寧良民,廖圣云,崔紅格,仝新利
(天津理工大學(xué) 化學(xué)化工學(xué)院 天津市有機(jī)太陽(yáng)能電池與光化學(xué)轉(zhuǎn)換重點(diǎn)實(shí)驗(yàn)室,天津 300384)
進(jìn)展與述評(píng)
生物質(zhì)平臺(tái)化合物糠醛的催化轉(zhuǎn)化
寧良民,廖圣云,崔紅格,仝新利
(天津理工大學(xué) 化學(xué)化工學(xué)院 天津市有機(jī)太陽(yáng)能電池與光化學(xué)轉(zhuǎn)換重點(diǎn)實(shí)驗(yàn)室,天津 300384)
以生物質(zhì)平臺(tái)化合物糠醛為原料合成液體燃料和高附加值精細(xì)化學(xué)品是當(dāng)前能源化工領(lǐng)域的研究熱點(diǎn)之一。綜述了近年來(lái)糠醛催化轉(zhuǎn)化的主要反應(yīng)途徑,包括糠醛的選擇性氧化得到馬來(lái)酸、馬來(lái)酸酐、2(5H)-呋喃酮、琥珀酸、糠酸,氧化酯化為糠酸甲酯,催化加氫為糠醇、2-甲基呋喃、四氫糠醇、環(huán)戊酮、γ-戊內(nèi)酯,羥醛縮合為糠叉丙酮及氧化縮合為2-呋喃基丙烯醛和2-甲基-3-(2-呋喃基)丙烯醛的催化過(guò)程;詳細(xì)討論了各種轉(zhuǎn)化過(guò)程所用的催化劑、反應(yīng)特征及產(chǎn)物收率;并對(duì)未來(lái)糠醛催化轉(zhuǎn)化的研究方向和發(fā)展前景進(jìn)行了展望。
糠醛;催化;生物質(zhì);加氫還原選擇氧化;羥醛縮合
糠醛作為一種常見(jiàn)的生物質(zhì)基平臺(tái)化合物,可由半纖維素或戊聚糖,在酸的作用下水解生成木糖,進(jìn)而由木糖經(jīng)環(huán)化脫水制備而成。該生產(chǎn)過(guò)程簡(jiǎn)單、易行,目前已基本實(shí)現(xiàn)工業(yè)化,主要原料為玉米芯等農(nóng)副產(chǎn)品。通常狀態(tài)下,糠醛為無(wú)色、有苦杏仁味、難揮發(fā)性的透明狀液體,沸點(diǎn)為161.7 ℃,能溶于丙酮、甲苯、三氯甲烷等有機(jī)溶劑,與水可形成部分互溶體系??啡┑姆肿邮胶羞秽h(huán)和醛基,呋喃環(huán)中含有雙鍵,且是共軛體系,位于α位的氫原子受氧原子的影響而變得更活潑,這樣的結(jié)構(gòu)特點(diǎn)決定其具有很強(qiáng)的后續(xù)反應(yīng)性,所以糠醛可衍生出很多精細(xì)化學(xué)品。
本文綜述了目前糠醛的催化轉(zhuǎn)化過(guò)程,主要對(duì)選擇性氧化過(guò)程、氧化酯化過(guò)程、催化加氫過(guò)程、羥醛縮合過(guò)程和氧化縮合過(guò)程進(jìn)行了歸納和總結(jié)。
1.1 糠醛氧化制備有機(jī)酸或有機(jī)酸酐
糠醛經(jīng)催化氧化可轉(zhuǎn)化為馬來(lái)酸、反丁烯二酸、丁二酸、2(5H)-呋喃酮和糠酸等多種精細(xì)化學(xué)品,見(jiàn)圖1。
圖1 糠醛氧化成酸酐及酸的過(guò)程Fig.1 Processes for the oxidation of furfural to acid or acid anhydride.
選擇性氧化糠醛為二酸,尤其是氧化為馬來(lái)酸和馬來(lái)酸酐是目前的主要研究方向。Alonso-Fagúndez等[1]以過(guò)氧化氫為氧化劑、鈦硅分子篩(TS-1)為載體,選擇性氧化糠醛為馬來(lái)酸,其產(chǎn)率可達(dá)78%;為了減少H2O2的使用量,采用TS-1和Amberlyst-70兩步連續(xù)催化糠醛的氧化,在50 ℃反應(yīng)28 h后,馬來(lái)酸產(chǎn)率接近80%,延長(zhǎng)反應(yīng)時(shí)間至52 h后產(chǎn)率可達(dá)92%。且催化劑重復(fù)使用6次后仍沒(méi)有明顯失活跡象。Song等[2]將雜多酸液相催化體系應(yīng)用于糠醛到馬來(lái)酸的轉(zhuǎn)化過(guò)程,取得了較好的成果,以磷鉬酸(H3PMo12O40)和Cu(NO3)2為催化劑,在水溶液中可使馬來(lái)酸的收率達(dá)到50%。為進(jìn)一步提高馬來(lái)酸的收率,他們還使用雙相反應(yīng)體系,使馬來(lái)酸的收率提高到68%[3]。
與馬來(lái)酸相比,馬來(lái)酸酐的市場(chǎng)利用價(jià)值更高。Murthy等[4]以V2O5為催化劑在氣相條件下氧化糠醛成馬來(lái)酸酐,并提出了相應(yīng)的氧化機(jī)理和速率方程。Alonso-Fagúndez等[5]發(fā)現(xiàn)在320 ℃下,以VOx/Al2O3為固體催化劑、以氧氣為氧源,選擇性氣相氧化糠醛為馬來(lái)酸酐,最高收率可達(dá)73%。進(jìn)一步研究證實(shí)糠醛氧化的具體過(guò)程是:糠醛先被氧化為呋喃或二氫呋喃-2-酮,最后轉(zhuǎn)化成馬來(lái)酸酐。負(fù)載的釩氧化物的具體結(jié)構(gòu)和反應(yīng)條件(如溫度和壓力)均影響糠醛氧化反應(yīng)的產(chǎn)率及選擇性,就催化劑對(duì)反應(yīng)速率的影響來(lái)說(shuō),氧化鋁支持的多釩酸鹽在本質(zhì)上比單釩酸鹽(VO4)和V2O5晶體更加活躍。Lan等[6]用有機(jī)液相反應(yīng)體系代替水溶液、H5PV2Mo10O40和Cu(CF3SO3)2為催化劑,使馬來(lái)酸酐得到了較好的收率(54.0%)。最近,Li等[7]以Mo-V雙金屬氧化物(Mo4VO14)為催化劑,在醋酸介質(zhì)中,用氧氣氧化糠醛制馬來(lái)酸酐,可使馬來(lái)酸酐的產(chǎn)率高達(dá)65%。Wang等[8]制備負(fù)載型V2O5-MoO3-P2O5/γ-Al2O3催化劑,糠醛轉(zhuǎn)化率可達(dá)82%,順酐的收率為50%。
2(5H)-呋喃酮也是糠醛選擇性氧化產(chǎn)物之一。Badovskaya等[9]在Mo(Ⅵ)或Cr(Ⅵ)存在下,糠醛氧化成2(5H)-呋喃酮的產(chǎn)率為25%。Poskonin[10]以四水合醋酸鎳為催化劑、過(guò)氧化氫為氧化劑,反應(yīng)時(shí)間延長(zhǎng)至80 h,可使2(5H)-呋喃酮的產(chǎn)率達(dá)到60%。Gassama等[11]以過(guò)氧化氫為氧化劑、甲酸為催化劑,氧化糠醛為2(5H)-呋喃酮,再將2(5H)-呋喃酮轉(zhuǎn)化成脂肪胺并進(jìn)一步合成表面活性劑。Li等[12]在溫和的條件下,用水/二氯甲烷或水/乙酸乙酯雙相體系、以甲酸為催化劑,可使2(5H)-呋喃酮選擇性提高到60%~62%。盡管人們對(duì)選擇性氧化糠醛至2(5H)-呋喃酮的轉(zhuǎn)化研究已有幾十年,但仍存在產(chǎn)率低、使用的溶劑含氯等弊端。
琥珀酸及富馬酸也是糠醛選擇性氧化產(chǎn)物之一。早期曾使用Na2MoO4,Pd(NO3)2,H2SO4,Hg(NO3)2等來(lái)催化糠醛到琥珀酸的轉(zhuǎn)化[13-14]。后來(lái),Choudhary等[15]為糠醛氧化成琥珀酸開(kāi)發(fā)了一條綠色環(huán)保的途徑,即以一種可重復(fù)使用的固體酸(Amberlyst-15)為催化劑、以過(guò)氧化氫為氧化劑在水相中氧化糠醛,當(dāng)反應(yīng)溫度為80 ℃時(shí),產(chǎn)率可達(dá)74%。
由糠醛轉(zhuǎn)化成糠酸也是糠醛選擇性催化氧化的一種重要途徑。早在1926年,Sessions[16]就證實(shí)在氣相條件下,以V2O5為催化劑可將糠醛氧化成糠酸。隨后,Verdeguer等[17]曾系統(tǒng)研究過(guò)在堿性水溶液中用鉛-鈀催化體系催化糠醛到糠酸的轉(zhuǎn)化,通過(guò)優(yōu)化反應(yīng)條件可使糠醛的轉(zhuǎn)化率和糠酸的選擇性達(dá)到90%以上。近年來(lái),人們又開(kāi)發(fā)了一系列策略實(shí)現(xiàn)糠醛到糠酸的轉(zhuǎn)化,如2013年Krystof等[18]利用生物酶作催化劑,在V(EtOAc)∶V(tBuOH)=1∶1介質(zhì)中,以30%(w)的過(guò)氧化氫水溶液為氧化劑,可使糠醛的轉(zhuǎn)化率達(dá)到40%,糠酸的選擇性達(dá)到91%。
1.2 糠醛經(jīng)氧化酯化制備烷基糠酸酯
糠醛的氧化酯化是在糠醛-醇-氧化劑體系中將糠醛轉(zhuǎn)化為烷基糠酸酯的過(guò)程。已報(bào)道的文獻(xiàn)主要集中在“糠醛-甲醇-O2”體系,大多采用負(fù)載Au催化劑。Taaring等[19]研究發(fā)現(xiàn),采用Au/TiO2為催化劑,NaOCH3為助劑時(shí),在22 ℃和0.1 MPa氧氣壓力下,反應(yīng)5 h后,糠醛轉(zhuǎn)化率達(dá)90%,糠酸甲酯的選擇性為89%。Pinna等[20-21]采用硫酸處理后的載體,不需要添加助劑NaOCH3,Au粒子就可催化糠醛的氧化酯化過(guò)程,并詳細(xì)研究了Au粒子尺寸對(duì)糠醛氧化酯化的影響,結(jié)果發(fā)現(xiàn),以氧化鋯為載體時(shí),小于4 nm的Au粒子具有較高的催化活性。Menegazzo等[22]詳細(xì)研究了載體對(duì)納米Au催化糠醛氧化酯化的影響,發(fā)現(xiàn)催化劑的活性順序?yàn)锳u/ZrO2>Au/CeO2≥Au/TiO2;其中,使用Au/SO42--ZrO2為催化劑時(shí),在120 ℃和0.6 MPa氧氣壓力下,反應(yīng)1.5 h后,糠醛轉(zhuǎn)化率為90.7%,糠酸甲酯的選擇性達(dá)98.5%左右。Manzoli等[23]研究了制備條件對(duì)Au/CeO2催化活性的影響,結(jié)果發(fā)現(xiàn),當(dāng)焙燒溫度為500 ℃時(shí)催化劑的活性較高,在120 ℃和0.6 MPa氧氣壓力下,反應(yīng)1.5 h后,糠醛轉(zhuǎn)化率為74%,糠酸甲酯的選擇性高達(dá)100%。
近年來(lái),一些新型的催化劑也被應(yīng)用于糠醛的氧化酯化過(guò)程。Deng等[24]以CoxOy-N@C為催化劑、分子氧為氧源獲得較高產(chǎn)率的糠酸甲酯。Radhakrishnan等[25]用羥基磷灰石為載體制備了一系列單金屬(Au/HAP-T,Pd/HAP-T,Ag/HAP-T)和雙金屬催化劑(Au1-xPdx/HAP-T和Au1-xAgx/ HAP-T),并對(duì)糠醛的氧化酯化性能進(jìn)行測(cè)試,表征結(jié)果顯示,在糠醛-甲醇-過(guò)氧化氫叔丁醇體系中,雙金屬催化劑可使糠醛的轉(zhuǎn)化率達(dá)到94.2%,目標(biāo)產(chǎn)物糠酸甲酯的選擇性可達(dá)99%以上。
本課題組研究了“糠醛-醇-O2”體系中醇的鏈長(zhǎng)對(duì)反應(yīng)過(guò)程的影響[26],實(shí)驗(yàn)結(jié)果表明,以Au/FH(FH為摻雜鐵的羥基磷灰石)為催化劑,K2CO3為助劑,在“糠醛-甲醇-O2”體系中,主要發(fā)生氧化酯化反應(yīng),在最優(yōu)的條件下,糠醛轉(zhuǎn)化率和糠酸甲酯的選擇性分別為93%和99%。
呋喃環(huán)及醛基的存在使得糠醛的氫化產(chǎn)物多樣化??啡┙?jīng)催化加氫可得到糠醇、四氫糠醇、2-甲基呋喃、甲基四氫呋喃、環(huán)戊酮和γ-戊內(nèi)酯等產(chǎn)物。圖2為糠醛的主要?dú)浠€原過(guò)程。
圖2 糠醛的主要?dú)浠€原過(guò)程Fig.2 Major processes for the hydrogenation reduction of furfural.
糠醛還原成糠醇具有一定的挑戰(zhàn)性,因?yàn)檫x擇性還原糠醛為糠醇的過(guò)程中,往往會(huì)伴隨四氫呋喃和聚合產(chǎn)物的生成,但近年來(lái)通過(guò)開(kāi)發(fā)新的催化體系,使得這一過(guò)程的轉(zhuǎn)化率及選擇性都達(dá)到了較為理想的水平。Liu等[27]在1998年使用改良的鎳做催化劑,糠醛的轉(zhuǎn)化率為25%,糠醇的選擇性為75%,加入Cu3/2PMo12O40后可使糠醛的轉(zhuǎn)化率達(dá)到98.1%,糠醇的選擇性達(dá)到98.5%;Wei等[28]使用MoNiB/γ-Al2O3(鎳鉬比為7)做催化劑,可使糠醇的收率達(dá)到91%;Xu等[29]使用Cu11.2Ni4.7/ MgAlO做催化劑使糠醛的轉(zhuǎn)化率達(dá)93%,糠醇的選擇性達(dá)89%;Tamura等[30]使用Ir-ReOx/SiO2作催化劑,糠醛的轉(zhuǎn)化率和糠醇的選擇性均達(dá)到99%;Perez等[31]在2014年使用2種催化劑可通過(guò)“一鍋法”把木糖轉(zhuǎn)化成糠醇,即首先使用硫酸化的二氧化鋯把木糖轉(zhuǎn)化成糠醛,然后使用鉑負(fù)載二氧化硅通過(guò)加氫反應(yīng)把糠醛還原成糠醇。最近幾年來(lái),人們開(kāi)始將一些新型的催化材料應(yīng)用到糠醛的還原轉(zhuǎn)化過(guò)程,使糠醛的轉(zhuǎn)化率、糠醇的選擇性及催化過(guò)程的可持續(xù)性得到了較大地改善。Audemar等[32]篩選出了一系列的鋯基金屬-有機(jī)框架載體(UiO-66,UiO-67,Zr6-NDC,MIL-140A,MIL-140B,MIL-140C等),進(jìn)一步負(fù)載金屬釕制備了新型的MOFs負(fù)載催化劑。并采用TEM,TPR,XPS等方法表征了釕催化劑的粒徑以及氧化態(tài),表征結(jié)果顯示,雖然納米釕顆粒暴露在空氣中易被氧化,但仍具有很高的催化活性,糠醇的收率可達(dá)94.9%以上,且催化劑經(jīng)過(guò)5次循環(huán)再生后仍具有很好的穩(wěn)定性。Taylor等[33]將非貴金屬Co限制性負(fù)載到介孔SBA-15中,可高效、高選擇性地催化糠醛到糠醇的轉(zhuǎn)化,糠醛的轉(zhuǎn)化率和糠醇的選擇性分別可達(dá)96%和95%。在液相反應(yīng)條件下,Villaverde等[34]用SiO2,ZnO,γ-Al2O3,CeO2負(fù)載金屬Pt,可使糠醛氫化條件更溫和,糠醇的選擇性提高到99%以上;Fulajitárova等[35]用新型的混金屬催化劑Cu-Mg-Al,使糠醛100%地轉(zhuǎn)化為糠醇;Paul等[36]采用Mg(OH)2和MgO負(fù)載雙金屬Pd-Cu,在110 ℃和0.6 MPa的氫氣氛圍下,可使糠醛完全轉(zhuǎn)化,糠醇的選擇性可達(dá)98%。
2-甲基呋喃作為糠醛氫化還原的又一重要產(chǎn)物可以作為燃料添加劑[37],在能量密度、含氧量、疏水性等方面表現(xiàn)出優(yōu)良的性能。由糠醛制2-甲基呋喃目前已實(shí)現(xiàn)工業(yè)生產(chǎn),但是制備中采用的催化劑基本都含有金屬鉻,而鉻化合物的毒性很大,催化劑的無(wú)鉻化將是未來(lái)的重要發(fā)展方向。近年來(lái),采用無(wú)鉻催化劑制備2-甲基呋喃也取得了較好的效果。Srivastava等[38]使用γ-Al2O3負(fù)載雙金屬Cu-Co催化劑,在220 ℃和4 MPa氫壓下可使糠醛的轉(zhuǎn)化率達(dá)到98%,糠醇的選擇性達(dá)到78%。國(guó)內(nèi),Dong等[39]用金屬氧化物負(fù)載Cu也可使糠醛轉(zhuǎn)化完全,其中2-甲基呋喃的產(chǎn)率可達(dá)89.5%。Panagiotopoulou等[40]以Ru/RuO2/C為催化劑,使糠醛在醇溶劑中發(fā)生氫轉(zhuǎn)移生成甲基呋喃,發(fā)現(xiàn)仲醇更有利于氫轉(zhuǎn)移的發(fā)生,在180 ℃下反應(yīng)10 h,發(fā)現(xiàn)使用不同的醇溶劑可使甲基呋喃的收率從0升至6%,其遞增順序?yàn)?-甲基-2-醇<叔丁醇<乙醇<正丙醇<正丁醇<異丙醇<仲丁醇<2-戊醇,說(shuō)明隨著醇脫氫能力的增加和極性的減弱,甲基呋喃的收率逐漸升高。該工作不僅使低價(jià)的醇得到了很好的利用且從根本上避免了使用高壓氫氣。在2010年,Stevens等[41]設(shè)計(jì)了一個(gè)實(shí)時(shí)轉(zhuǎn)換系統(tǒng),能隨時(shí)改變糠醛加氫的產(chǎn)物,即在超臨界CO2氛圍中,先在240 ℃下以Cu-Cr為催化劑催化糠醛加氫得到2-甲基呋喃,再在300 ℃下以Pd/C為催化劑制取2-甲基四氫呋喃,收率可達(dá)82%(相對(duì)較高)。
糠醛經(jīng)氫化后還可得到四氫呋喃和四氫糠醇等化工產(chǎn)品。Merat等[42]聯(lián)合使用Pd-,Ru-,Rh-,Ni負(fù)載催化劑和Cu負(fù)載催化劑使糠醛完全轉(zhuǎn)化,其中四氫糠醇的選擇性接近100%;Nakagawa等[43]用介孔SiO2負(fù)載雙金屬Pd-Ir在水溶液里可使四氫糠醇的選擇性達(dá)94%。
此外,環(huán)戊酮也是糠醛氫化還原的重要產(chǎn)物,是一種重要的化工中間體,可作為醫(yī)藥、農(nóng)藥及橡膠的合成原料。Yang等[44]用NiCu/SBA-15催化還原糠醛并探究了轉(zhuǎn)化過(guò)程的具體反應(yīng)機(jī)理。Guo等[45]用Cu-Zn-Al催化劑可使環(huán)戊酮的產(chǎn)率達(dá)到62%。 Milan等[46]用1%(w)催化量的5%Pd-10%Cu/C催化劑催化糠醛到環(huán)戊酮的轉(zhuǎn)化,反應(yīng)1 h后,糠醛轉(zhuǎn)化率可達(dá)98%,環(huán)戊酮的選擇性為92.1%。
近幾年來(lái)也有一些文獻(xiàn)報(bào)道糠醛到γ-戊內(nèi)酯的轉(zhuǎn)化。Linh等[47]聯(lián)合使用固體酸催化劑一步有效地催化糠醛的氫化和開(kāi)環(huán),其中,γ-戊內(nèi)酯的產(chǎn)率可達(dá)80%。Zhu等[48]聯(lián)合使用Au/ZrO2和ZSM-5催化劑,其中Au/ZrO2催化劑界面作用力大、納米Au粒子高度分散、催化劑ZSM-5上具有中等強(qiáng)度的酸性位點(diǎn)和穿插結(jié)構(gòu),這些結(jié)構(gòu)特點(diǎn)增強(qiáng)了糠醛轉(zhuǎn)化成γ-戊內(nèi)酯的活性,γ-戊內(nèi)酯的產(chǎn)率可達(dá)80.4%。
糠醛羥醛縮合是指具有α-H的酮,在堿催化下生成碳負(fù)離子,然后碳負(fù)離子作為親核試劑對(duì)糠醛進(jìn)行親核加成,生成β-羥基醛,β-羥基醛受熱脫水生成α-β不飽和酮。
目前研究較多的是以糠醛和丙酮為原料的羥醛縮合過(guò)程,所使用的催化劑主要是固體堿。Sádaba等[49]考察了MgO-ZrO2作催化劑時(shí)糠醛和丙酮的縮合反應(yīng)情況,實(shí)驗(yàn)結(jié)果表明,在60 ℃下反應(yīng)3 h,糠醛的轉(zhuǎn)化率可達(dá)65%,縮合產(chǎn)物4-(呋喃基)-3-丁烯-2-酮(糠叉丙酮)的選擇性為40%;Faba等[50]進(jìn)一步研究發(fā)現(xiàn),若將MgO-ZrO2負(fù)載到介孔碳材料上可大大提高其催化性能,當(dāng)采用大比表面的石墨為載體時(shí),糠醛的轉(zhuǎn)化率可達(dá)96.5%,縮合產(chǎn)物的選擇性為87.8%;隨后,他們又用醇凝膠法制備了立方體型c-MgxZr1-xO2-x固溶體和聚集態(tài)立方體型c-MgO組成雙相固體催化劑,使糠醛與丙酮縮合的催化效果顯著提高[51]。Shen等[52]研究了固體堿MgO-ZrO2,NaY,Nit-NaY的催化效果,實(shí)驗(yàn)結(jié)果表明,單縮合產(chǎn)物的選擇性更高,這可歸因于FAU結(jié)構(gòu)中具有較小的籠。
Hora等[53-54]考察了Mg-Al水滑石和MgO-Al2O3催化劑對(duì)Aldol縮合反應(yīng)的促進(jìn)效果,實(shí)驗(yàn)結(jié)果表明,使用焙燒的Mg-Al水滑石(鎂鋁摩爾比為3)催化糠醛和丙酮的縮合時(shí),在100 ℃下糠醛的轉(zhuǎn)化率達(dá)95%以上,且縮合產(chǎn)物的選擇性大于90%;Kikhtyanin等[55-56]研究了分子篩和MOFs催化糠醛與丙酮的縮合反應(yīng),發(fā)現(xiàn)使用HBEA分子篩作催化劑時(shí),在100 ℃下,糠醛的轉(zhuǎn)化率和糠叉丙酮的選擇性分別為38.5%和79.5%;當(dāng)使用Fe-BTC作催化劑時(shí),糠醛的轉(zhuǎn)化率和糠叉丙酮的選擇性分別為26.2%和71%;West等[57]利用雙相催化體系催化糠醛與丙酮的縮合,通過(guò)調(diào)整試劑的比例和反應(yīng)條件可獲得理想的單縮合產(chǎn)物和雙縮合產(chǎn)物。Olcay等[58]在四氫呋喃溶劑中用NaOH催化糠醛與丙酮縮合生成C13鏈的同時(shí),還產(chǎn)生了一些低聚物。O’Neilla等[59]用活化的白云石催化了糠醛與丙酮交叉縮合,與傳統(tǒng)的NaOH催化劑相比,活化的白云石對(duì)C13雙縮合產(chǎn)物具有較高的選擇性。
另外,中國(guó)科學(xué)院廣州能源所王鐵軍課題組研究發(fā)現(xiàn),以MgO/NaY為催化劑也可有效地催化糠醛和丙酮的縮合反應(yīng),在85 ℃下反應(yīng)8 h后,糠醛的轉(zhuǎn)化率高達(dá)99.6%,產(chǎn)物糠叉丙酮的選擇性為42.2%[60];任洪清等[61]將胺基接枝到SBA-15上制得固體堿催化劑并應(yīng)用于糠醛和丙酮的縮合反應(yīng)中,實(shí)驗(yàn)結(jié)果表明,接枝伯胺基時(shí)效果最好,在適宜的反應(yīng)條件下,糠醛的轉(zhuǎn)化率可達(dá)82.6%,產(chǎn)物糠叉丙酮的選擇性為41.4%。
近年來(lái),本課題組發(fā)現(xiàn),糠醛和氧氣在正丙醇中進(jìn)行反應(yīng)時(shí),主要發(fā)生氧化-縮合反應(yīng),主產(chǎn)物為2-甲基-3-(2-呋喃基)丙烯醛,在合適的條件下,糠醛轉(zhuǎn)化率和2-甲基-3-(2-呋喃基)丙烯醛的選擇性分別為94%和97%[26];另外,以金屬氧化物負(fù)載的納米Au為催化劑,研究了糠醛和乙醇的氧化-縮合反應(yīng),實(shí)驗(yàn)結(jié)果表明,以Au/Al2O3為催化劑、K2CO3為助劑時(shí)反應(yīng)效果最佳;在140 ℃和0.3 MPa壓力下,反應(yīng)4 h后,糠醛轉(zhuǎn)化率達(dá)94%,產(chǎn)物2-呋喃丙烯醛的選擇性為75%[62]。
此外,本課題組還設(shè)計(jì)開(kāi)發(fā)了金屬鉑催化糠醛氧化縮合的反應(yīng),實(shí)驗(yàn)結(jié)果表明,以O(shè)2為氧源,以Pt/FH為催化劑、K2CO3為助劑,在140 ℃下反應(yīng)4 h,在乙醇中,糠醛的轉(zhuǎn)化率為93.9%,2-呋喃丙烯醛的選擇性為67.9%;在正丙醇中,糠醛的轉(zhuǎn)化率為90.1%,2-甲基-3-(2-呋喃基)丙烯醛的選擇性為90%[63]。
目前已經(jīng)在糠醛的羥醛縮合、氧化酯化、氧化縮合、加氫還原和氧化成酸等轉(zhuǎn)化過(guò)程的研究方面取得了顯著的進(jìn)展,但還存在一些問(wèn)題有待于進(jìn)一步發(fā)展??啡┑拇呋D(zhuǎn)化途徑正趨于向多樣化發(fā)展,開(kāi)發(fā)新反應(yīng)以促進(jìn)糠醛平臺(tái)物質(zhì)的轉(zhuǎn)化對(duì)于生產(chǎn)精細(xì)化學(xué)品解決能源危機(jī)和環(huán)境問(wèn)題具有重要意義。研究和開(kāi)發(fā)高活性、多功能的催化新體系是實(shí)現(xiàn)高收率、高選擇性的關(guān)鍵。目前使用的催化劑仍以貴金屬為主,價(jià)格高、環(huán)境污染嚴(yán)重。以糠醛為原料生產(chǎn)2-甲基呋喃、2-甲基四氫呋喃等化工產(chǎn)品雖然已實(shí)現(xiàn)了工業(yè)化,但在清潔反應(yīng)工藝的開(kāi)發(fā)、綠色低能耗分離純化體系的建立和連續(xù)反應(yīng)儀器的開(kāi)發(fā)等方面有待進(jìn)一步發(fā)展。
[1] Alonso-Fagúndez N,Agirrezabal-Telleria I,Arias P,et al. Aqueous-phase catalytic oxidation of furfural with H2O2:High yield of maleic acid by using titanium silicalite-1[J]. RSC Adv,2014,4(98):54960-54972.
[2] Song Shi,Guo Huajun,Yin Guochuan. Synthesis of maleic acid from renewable resources:Catalytic oxidation of furfural in liquid media with dioxygen[J]. Chem Commun,2011,12(8):731-733.
[3] Guo Huajun,Yin Guochuan. Catalytic aerobic oxidation of renewable furfural with phosphomolybdic acid catalyst:An alternative route to maleic acid[J]. J Phys Chem C,2011,115(35):17516-17522.
[4] Murthy M S,Rajamani K. Kinetics of vapour phase oxidation of furfural on vanadium catalyst[J]. Chem Eng Sci,1974,29(2):601-609.
[5] Alonso-Fagúndez N,Granados M L,Mariscal R,et al. Selective conversion of furfural to maleic anhydride and furan with VOx/Al2O3catalysts[J]. ChemSusChem,2012,5(10):1984-1990.
[6] Lan Jihong,Chen Zhuqi,Lin Jinchi,et al. Catalytic aerobic oxidation of renewable furfural to maleic anhydride and furanone derivatives with their mechanistic studies[J]. Green Chem,2014,16(10):4351-4358.
[7] Li Xiukai,Ho Ben,Zhang Yugen. Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo-V-O catalysts[J]. Green Chem,2016,18(10):2976-2980.
[8] Wang Shaomang,Leng Yixin,Lin Furong. Catalytic oxidation of furfural in vapor-gas phase for producing maleic anhydride[J]. Chem Ind Eng Pro,2009,28(6):1019-1023.
[9] Badovskaya L A,Latashko V M,Poskonin V V,et al. Catalytic oxidation of furan and hydrofuran compounds:Ⅶ. Production of 2(5H)-furanone by oxidation of furfural with hydrogen peroxide and some of its transformations in aqueous solutions[J]. Chem Heterocycl Compd,2002,38(9):1040-1048.
[10] Poskonin V V. Catalytic oxidation reactions of furan and hydrofuran compounds:Ⅸ. Characteristics and synthetic possibilities of the reaction of furan with aqueous hydrogen peroxide in the presence of compounds of niobium (Ⅱ) and (Ⅴ)[J].Chem Heterocycl Compd,2009,45(10):1177-1183.
[11] Gassama A,Ernenweinb C,Hoffmann N. Synthesis of surfactants from furfural derived 2[5H]-furanone and fatty amines[J].Green Chem,2010,12(5):859-865.
[12] Li Xiaodan,Lan Xiaocheng,Wang Tiefeng. Selective oxidation of furfural in a bi-phasic system with homogeneous acid catalyst[J].Catal Today,2016,276:97-104.
[13] Grunskaya E P,Badovskaya L A,Poskonin V V,et al. Cheminform abstract:Reactions of catalytic oxidation of furan and hydrofuran compounds:Ⅳ. Oxidation of furfural with hydrogen peroxide in the presence of sodium molybdate[J].Chem Heterocycl Compd,1999,30(2):775-780.
[14] Taniyama M. Identif i cation of furan derivatives and aliphatic dibasic acids by paper chromatography[J].J Soc Chem Ind Jpn,1954,57(2):149-152.
[15] Choudhary H,Nishimura S,Ebitani K. Highly efficient aqueous oxidation of furfural to succinic acid using reusable heterogeneous acid catalyst with hydrogen peroxide[J].Chem Lett,2012,23(4):409-411.
[16] Sessions W V. Catalytic oxidation of furfural in the vapor phase[J].J Am Chem Soc,1928,50:1696-1698.
[17] Verdeguer P,Merat N,Rigal L,et al. Optimization of experimental conditions for the catalytic oxidation of furfural to furoic acid[J].J Chem Technol Biotechnol,1994,61(2):97-102.
[18] Krystof M,Pérez-Sánchez M. Lipase-Mediated selective oxidation of furfural and 5-hydroxymethylfurfural[J].ChemSus-Chem,2013,6(5):826-830.
[19] Taaring E,Nielsen I S,Egeblad K,et al. Chemicals from renewables:Aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts[J].ChemSusChem,2008,1(1/2):75-78.
[20] Pinna F,Olivo A,Trevisan V,et al. The effects of gold nanosize for the exploitation of furfural by selective oxidation[J].Catal Today,2013,203(5):196-201.
[21] Signoretto M,Menegazzo F,Contessotto L,et al. Au/ZrO2:An eff i cient and reusable catalyst for the oxidative esterif i cation of renewable furfural[J].Appl Catal,B,2013,129(2):287-293.
[22] Menegazzo F,Signoretto M,Pinna F,et al. Oxidative esterifi cation of renewable furfural on gold-based catalysts:Which is the best support[J].J Catal,2014,309(6):241-247.
[23] Manzoli M,Menegazzo F,Signoretto M,et al. Effects of synthetic parameters on the catalytic performance of Au/CeO2for furfural oxidative esteri fi cation[J].J Catal,2015,330:465-473.
[24] Deng Jin,Song Haijie,Cui Minshu,et al. Aerobic oxidation of hydroxymethylfurfural and furfural by using heterogeneous CoxOy-N@C catalysts[J].Chemsuschem,2014,7(12):3334-3340.
[25] Radhakrishnan R,Kannan K,Kumaravela S,et al. Oxidative esterification of furfural over Au-Pd/HAP-T and Au-Ag/ HAP-T bimetallic catalysts supported on mesoporous hydroxyapatite nanorods[J].RSC Adv,2016,6 (51):45907-45922.
[26] Tong Xinli,Liu Zonghui,Yu Linhao,et al. A tunable process:Catalytic transformation of renewable furfural with aliphatic alcohols in the presence of molecular oxygen[J].Chem Commun,2015,51(17):3674-3677.
[27] Liu Baijun,Lu Lianhai,Wang Bingchun,et al. Liquid phase selective hydrogenation of furfural on raney nickel modif i ed by impregnation of salts of heteropolyacids[J].Appl Catal,A,1998,171(1):117-122.
[28] Wei Shuqin,Cui Hongyou,Wang Jinghua,et al. Preparation and activity evaluation of NiMoB/γ-Al2O3catalyst by liquidphase furfural hydrogenation[J].Particuology,2011,9(1):69-74.
[29] Xu Chenghua,Zheng Liangke,Liu Jianying,et al. Furfural hydrogenation on nickel-promoted Cu-containing catalysts prepared from hydrotalcite-like precursors[J].Chin J Chem,2011,29(4):691-697.
[30] Tamura M,Tokonami K,Nakagawa Y,et al. Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation[J].Chem Commun,2013,49(63):7034-7036.
[31] Perez R F,F(xiàn)raga M A. Hemicellulose-derived chemicals:One-step production of furfuryl alcohol from xylose[J].Green Chem,2014,16(8):3942-3950.
[32] Audemar M,Ciotonea C,Vigier K D O,et al. Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable Cobalt/SBA-15 catalyst[J].ChemSusChem,2015,8(11):1885-1891.
[33] Taylor M J,Durndell L J,Isaacs M A,et al. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions[J].Appl Catal,B,2016,180:580-585.
[34] Villaverde M M,Garetto T F,Marchi A J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts[J].Catal Commun,2015,58:6-10.
[35] Fulajitárova K,Soták T,Hroneca M,et al. Aqueous phase hydrogenation of furfural to furfuryl alcohol over Pd-Cu catalysts[J].Appl Catal,A,2015,502:78-85.
[36] Paul L,Evert V,Jeroen V,et al. Furfural-a promising platform for lignocellulosic biofuels[J].ChemSusChem,2012,5(1):150-166.
[37] 楊國(guó)旗,冷慶海,王志. LFT-95型糠醛加氫制2-甲基呋喃催化劑的開(kāi)發(fā)和應(yīng)用[J].工業(yè)催化,2005,13 (6):44-46.
[38] Srivastava S,Jadeja G C,Parikh J. Liquid phase hydrogenation of furfural to 2-methylfuran[J].RSC Adv,2015,6(2):1649-1658.
[39] Dong Fang,Zhu Yulei,Zheng Hongyan,et al. Cr-free Cucatalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran:The synergistic effect of metal and acid sites[J].J Mol Catal A:Chem,2015,398:140-148.
[40] Panagiotopoulou P,Martin N,Vlachos D G. Effect of hy-drogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst[J].J Mol Catal A:Chem,2014,392(11):223-228.
[41] Stevens J G,Bourne R A,Twigg M V,et al. Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2[J].Angew Chem Int Ed,2010,122(47):9040-9043.
[42] Merat N,Godawa C,Gaset A. High selective production of tetrahydrofurfuryl alcohol:Catalytic hydrogenation of furfural and furfuryl alcohol[J].J Chem Technol Biotechnol,2007,48(2):145-159.
[43] Nakagawa Y,Takada K,Tamura M,et al. Total hydrogenation of furfural and 5-hydroxymethylfurfural over supported Pd-Ir alloy catalyst[J].ACS Catal,2014,4(8):2718-2726.
[44] Yang Yanliang,Du Zhongtian,Huang Yizheng,et al. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts[J].Green Chem,2013,15(7):1932-1940.
[45] Guo Jianhua,Xu Guangyue,Han Zheng,et al. Selective conversion of furfural to cyclopentanone with Cu-Zn-Al catalysts[J].ACS Sustainable Chem Eng,2014,2(10):2259-2266.
[46] Milan H M,F(xiàn)ulajtárová K,Vávra I,et al. Carbon supported Pd-Cu catalysts for highly selective rearrangement of furfural to cyclopentanone[J].Appl Catal,B,2016,181:210-219.
[47] Linh B,Helen L,William R G,et al. Domino reaction catalyzed by zeolites with br nsted and lewis acid sites for the production of γ-valerolactone from furfural[J].Angew Chem Int Ed,2013,52(31):8022-8025.
[48] Zhu Shanhui,Xue Yanfeng,Guo Jing. Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ ZrO2catalyst combined with ZSM-5[J].ACS Catal,2016,6(3):2035-2042.
[49] Sádaba I,Ojeda M,Mariscal R,et al. Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone[J]. Appl Catal,B,2011,101(3/4):638-648.
[50] Faba L,Díz E,Ordóňz S. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbon[J].Chem-SusChem,2013,6(3):463-473.
[51] Sadaba I,Ojeda M,Mariscal R,et al. Preparation and characterization of Mg-Zr mixed oxide aerogels and their application as aldol condensation catalysts[J].ChemPhysChem,2012,13(14):3282-3292.
[52] Shen Wenqin,Tompsett G A,Hammond K D,et al. Liquid phase aldol condensation reactions with MgO-ZrO2and shapeselective nitrogen-substituted NaY[J].Appl Catal,A,2011,392(1/2):57-68.
[53] Hora L,Kelbichová V,Kikhtyanin O,et al. Aldol condensation of furfural and acetone over Mg-Al layered double hydroxides and mixed oxides[J].Catal Today,2014,223(6):138-147.
[54] Hora L,Kikhtyanin O,?apekb L,et al. Comparative study of physico-chemical properties of laboratory andindustrially prepared layered double hydroxides and their behavior inaldol condensation of furfural and acetone[J].Catal Today,2015,241:221-230.
[55] Kikhtyanin O,Kelbichová V,Vitvarová D,et al. Aldol condensation of furfural and acetone on zeolites[J].Catal Today,2014,227(10):154-162.
[56] Kikhtyanin O,Kubi?kaa D,?ejka J. Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts[J].Catal Today,2015,243:158-162.
[57] West R M,Liu Z Y,Peter M,et al. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system[J].J Mol Catal A:Chem,2008,296(1/2):18-27.
[58] Olcay H,Subrahmanyam A V,Xing R,et al. Production of renewable petroleum ref i nery diesel and jet fuel feedstocks from hemicellulose sugar streams[J].Energy Environ Sci,2012,1(1):205-216.
[59] O’Neilla R E,Vanoye L,Bellefon C D,et al. Aldol-condensation of furfural by activated dolomite catalyst[J].Appl Catal,B,2014,144:46-56.
[60] 黃曉明,章青,王鐵軍,等. MgO/NaY催化糠醛和丙酮合成航空燃料中間體的性能研究[J].燃料化學(xué)學(xué)報(bào),2012,40(8):973-978.
[61] 任洪清,謝建軍,劉華財(cái),等. SBA-15接枝有機(jī)胺官能團(tuán)催化劑的制備、表征及在醇醛縮合反應(yīng)中的應(yīng)用[J].林產(chǎn)化學(xué)與工業(yè),2014,34(2):1-8.
[62] Tong Xinli,Liu Zonghui,Hu Jianli,et al. Au-catalyzed oxidative condensation of renewable furfural and ethanol to produce furan-2-acrolein in the presence of molecular oxygen[J].Appl Catal,A,2015,22(5):559-562.
[63] Liu Zonghui,Tong Xinli,Liu Jinbiao,et al. A smart catalyst system for the valorization of renewable furfural in aliphatic alcohols[J]. Catal Sci Technol,2015,6(4):1214-1221.
(編輯 楊天予)
Catalytic conversion of furfural as a biomass-derived platform compound
Ning Liangmin,Liao Shengyun,Cui Hongge,Tong Xinli
(School of Chemistry and Chemical Engineering,Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,Tianjin University of Technology,Tianjin 300384,China)
The catalytic conversion of furfural as a biomass-derived platform compound to liquid fuels and value-added fine chemicals was reviewed. The major catalytic conversion approaches,namely its selective oxidation to maleic acid,maleic anhydride,succinic acid and furoic acid,its oxidative esterification to methyl-furoate,its catalytic hydrogenation to furfuralcohol,methylfuran,tetrahydrofurfuryl alcohol,cyclopentanone and γ-valerolactone,its aldol condensation,and its oxidative condensation to furacrolein and 2-methyl-3-(2-furyl)acrolein,were summarized. The catalysts,reaction conditions and product distribution in the catalytic processes were discussed. The promising research and development for the catalytic conversion of furfural in future were predicted.
furfural;catalytic;biomass;hydrogenatic reduction selective oxidation;aldol condensation
1000-8144(2017)01-0130-07
TQ 032
A
10.3969/j.issn.1000-8144.2017.01.019
2016-06-20;[修改稿日期]2016-10-09。
寧良民(1990—),男,山東省費(fèi)縣人,碩士生,電話 022-60214259,電郵 791695627@qq.com。聯(lián)系人:廖圣云,電話022-60214259,電郵mengyunliao@sina.com。
國(guó)家自然科學(xué)基金(21601135,21336008);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201410060054)。