cDNA為模板,克隆獲得GhFLP5。在ExPASy網(wǎng)站上預(yù)測(cè)其蛋白的理化性質(zhì),同時(shí)在NCBI中檢索其他物種中的FPF蛋白,使用ClustalX2進(jìn)行多重序列比對(duì),并用MEGA6構(gòu)建系統(tǒng)進(jìn)化樹(shù);取陸地棉早熟品種CCRI50和中晚熟品種魯棉研28(Lu28)不同生長(zhǎng)時(shí)期、不同組織的樣品,對(duì)GhFLP5的時(shí)間和空間表達(dá)模式進(jìn)行分析;從基因組數(shù)據(jù)庫(kù)中調(diào)取GhFLP5起始密碼子上游1 500 bp的片段,用PlantCARE在線(xiàn)工具預(yù)測(cè)其順式作用元件,選取相關(guān)激素對(duì)二葉期棉花幼苗進(jìn)行葉面噴施處理,研究GhFLP5的應(yīng)答反應(yīng);構(gòu)建植物表達(dá)載體pBI121-GhFLP5,轉(zhuǎn)化擬南芥,觀察轉(zhuǎn)基因株系的表型,并用qRT-PCR對(duì)其內(nèi)源基因表達(dá)的變化進(jìn)行測(cè)定?!窘Y(jié)果】GhFLP5開(kāi)放閱讀框長(zhǎng)300 bp,編碼的蛋白質(zhì)分子量為11.4 kD,共包含3個(gè)比較保守的區(qū)域,與大豆、苜蓿和毛果楊的開(kāi)花促進(jìn)因子親緣關(guān)系較近??臻g表達(dá)模式分析表明,GhFLP5在葉片中優(yōu)勢(shì)表達(dá),且在早熟品種CCRI50中的表達(dá)量顯著高于晚熟品種Lu28;時(shí)間表達(dá)模式分析表明,在CCRI50中其表達(dá)量高峰出現(xiàn)在三葉期,而在Lu28中四葉期表達(dá)量最高。GhFLP5的啟動(dòng)子上主要存在兩大類(lèi)順式作用元件,一類(lèi)是光響應(yīng)元件和生物鐘元件,一類(lèi)是脅迫響應(yīng)元件。根據(jù)順式作用元件的分布和功能選取水楊酸(SA)、脫落酸(ABA)和茉莉酸(JA)噴施處理棉花幼苗,結(jié)果表明,GhFLP5能響應(yīng)外源SA和ABA而上調(diào),也會(huì)被外施JA抑制。組成型表達(dá)GhFLP5的擬南芥株系抽薹時(shí)間提前約9 d,開(kāi)花時(shí)間提前約7 d,蓮座葉數(shù)目減少,差異達(dá)到極顯著水平。熒光定量的結(jié)果表明轉(zhuǎn)基因擬南芥中促進(jìn)開(kāi)花的基因LEAFY(AtLFY)、SUPPRESSOR OF OVEREXPRESSION OF CONSTANS(AtSOC1)、FLOWERING LOCUS T(AtFT)、APETALA1(AtAP1)和FRUITFULL(AtFUL)表達(dá)量顯著升高,抑制開(kāi)花的基因Flowering Locus C(AtFLC)表達(dá)量顯著降低。在轉(zhuǎn)基因擬南芥中生長(zhǎng)素應(yīng)答基因SMALL AUXIN UPREGULATED 20(AtSAUR20)和SMALL AUXIN UPREGULATED 22(AtSAUR22)顯著上調(diào),具有生物活性的赤霉素(GA)合成的相關(guān)基因GIBBERELLIN 20-OXIDASE 1(GA20OX1)的表達(dá)量提高2倍?!窘Y(jié)論】轉(zhuǎn)基因擬南芥早花表型明顯,GhFLP5可能在調(diào)控中發(fā)揮了雙重作用,通過(guò)IAA和GA途徑促進(jìn)擬南芥的開(kāi)花轉(zhuǎn)型。
陸地棉;開(kāi)花時(shí)間;GhFLP5;表達(dá)模式;基因功能
【研究意義】中國(guó)耕地?cái)?shù)量有限,糧棉爭(zhēng)地矛盾突出,培育生長(zhǎng)發(fā)育期相對(duì)較短的短季棉已成為中國(guó)棉花育種的重要研究方向[1]。花發(fā)育與棉花早熟性密切相關(guān)[2],開(kāi)花時(shí)間直接決定了熟性的早晚[3]。因此,研究陸地棉開(kāi)花相關(guān)基因的表達(dá)和功能,明確其在開(kāi)花調(diào)控網(wǎng)絡(luò)中的角色,對(duì)于研究棉花花芽分化的規(guī)律、推動(dòng)棉花種質(zhì)資源創(chuàng)新具有至關(guān)重要的意義?!厩叭搜芯窟M(jìn)展】開(kāi)花的過(guò)程不僅與環(huán)境信號(hào)如日照時(shí)間、光強(qiáng)度、環(huán)境溫度等有關(guān),還與植株的內(nèi)源激素及年齡有關(guān)[4]。同時(shí)研究表明,開(kāi)花基因在高等植物之間具有很高的保守性[5]。MELZER等[6]利用差減雜交和差異顯示的方法,從長(zhǎng)日照植物白芥的頂芽中得到一個(gè)開(kāi)花特異基因pSFD5.04(SaFPF1),長(zhǎng)日照誘導(dǎo)之后該基因表達(dá)量迅速升高并緩慢降低。隨后在擬南芥中克隆得到同源基因,發(fā)現(xiàn)無(wú)論日照長(zhǎng)短,此基因過(guò)表達(dá)都會(huì)使擬南芥提前開(kāi)花,因此命名為Arabidopsis thaliana flowering promoting factor 1(AtFPF1)[7],隨后證實(shí)AtFPF1通過(guò)赤霉素(GA)途徑調(diào)節(jié)擬南芥開(kāi)花時(shí)間[8]。FPF1可以下調(diào)晶體蛋白基因ACD31.2,而該基因也會(huì)受GA成花誘導(dǎo)的負(fù)調(diào)控[9]。在溫帶禾谷類(lèi)作物中,F(xiàn)PF1不僅能在春化途徑中響應(yīng)低溫,并且能響應(yīng)日照長(zhǎng)度,參與光周期調(diào)控的花芽分化[10]。在雜交白楊中異源表達(dá)FPF1,白楊開(kāi)花時(shí)間無(wú)明顯變化,但是SOC1/TM3類(lèi)基因Populus tremuloides MADS-box 5(PTM5)顯著上調(diào),木材密度降低[11]。在水稻中異源表達(dá)FPF1,發(fā)現(xiàn)轉(zhuǎn)基因水稻抽穗時(shí)間提前[12],但過(guò)表達(dá)其同源基因Oryza sativa Root Architecture Associated 1(OsRAA1),抽穗時(shí)間無(wú)顯著變化且不定根形成增多,初生根生長(zhǎng)受到抑制,與生長(zhǎng)素處理的表型類(lèi)似[13]。隨后的研究表明OsRAA1是一個(gè)細(xì)胞循環(huán)抑制子,其泛素化降解對(duì)于細(xì)胞分裂從中期到后期的轉(zhuǎn)變是必須的,正是這個(gè)轉(zhuǎn)變影響根系的生長(zhǎng)和發(fā)育[14]。在黃花蒿的研究中發(fā)現(xiàn),F(xiàn)PF1異源表達(dá)株系中青蒿素含量無(wú)顯著變化,但開(kāi)花時(shí)間提前約20 d[15]。將FPF1轉(zhuǎn)化到甘藍(lán)型油菜中,轉(zhuǎn)基因株系表現(xiàn)出明顯的提前開(kāi)花性狀,且經(jīng)赤霉素(GA)處理后的轉(zhuǎn)基因株系較未處理的轉(zhuǎn)基因株系開(kāi)花時(shí)間更早[16]。此外,一系列研究表明FPF1在大麥、小麥、菊花、蘿卜中與花發(fā)育密切相關(guān)[10,17-18]?!颈狙芯壳腥朦c(diǎn)】陸地棉開(kāi)花促進(jìn)因子基因家族的6個(gè)成員中,已經(jīng)證實(shí)GhFPF1、GhFLP1都能使擬南芥開(kāi)花提前。GhFPF1參與避蔭反應(yīng)調(diào)控[19],使擬南芥蓮座葉和莖生葉減少,葉綠素含量降低[20]。GhFLP1也能促進(jìn)擬南芥開(kāi)花,并能響應(yīng)水楊酸(SA)和GA調(diào)控[21],而GhFLP2、GhFLP3、GhFLP4和GhFLP5 4個(gè)成員的表達(dá)模式及功能尚未明確,不能確定該家族基因在功能上是否存在分化或冗余。【擬解決的關(guān)鍵問(wèn)題】本研究從陸地棉中棉所50(CCRI50)中克隆了一個(gè)開(kāi)花促進(jìn)因子基因家族成員GhFLP5,對(duì)其進(jìn)行表達(dá)分析,并通過(guò)轉(zhuǎn)基因擬南芥驗(yàn)證其在開(kāi)花過(guò)程中的功能。
1.1 試驗(yàn)材料
所用陸地棉品種為CCRI50及魯棉研28(Lu28)。擬南芥為哥倫比亞野生型背景。
試驗(yàn)所用到的酶、pMD18-T載體、反轉(zhuǎn)錄試劑盒及熒光定量試劑盒均購(gòu)自TaKaRa公司,大腸桿菌感受態(tài)DH5α購(gòu)自北京全式金公司,質(zhì)粒提取試劑盒購(gòu)自Magen生物公司,膠回收試劑盒購(gòu)自O(shè)mega Bio-Tek公司,pBI121載體及農(nóng)桿菌LBA4404由棉花生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室保存。
1.2 材料處理及取樣
GhFLP5優(yōu)勢(shì)表達(dá)部位及優(yōu)勢(shì)表達(dá)時(shí)期的分析所用材料為CCRI50和Lu28,于夏播期種植于中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所白壁試驗(yàn)田,大田管理。于一葉期到六葉期取長(zhǎng)勢(shì)均勻的棉花的根、莖、新葉、頂芽,并于成熟期取6 mm大小的蕾、開(kāi)花當(dāng)天的花瓣、雄蕊、雌蕊以及生長(zhǎng)5 d的纖維,取樣后快速放入液氮中冷凍并存于-80℃冰箱中備用。激素處理所用材料為CCRI50,室內(nèi)種植條件為14 h光照/10 h黑暗,溫度為26℃。于二葉一心期葉面噴施激素,以清水為對(duì)照,噴施至葉面有水珠滴落。所用SA濃度為200 μmol·L-1, ABA 和JA濃度為100 μmol·L-1。擬南芥種植條件為16 h光照/8 h黑暗,溫度22℃,相對(duì)濕度55%[22]。取生長(zhǎng)18 d的擬南芥的地上部分,分析轉(zhuǎn)基因擬南芥內(nèi)源基因表達(dá)量變化。
1.3 GhFLP5的克隆
以擬南芥AtFPF1的蛋白序列為參比序列,在中棉所陸地棉數(shù)據(jù)庫(kù)(http://cgp.genomics.org.cn/page/ species/index.jsp)中檢索,共得到6條相似性比較高的表達(dá)片段。根據(jù)NCBI上已經(jīng)發(fā)布的GhFLP5序列設(shè)計(jì)引物,并以CCRI50的cDNA為模板進(jìn)行擴(kuò)增,將得到的片段切膠回收之后連接TaKaRa公司的pMD18-T載體,得到重組質(zhì)粒轉(zhuǎn)化大腸桿菌DH5α,將新鮮菌液送樣至金唯智生物科技有限公司進(jìn)行測(cè)序,并保存測(cè)序正確的單克隆菌液以供后續(xù)試驗(yàn)使用。
1.4 GhFLP5的生物信息學(xué)分析
所用到的氨基酸序列下載自NCBI網(wǎng)站,多重序列比對(duì)使用ClustalX2軟件,進(jìn)化樹(shù)的構(gòu)建使用MEGA6.06最大似然方法。利用ExPASy網(wǎng)站上的Compute pI/Mw(http://web.expasy.org/compute_pi/)對(duì)其蛋白質(zhì)的理化性質(zhì)進(jìn)行預(yù)測(cè)和分析,并用NCBI的CDD(https://www.ncbi.nlm.nih.gov/Structure/cdd/ cdd.shtml)數(shù)據(jù)庫(kù)對(duì)其結(jié)構(gòu)域進(jìn)行預(yù)測(cè)。
1.5 基因的定量表達(dá)分析
RNA提取使用天根多糖多酚RNA提取試劑盒,所使用的RNA的質(zhì)量必須保證OD260/280為1.8—2.1,OD260/230大于1.8。反轉(zhuǎn)錄使用TaKaRa RR047A試劑盒,使用gDNA Eraser消化總RNA中殘留的基因組DNA后進(jìn)行15 min的反轉(zhuǎn)錄反應(yīng)合成cDNA。熒光定量使用SYBR Green分析法,所用試劑盒為T(mén)aKaRa RR420A,所用儀器為Applied Biosystems 7500實(shí)時(shí)定量PCR儀。陸地棉中以HISTONE 3(GhHis3)為內(nèi)參,擬南芥中以UBIQUITIN 5(AtUBQ5)為內(nèi)參。所用引物見(jiàn)附表1。
1.6 植物表達(dá)載體的構(gòu)建
擴(kuò)增T-A克隆的測(cè)序正確的陽(yáng)性菌液,提取重組質(zhì)粒為模板,用PCR的方法分別將XbaⅠ和SacⅠ位點(diǎn)引入到GhFLP5編碼區(qū)片段的5′端和3′端。然后用SacⅠ和XbaⅠ酶消化得到的含有酶切位點(diǎn)的PCR產(chǎn)物片段和pBI121載體,并將得到的產(chǎn)物膠回收。采用T4連接酶16℃過(guò)夜連接,轉(zhuǎn)化大腸桿菌DH5α,送公司測(cè)序。將測(cè)序正確的重組表達(dá)載體轉(zhuǎn)化農(nóng)桿菌。
1.7 擬南芥的遺傳轉(zhuǎn)化及陽(yáng)性篩選
用農(nóng)桿菌蘸花法轉(zhuǎn)化擬南芥。擴(kuò)搖農(nóng)桿菌菌液至OD600=1.2—1.6。5 000 r/min離心10 min收集菌體,用含有0.02% Silwet L-77的1/2 MS滲透液重懸菌液至OD600=0.9。將已經(jīng)剪去結(jié)莢角果的擬南芥花序蘸入轉(zhuǎn)化介質(zhì)中約45 s,然后于暗中培養(yǎng)24 h[23]。得到的種子為T(mén)0代種子。
將種子播種于含有卡那霉素的1/2 MS培養(yǎng)基上,具體做法為:在超凈臺(tái)內(nèi),先用0.1%的HgCl2消毒3 min,然后用75%的酒精消毒3 min,再用滅菌水清洗4—5次,于濾紙上風(fēng)干后將種子播種在含抗生素的固體培養(yǎng)基上。放置在4℃冰箱中春化48 —72 h,取出后放在培養(yǎng)箱中,16 h光照條件下培養(yǎng),待真葉長(zhǎng)出后移栽到土壤中。生長(zhǎng)兩周后取樣提取DNA進(jìn)行PCR檢測(cè),鑒定引物上游靶定在35S啟動(dòng)子上,下游靶定在外源基因GhFLP5上。收獲陽(yáng)性株種子,直至純合世代。
2.1 陸地棉GhFLP5的序列分析
GhFLP5位于陸地棉D(zhuǎn)t亞組第10染色體上,開(kāi)放閱讀框長(zhǎng)300 bp,無(wú)內(nèi)含子,編碼氨基酸長(zhǎng)度為99 aa。經(jīng)ExPASy網(wǎng)站預(yù)測(cè)可知,其編碼蛋白質(zhì)為11.4 kD,等電點(diǎn)為8.04。根據(jù)NCBI的Protein數(shù)據(jù)庫(kù)和Nucleotide數(shù)據(jù)庫(kù)中已提交的不同物種的FPF的序列并考慮物種間親緣關(guān)系的遠(yuǎn)近,選取玉米、水稻、大豆、毛果楊、白芥、擬南芥、苜蓿等物種的FPF蛋白序列與陸地棉的FPF蛋白序列進(jìn)行多重比對(duì)(圖1-a),不同物種的開(kāi)花促進(jìn)因子家族的蛋白質(zhì)的序列一致性較高,從氨基末端到羧基末端共有3個(gè)比較保守的區(qū)域,分別為-MSFVWVFKNGV-、-LGWERYYG-和-MYDIVVKNPN-。利用MEGA6構(gòu)建進(jìn)化樹(shù)(圖1-b),GhFLP5與大豆、苜蓿和毛果楊的開(kāi)花促進(jìn)因子同源性較高。
2.2 GhFLP5的時(shí)空表達(dá)模式分析
根據(jù)已有的研究表明,三葉期是棉花生長(zhǎng)的關(guān)鍵時(shí)期。早熟品種如中棉所36(CCRI36)等,二葉期花原基開(kāi)始伸長(zhǎng),在三葉期已分化出4—5個(gè)果枝原基,而晚熟品種如TM-1在三葉期才開(kāi)始進(jìn)行花芽分化[24]。為研究GhFLP5的表達(dá)特性,分別以早熟品種CCRI50和晚熟品種Lu28為試驗(yàn)材料,檢測(cè)GhFLP5在三葉期的根、莖、葉、頂芽,成熟期的蕾,開(kāi)花當(dāng)天的雄蕊、雌蕊、花瓣和5 d的纖維中的表達(dá)量(圖2-a)。GhFLP5組織表達(dá)特異性很強(qiáng),在葉片中表達(dá)量較高,而在其他部位略有表達(dá)甚至檢測(cè)不到。早熟品種CCRI50葉片中的表達(dá)量顯著高于晚熟品種Lu28。
由GhFLP5的優(yōu)勢(shì)表達(dá)部位可知,在幼苗期GhFLP5主要是在葉片中表達(dá)。為研究GhFLP5的時(shí)間表達(dá)模式,分別取一葉期到六葉期的倒一葉葉片,提取其總RNA,進(jìn)行熒光定量檢測(cè)(圖2-b)。早熟品種CCRI50中,GhFLP5的表達(dá)從一葉期開(kāi)始上升,在三葉期表達(dá)量達(dá)到高峰而后降低。晚熟品種Lu28中,GhFLP5的表達(dá)在三葉期較低而在四葉期達(dá)到高峰,這與前人關(guān)于棉花花芽分化理論的研究結(jié)果一致[24],表明在陸地棉的生長(zhǎng)過(guò)程中,GhFLP5很有可能與其花原基發(fā)育相關(guān)。
2.3 GhFLP5的啟動(dòng)子分析及其對(duì)外源激素的應(yīng)答
從中棉所陸地棉基因組數(shù)據(jù)庫(kù)中調(diào)取GhFLP5起始密碼子上游1 500 bp的序列,并利用PlantCARE數(shù)據(jù)庫(kù)對(duì)其順式作用元件進(jìn)行了預(yù)測(cè)(表1)。該基因啟動(dòng)子主要存在兩大類(lèi)順式作用元件,一類(lèi)是光響應(yīng)元件和生物鐘元件;一類(lèi)是脅迫響應(yīng)元件,如與脅迫相關(guān)的脫落酸響應(yīng)元件、干旱響應(yīng)元件等。已知ABA、JA和SA都是與植物脅迫響應(yīng)相關(guān)的激素[25-26]。因此,通過(guò)在棉花二葉期噴施外源激素研究GhFLP5的應(yīng)答。噴施SA、ABA及JA24 h內(nèi)對(duì)GhFLP5表達(dá)量進(jìn)行研究(圖3-a—圖3-c)。經(jīng)SA處理后,2 h后GhFLP5的表達(dá)量出現(xiàn)一個(gè)小高峰,12 h后到達(dá)峰值,表達(dá)量約是對(duì)照組中GhFLP5表達(dá)量的10倍。經(jīng)ABA處理4 h后處理組中的GhFLP5表達(dá)量達(dá)到最大值,而對(duì)照組則是在8 h后達(dá)到高峰而后降低。經(jīng)JA處理后,GhFLP5的表達(dá)量降低,顯著低于對(duì)照組。以上結(jié)果表明,GhFLP5可以響應(yīng)SA、ABA、JA這3種外源激素。SA和ABA都可以促進(jìn)陸地棉中GhFLP5的表達(dá),而JA對(duì)GhFLP5的轉(zhuǎn)錄起抑制作用。
2.4 GhFLP5在擬南芥中的功能驗(yàn)證
為進(jìn)一步研究GhFLP5的功能,構(gòu)建植物表達(dá)載體(圖4-a),用含有重組質(zhì)粒的農(nóng)桿菌轉(zhuǎn)化擬南芥,將培養(yǎng)基上篩選得到的幼苗移栽到土壤中,提取DNA鑒定陽(yáng)性株(圖4-b)。在純合世代分別提取各個(gè)株系的RNA,檢測(cè)發(fā)現(xiàn)轉(zhuǎn)基因擬南芥中GhFLP5高調(diào)表達(dá)(圖4-c)。
圖1 氨基酸序列比對(duì)及進(jìn)化樹(shù)分析Fig. 1 Multiple alignment and phylogenetic comparison of GhFLP5 between different species
圖2 GhFLP5的時(shí)空表達(dá)模式分析Fig.2 Temporal and spatial expression patterns of GhFLP5
表1 陸地棉GhFLP5啟動(dòng)子順式作用元件預(yù)測(cè)Table 1 Predicted cis-acting elements on the promoter of GhFLP5
圖4 植物表達(dá)載體構(gòu)建及轉(zhuǎn)基因擬南芥的陽(yáng)性鑒定Fig. 4 Construction of the expression plasmid and identification of positive transgenic Arabidopsis thaliana lines
圖5 異源表達(dá)GhFLP5的擬南芥開(kāi)花時(shí)間提前Fig. 5 The Arabidopsis heterelogous-expressing GhFLP5 bolts and blooms earlier than the wild type
在長(zhǎng)日照條件下同時(shí)種植野生型擬南芥和轉(zhuǎn)基因擬南芥,觀察二者生長(zhǎng)狀況(圖5),異源表達(dá)株系呈現(xiàn)明顯的早花表型。轉(zhuǎn)基因擬南芥在播種16 d后開(kāi)始抽薹,平均抽薹時(shí)間在17 d左右,極顯著地低于野生型的26 d。35S::GhFLP5株系的開(kāi)花時(shí)間在22 d左右,而野生型的開(kāi)花時(shí)間為29 d,差異達(dá)到極顯著水平,同時(shí),其蓮座葉數(shù)目也顯著減少(表2)。
為了深入研究異源表達(dá)GhFLP5促進(jìn)擬南芥開(kāi)花的分子機(jī)制,取生長(zhǎng)18 d的擬南芥的地上部分,提取RNA,檢測(cè)擬南芥一些內(nèi)源基因的表達(dá)。在組成型表達(dá)GhFLP5的轉(zhuǎn)基因株系中,開(kāi)花促進(jìn)基因LEAFY(AtLFY)、SUPPRESSOR OF OVEREXPRESSION OF CONSTANS(AtSOC1)、FLOWERING LOCUS T(AtFT)、APETALA1(AtAP1)和FRUITFULL(AtFUL)的表達(dá)量都有所上調(diào),尤其是AtAP1,表達(dá)量超過(guò)野生型中的16倍(圖6-a)。而開(kāi)花抑制因子FLOWERING LOCUS C(AtFLC)的表達(dá)則被抑制(圖6-a),這也與在擬南芥中組成型表達(dá)GhFLP5正調(diào)控開(kāi)花時(shí)間的表型相符。
同時(shí),根據(jù)已有的報(bào)道對(duì)調(diào)控?cái)M南芥開(kāi)花時(shí)間的激素的生物合成酶的編碼基因進(jìn)行了檢測(cè),包括乙烯(ETH)、GA、油菜素內(nèi)酯(BR)、生長(zhǎng)素(IAA)的合成基因,發(fā)現(xiàn)只有GIBBERELLIN 20-OXIDASE 1(GA20OX1)的表達(dá)量上調(diào)超過(guò)兩倍,其余基因的表達(dá)均無(wú)顯著差異(圖6-c)。雖然生長(zhǎng)素合成基因的表達(dá)量無(wú)顯著差異,生長(zhǎng)素應(yīng)答基因SMALL AUXIN UPREGULATED 20(AtSAUR20)和SMALL AUXIN UPREGULATED 22(AtSAUR22)在異源表達(dá)GhFLP5的轉(zhuǎn)基因株系中表達(dá)量要顯著高于野生型(圖6-b)。
表2 野生型和轉(zhuǎn)基因擬南芥抽薹、開(kāi)花時(shí)間及蓮座葉數(shù)目統(tǒng)計(jì)Table 2 Bolting time, flowering time and the number of rosette leaves of wild and transgenic plants
圖6 轉(zhuǎn)基因擬南芥中開(kāi)花及激素合成相關(guān)基因表達(dá)量變化Fig.6 The transcript analysis of some genes related to blooming and phytohormones biosynthesis in transgenic lines
開(kāi)花是陸地棉的重要農(nóng)藝性狀之一?;ㄆ诘脑缤碛绊懏a(chǎn)量的高低,也影響品種的區(qū)域適應(yīng)性。雖然開(kāi)花是一個(gè)由多基因控制的數(shù)量性狀,經(jīng)典遺傳學(xué)研究也表明許多開(kāi)花相關(guān)的基因符合孟德?tīng)栠z傳定律[27]。陸地棉全基因組測(cè)序的完成對(duì)深入研究開(kāi)花的遺傳控制具有重要的意義和推動(dòng)作用。從陸地棉基因組數(shù)據(jù)庫(kù)中共檢索到6個(gè)開(kāi)花促進(jìn)因子基因家族成員,本研究克隆了GhFLP5,其功能研究結(jié)果表明,GhFLP5可以響應(yīng)外源激素SA、ABA、JA處理,異源表達(dá)GhFLP5使擬南芥提前開(kāi)花,且轉(zhuǎn)基因株系中成花基因AtAP1表達(dá)量升高達(dá)16倍,生長(zhǎng)素應(yīng)答基因AtSAUR20和AtSAUR22,赤霉素合成相關(guān)基因GA20OX1的表達(dá)也顯著上調(diào)。
ABA是調(diào)節(jié)干旱脅迫的關(guān)鍵激素,它可以促進(jìn)GIGANTEA(GI)、FT、TWIN SISTER OF FT(TSF)的表達(dá)而促進(jìn)開(kāi)花[28],也可以激活FLC的表達(dá)而抑制開(kāi)花[29]。SA是與植物脅迫相關(guān)的重要激素,也是誘導(dǎo)開(kāi)花的常用化學(xué)試劑[30]。它不僅能參與光周期途徑通過(guò)GI調(diào)節(jié)植物花期,也可以通過(guò)FVE在自主途徑中促進(jìn)開(kāi)花[31]。JA是高等植物中的天然生長(zhǎng)調(diào)節(jié)劑,它在植物衰老、根系發(fā)育、花粉開(kāi)裂和防御反應(yīng)中都發(fā)揮重要作用[32],同時(shí)它也可以通過(guò)負(fù)向調(diào)控成花素基因FT的表達(dá)延遲植物開(kāi)花[33]。本研究表明GhFLP5可以響應(yīng)ABA和SA誘導(dǎo)而高調(diào)表達(dá),也會(huì)被JA抑制,這都與35S:GhFLP5擬南芥提前開(kāi)花的表型一致。
AP1是植物中特有的MADS-box基因,它不僅是花序分生組織特征基因,與LFY和CAULIFLOWER(CAL)共同促進(jìn)花序分生組織的形成,也是花器官形態(tài)特征基因,調(diào)節(jié)花瓣和萼片的發(fā)育[34]。AP1可以抑制下游的生長(zhǎng)素合成基因LONELY GUY1(LOG1)的表達(dá),并上調(diào)生長(zhǎng)素降解基因CYTOKININ OXIDASE/DEHYDROGENASE3(CKX3)的表達(dá)[35]。35S::GhFLP5株系中,生長(zhǎng)素合成基因IAAs和YUCs的表達(dá)量無(wú)顯著變化,但生長(zhǎng)素應(yīng)答基因AtSAUR20和AtSAUR22表達(dá)量顯著升高。已有報(bào)道證明二者都參與調(diào)節(jié)細(xì)胞伸長(zhǎng),表達(dá)量升高可以增強(qiáng)IAA在植物體內(nèi)的運(yùn)輸,過(guò)表達(dá)會(huì)增強(qiáng)擬南芥對(duì)生長(zhǎng)素的耐受性[36],這說(shuō)明GhFLP5很有可能是通過(guò)生長(zhǎng)素的調(diào)節(jié)途徑控制擬南芥的開(kāi)花轉(zhuǎn)變。GA20OX1是催化合成具有生物活性的赤霉素的關(guān)鍵基因,其表達(dá)量的升高也暗示了GhFLP5的調(diào)控可能結(jié)合了雙子葉植物擬南芥和單子葉植物水稻中的雙重作用,同時(shí)通過(guò)IAA和GA影響植物的生長(zhǎng)發(fā)育。
除了AtFPF1,擬南芥中還存在FPF1-LIKE PROTEIN 1(AtFLP1)和FPF1-LIKE PROTEIN 2(AtFLP2)2個(gè)同源基因,其編碼蛋白與AtFPF1具有92%和80%的同源性。這兩個(gè)基因過(guò)表達(dá)都能使擬南芥開(kāi)花提前,但與AtFPF1在頂芽中表達(dá)不同,AtFLP1主要在根和花中表達(dá),AtFLP2則主要在萼片中表達(dá)[37]。陸地棉GhFLP1也能促進(jìn)擬南芥開(kāi)花,但其主要在棉花的花器官中表達(dá)且受外施GA調(diào)控[21]。此外,雖然35S::GhFLP5擬南芥早花表型明顯,但與GhFPF1影響植物避蔭反應(yīng)[20]不同,AtPHYB的表達(dá)量并無(wú)顯著變化,說(shuō)明該家族的基因在表達(dá)和功能上都出現(xiàn)了一定的分化。
從CCRI50中成功克隆GhFLP5,其位于Dt亞組第10染色體上,全長(zhǎng)300 bp,無(wú)內(nèi)含子。其表達(dá)具有強(qiáng)烈的組織特異性,在葉片中優(yōu)勢(shì)表達(dá),且在早熟陸地棉品種中表達(dá)量高峰早于晚熟陸地棉品種。GhFLP5在葉片中的表達(dá)受到SA和ABA的誘導(dǎo)之后表達(dá)量上升,而外施JA會(huì)抑制GhFLP5的表達(dá)。在擬南芥中異源表達(dá)該基因,擬南芥呈現(xiàn)明顯的早花表型,推測(cè)可能通過(guò)IAA和GA途徑調(diào)節(jié)植物開(kāi)花轉(zhuǎn)型。
[1] 喻樹(shù)迅, 宋美珍, 范術(shù)麗. 我國(guó)短季棉遺傳育種研究進(jìn)展. 棉花學(xué)報(bào), 2007, 19(5): 331-336.
YU S X, SONG M Z, FAN S L. Advances of genetics and breeding of short season cotton in China. Cotton Science, 2007, 19(5): 331-336. (in Chinese)
[2] 李威. 陸地棉花芽分化誘導(dǎo)階段莖尖的表達(dá)譜分析[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2011.
LI W. Transcriptome profiling of upland cotton shoot apex during floral induction[D].Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
[3] 吳嫚. 中棉所36花發(fā)育相關(guān)功能基因的發(fā)掘及其驗(yàn)證[D]. 楊陵:西北農(nóng)林科技大學(xué), 2010.
WU M. Research on the flowering-related gene in CCRI36[D]. Yangling: Northwest A&F University, 2010. (in Chinese)
[4] YU S, CAO L, ZHOU C M, ZHANG T Q, LIAN H, SUN Y, WU J Q,
HUANG J R, WANG G D, WANG J W. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. Elife Sciences, 2013, 2(2): e00269.
[5] 孫昌輝, 鄧曉建, 方軍, 儲(chǔ)成才. 高等植物開(kāi)花誘導(dǎo)研究進(jìn)展. 遺傳, 2007, 29(10): 1182-1190.
SUN C H, DENG X J, FANG J, CHU C C. An overview of flowering transition in higher plants. Hereditas, 2007, 29(10): 1182-1190. (in Chinese)
[6] MELZER S, MAJEWSKI D M, APEL K. Early changes in gene expression during the transition from vegetative to generative growth in the long-day plant Sinapis alba. The Plant Cell, 1990, 2(10): 953-961.
[7] KANIA T, RUSSENBERGER D, PENG S, APEL K, MELZER S. FPF1 promotes flowering in Arabidopsis. The Plant Cell, 1997, 9(8): 1327-1338.
[8] MELZER S, KAMPMANN G, CHANDLER J, APEL K. FPF1 modulates the competence to flowering in Arabidopsis. The Plant Journal, 1999, 18(4): 395-405.
[9] CHANDLER J W, MELZER S. An alpha-crystallin gene, ACD31.2 from Arabidopsis is negatively regulated by FPF1 overexpression, floral induction, gibberellins, and long days. Journal of Experimental Botany, 2004, 55(401): 1433-1435.
[10] GREENUP A G, SASANI S, OLIVER S N, TALBOT M J, DENNIS E S, HEMMING M N, TREVASKIS B. ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiology, 2010, 153(3): 1062-1073.
[11] HOENICKA H, LAUTNER S, KLINGBERG A, KOCH G, EL-SHERIF F, LEHNHARDT D, ZHANG B, BURGERT I, ODERMATT J, MELZER S, FROMM J, FLADUNG M. Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta, 2012, 235(2): 359-373. [12] XU M L, JIANG J F, GE L, XU Y Y, CHEN H, ZHAO Y, BI Y R, WEN J Q, CHONG K. FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Reports, 2005, 24(2): 79-85. [13] GE L, CHEN H, JIANG J F, ZHAO Y, XU M L, XU Y Y, TAN K H, XU Z H, CHONG K. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiology, 2004, 135(3): 1502-1513.
[14] Xu Y Y, CAO H, CHONG K. APC-targeted RAA1 degradation mediates the cell cycle and root development in plants. Plant Signaling & Behavior, 2010, 5(3): 218-223.
[15] Wang H, Ge L, Ye H C, CHONG K, LIU B Y, LI G F. Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Medica, 2004, 70(70): 347-352.
[16] 黃瓊?cè)A, 楊光偉, 李德謀, 羅小英, 裴炎. 農(nóng)桿菌介導(dǎo)法將FPF1基因?qū)胗筒说难芯砍鯃?bào). 西南大學(xué)學(xué)報(bào), 2002, 24(2): 124-127.
HUANG Q H, YANG G W, LI D M, LUO X Y, PEI Y. Preliminary studies on transgenic rapeseed (Brassica Napus L.) with FPF1 gene mediated by Agrobacterium Tumefacien. Journal of Southwest Agricultural University, 2002, 24(2): 124-127. (in Chinese)
[17] 皮偉, 李名揚(yáng). 根癌農(nóng)桿菌介導(dǎo)FPF1基因轉(zhuǎn)化菊花的研究. 西南大學(xué)學(xué)報(bào), 2007, 29(4): 70-73.
PI W, LI M Y. Transferring FPF1 into Chrysanthemum mediated by Agrobacterium tumefaciens. Journal of Southwest Agricultural University, 2007, 29(4): 70-73. (in Chinese)
[18] 許園園, 王燕, 柳李旺, 徐良, 王克磊, 張鳳嬌, 聶姍姍, 龔義勤.蘿卜抽薹開(kāi)花促進(jìn)因子RsFPF1基因克隆與功能分析. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2014, 37(4): 31-38.
XU Y Y, WANG Y, LIU L W, XU L, WANG K L, ZHANG F J, NIE S S, GONG Y Q. Molecular cloning and functional analysis of flowering promoting factor 1 gene (RsFPF1) involved in bolting and flowering control in radish (Raphanus sativus L.). Journal of Nanjing Agricultural University, 2014, 37(4): 31-38. (in Chinese)
[19] WANG X Y, PANG C Y, WEI H L, YU S X. Involvement of cotton gene GhFPF1 in the regulation of shade avoidance responses in Arabidopsis thaliana. Plant Signaling & Behavior, 2015, 10(9): 631-634.
[20] WANG X Y, FAN S L, SONG M Z, PANG C Y, WEI H L, YU J W, MA Q F, YU S X. Upland cotton gene GhFPF1 confers promotion of flowering time and Shade-Avoidance Responses in Arabidopsis thaliana. PLoS ONE, 2014, 9(3): e91869.
[21] 張盼, 范術(shù)麗, 宋美珍, 龐朝友, 魏恒玲, 喻樹(shù)迅. 陸地棉開(kāi)花相關(guān)基因GhFLP1的克隆與功能驗(yàn)證. 棉花學(xué)報(bào), 2016, 28(3): 199-207.
ZHANG P, FAN S L, SONG M Z, PANG C Y, WEI H L, YU S X. Cloning and functional analysis of the flowering-related gene GhFLP1 from upland cotton (Gossypium hirsutum L.). Cotton Science, 2016, 28(3): 199-207. (in Chinese)
[22] SUKHATME J, SMITH L M. Arabidopsis Protocols, 2nd Eidtion. Springer, Berlin, 2006.
[23] CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal for Cell & Molecular Biology, 1998, 16(6): 735-743.
[24] LI J, FAN S L, SONG M Z, PANG C Y, WEI H L, LI W, MA J H, WEI J H, JING J G, YU S X. Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L.. Plant Cell Reports, 2013, 32(11): 1675-1686.
[25] PARK C, LIM C W, BAEK W, LEE S C. RING type E3 ligase CaAIR1 in pepper acts in the regulation of ABA signaling and drought stress response. Plant and Cell Physiology, 2015, 56(9): 1808-1819.
[26] KAWAGOE Y, SHIRAISHI S, KONDO H, YAMAMOTO S, AOKI Y,SUZUKI S. Cyclic lipopeptide iturin a structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochemical & Biophysical Research Communications, 2015, 460(4): 1015-1020.
[27] HORI K, MATSUBARA K, YANO M. Genetic control of flowering time in rice: Integration of mendelian genetics and genomics. Japanese Journal of Applied Physics, 1992, 31(Part 2, No. 9A): L1236-L1238.
[28] RIBONI M, TEST A R, GALBIATI M, TONELLI C, CONTI L. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. Journal of Experimental Botany, 2016, 67(22): 6309-6322.
[29] SHU K, CHEN Q, WU Y, LIU R J, ZHANG H W, WANG S F, TANG S Y, YANG W Y, XIE Q. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. Journal of Experimental Botany, 2016, 67(1): 195-205.
[30] 黃猛, 許亞良, KHAESO K, 孫雪飄, 張家明. 水楊酸誘導(dǎo)膨脹浮萍(Lemna gibba SH0204)開(kāi)花. 植物生理學(xué)報(bào), 2015(4): 559-565. HUANG M, XU Y L, KHAESO K, SUN X P, ZHANG J M. Flower-induction of Lemna gibba SH0204 by salicylic acid. Plant Physiology Journal, 2015(4): 559-565. (in Chinese)
[31] MARTíNEZ C, PONS E, PRATS G, LEON J. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 2004, 37(2): 209-217.
[32] KIM J, DOTSON B, REY C, LINDSEY J, BLEECKER A B, BINDER B M, PATTERSON S E. New clothes for the jasmonic acid receptor coi1: Delayed abscission, meristem arrest and apical dominance. PLoS ONE, 2013. 8(4): e60505.
[33] ZHAI Q, ZHANG X, WU F, FENG H, DENG L, XU L, ZHANG M, WANG Q, LI C. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. The Plant Cell, 2015, 27(10): 2814-2828.
[34] HAN Y, JIAO Y. APETALA1 establishes determinate floral meristem through regulating cytokinins homeostasis in Arabidopsis. Plant Signaling & Behavior, 2015, 10(11): e989039.
[35] HAN Y, ZHANG C, YANG H, JIAO Y. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(18): 6840-6845.
[36] SPARTZ A K, SANG H L, WENGER J P, GONZATEZ N, INZE D, PEER W A, MURPHY A S, OVERVOORDE P J, GRAY W M. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant Journal for Cell & Molecular Biology, 2012, 70(6): 978-990.
[37] BORNER R, KAMPMANN G, APEL K, MELZER S. The FPF1 gene family and flowering time control in Arabidopsis. 11th International Conference on Arabidopsis Research: June 24-28, Madison, Wisconsin, USA.
(責(zé)任編輯 李莉)
The Expression Patterns and Function Analysis of GhFLP5, a Gene Related to Flowering in Upland Cotton (Gossypium hirsutum L.)
WANG CongCong, ZHANG XiaoHong, WANG XiaoYan, ZHANG Pan, FAN ShuLi, PANG ChaoYou, MA QiFeng, WEI HengLing, WANG HanTao, SU JunJi, YU ShuXun
(Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan)
upland cotton; flowering time; GhFLP5; expression patterns; gene functions
附表1 引物序列Supplementary Table 1 Primers used in this study
續(xù)附表1
2016-12-01;接受日期:2017-03-07
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0101006)
聯(lián)系方式:王聰聰,Tel:18211623061;E-mail:wangcongc1992@163.com。通信作者喻樹(shù)迅,Tel:0372-2525363;E-mail:Ysx195311@163.com
Abstract:【Objective】To provide more information for breeding, the gene Flowering Promoting Factor1-like Protein 5 (GhFLP5), a member of the flowering promoting factor family in Gossypium hirsutum L., was cloned, and then its expression patterns were studied to characterize its functions in flowering process. 【Method】According to the sequences on NCBI , specific primers were designed by Oligo7 and GhFLP5 was cloned from cDNA of cultivar CCRI50. The protein properties were predicted via ExPASy. FPFs of other species were retrieved from NCBI. ClustalX2 was used for multiple sequence alignment and phylogenetic tree was constructed by MEGA6. The samples of different stages and different tissues of early maturity variety CCRI50 and later maturity variety Lu28 were used to study the spatial and temporal expression profiles of GhFLP5. A 1 500 bp fragment upstream the start codon was taken from the genomic database, then the cis-acting elements were analysed with PlantCARE. Based on the predictions, several phytohormones were selected to explore the responses of GhFLP5. pBI121-GhFLP5, a recombinant expression plasmid was constructed and transformed into Arabidopsis. The homozygous overexpression lines were observed and expression profiles were performed with quantitative real-time PCR (qRT-PCR). 【Result】With a 300 bp coding frame, GhFLP5 encoded a 11.4 kD protein. There were three pretty conserved domains, which reveals that GhFLP5 has a close relationship with those of Glycine max, Medicago truncatula and Polulus trichocarpa. Spatial expression patterns showed that it expressed predominantly in leaves. And GhFLP5 was transcribed at a higher level in early maturity variety CCRI50 than in later maturity variety Lu28. Temporal expression patterns showed that it hit a peak at three-true-leaf stage in CCRI50 but at four-true-leaf stage in Lu28. There were mainly two kinds of cis-acting elements in promoter region: one was light-response elements and circadian elements, and the other was stress-response elements. According to the elements' distributions and functions, salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA) were selected to treat cotton seedlings. As a result, GhFLP5 was activated by SA and ABA, while it was suppressed by JA. The overexpression plants bolted about 9 days and flowered about 7 days earlier than the wild type. Meanwhile, the rosette leaves decreased, and all the differences were extremely significant. Quantitative analysis showed that the genes promoting flowering such as LEAFY (AtLFY), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (AtSOC1), FLOWERING LOCUS T (AtFT), APETALA1 (AtAP1) and FRUITFULL (AtFUL) were up-regulated in 35S::GhFLP5 lines, while the gene AtFLC, delaying flowering, was down-regulated. Moreover, the auxin-responsive genes SMALL AUXIN UPREGULATED 20 (AtSAUR20) and SMALL AUXIN UPREGULATED 22 (AtSAUR22) were induced in transgenic Arabidopsis lines. GIBBERELLIN 20-OXIDASE 1 (GA20OX1), a gene involved in gibberellin (GA) biosynthesis, was also up-regulated more than two folds. 【Conclusion】The Arabidopsis thaliana lines over-expressing GhFLP5 performed an obvious early-flowering phenotype. Moreover, the gene expression profiles indicated that GhFLP5 may play dual roles in the transition to flowering via both GA and IAA signaling pathways.