黨英僑 殷晶晶 陳傳佳 孫麗麗 劉 鵬 曹傳旺
(東北林業(yè)大學(xué)林學(xué)院 哈爾濱 150040)
?
轉(zhuǎn)舞毒蛾LdCYP6AN15v1基因果蠅品系對(duì)氯蟲(chóng)苯甲酰胺脅迫響應(yīng)*
黨英僑 殷晶晶 陳傳佳 孫麗麗 劉 鵬 曹傳旺
(東北林業(yè)大學(xué)林學(xué)院 哈爾濱 150040)
【目的】 舞毒蛾是林業(yè)重要害蟲(chóng),細(xì)胞色素P450是昆蟲(chóng)體內(nèi)廣泛分布的參與外源化合物代謝關(guān)鍵酶系,探討P450家族基因CYP6AN15v1對(duì)殺蟲(chóng)劑代謝解毒功能,為舞毒蛾有效治理提供依據(jù)?!痉椒ā?通過(guò)RT-PCR法獲得LdCYP6AN15v1基因cDNA全長(zhǎng),采用傳統(tǒng)酶切連接的方法構(gòu)建轉(zhuǎn)CYP6AN15v1基因果蠅載體,通過(guò)轉(zhuǎn)基因技術(shù)獲得表達(dá)LdCYP6AN15v1果蠅品系(命名為attP40>CYP6AN15v1)。采用分光光度計(jì)法研究低劑量氯蟲(chóng)苯甲酰胺(7.17 mg·L-1)處理對(duì)轉(zhuǎn)基因和非轉(zhuǎn)基因果蠅品系細(xì)胞色素P450活性的影響,并采用qRT-PCR法測(cè)定其對(duì)CYP6AN15v1基因表達(dá)的影響。【結(jié)果】 從舞毒蛾無(wú)參照轉(zhuǎn)錄本文庫(kù)中克隆獲得CYP6AN15v1全長(zhǎng)基因,編碼512個(gè)氨基酸,蛋白分子質(zhì)量為59.02 kDa; 系統(tǒng)進(jìn)化樹(shù)分析表明CYP6AN15v1與甜菜夜蛾和棉鈴蟲(chóng)關(guān)系較近。以DNA和cDNA為模板,attP40>CYP6AN15v1果蠅品系均檢測(cè)到1 539 bp目的基因,表明LdCYP6AN15v1基因成功整合到果蠅基因組。與非轉(zhuǎn)基因attP40果蠅品系相比,轉(zhuǎn)基因attP40>CYP6AN15v1果蠅品系對(duì)氯蟲(chóng)苯甲酰胺的敏感性顯著降低,致死中濃度LC50為非轉(zhuǎn)基因果蠅的2.92倍; 低劑量(7.17 mg·L-1)氯蟲(chóng)苯甲酰胺脅迫下,舞毒蛾細(xì)胞色素P450酶活性和CYP6AN15v1基因的誘導(dǎo)作用呈現(xiàn)時(shí)間效應(yīng),attP40>CYP6AN15v1果蠅品系P450活性為非轉(zhuǎn)基因果蠅的1.09~1.93倍,主要表現(xiàn)為誘導(dǎo)效應(yīng); attP40>CYP6AN15v1果蠅品系的CYP6AN15v1基因mRNA表達(dá)量呈誘導(dǎo)激活,其表達(dá)量為非轉(zhuǎn)基因的44.54~137.80倍?!窘Y(jié)論】 利用轉(zhuǎn)基因技術(shù)成功構(gòu)建了轉(zhuǎn)LdCYP6AN15v1果蠅品系attP40>CYP6AN15v1; 氯蟲(chóng)苯甲酰胺可能通過(guò)誘導(dǎo)LdCYP6AN15v1基因mRNA的上調(diào)表達(dá)而增強(qiáng)黑腹果蠅P450酶活性,從而參與對(duì)氯蟲(chóng)苯甲酰胺的解毒作用。關(guān)鍵詞: 舞毒蛾; 轉(zhuǎn)基因果蠅; 氯蟲(chóng)苯甲酰胺;CYP6AN15v1; 誘導(dǎo)表達(dá)
Responses of TransformantDrosophilaExpressingLdCYP6AN15v1 Gene to
舞毒蛾(Lymantriadispar)是分布很廣的世界性害蟲(chóng),國(guó)外報(bào)道可危害300多種植物(Leonard, 1981),國(guó)內(nèi)報(bào)道可危害500多種植物,分布于東北、華北、西北、華東、華中、華南、西南等地區(qū)(侯雅芹等, 2009; 許娜等, 2009)。目前,使用廣泛、殺蟲(chóng)效果好、作用迅速的方法是利用氯氰菊酯、高效氯氰菊酯、溴氰菊酯、氧化樂(lè)果等化學(xué)殺蟲(chóng)劑進(jìn)行防治,但這些殺蟲(chóng)劑易產(chǎn)生“3R”問(wèn)題(侯雅芹等, 2009; 倪鳴等, 2009),易對(duì)環(huán)境造成嚴(yán)重的危害。以魚(yú)尼丁受體為靶標(biāo)的雙酰胺類(lèi)殺蟲(chóng)劑的出現(xiàn),改變了傳統(tǒng)農(nóng)藥高毒性、高殘留、環(huán)境不友好的局面(劉熠等, 2009)。
雙酰胺類(lèi)殺蟲(chóng)劑與魚(yú)尼丁受體結(jié)合后,會(huì)刺激胞內(nèi)Ca2+從肌肉細(xì)胞的肌質(zhì)網(wǎng)釋放和消耗,使昆蟲(chóng)肌肉細(xì)胞的收縮功能癱瘓(Cordovaetal., 2006),而魚(yú)丁尼受體則是調(diào)節(jié)Ca2+釋放的選擇性通道。氯蟲(chóng)苯甲酰胺是美國(guó)杜邦公司2008年推出的一種新型鄰甲酰氨基苯甲酰胺類(lèi)殺蟲(chóng)劑,用于各種作物對(duì)鱗翅目(董波等, 2009; 陳偉國(guó)等, 2010)、鞘翅目(Bassietal., 2008; 2009; Koppenh?feretal., 2008; Kuharetal., 2008)、雙翅目(Teixeiraetal., 2009)、等翅目(Yeohetal., 2007; Spomeretal., 2009)、半翅目(Dhawanetal., 2009; Lahmetal., 2009)等害蟲(chóng)的防治,而對(duì)非靶標(biāo)節(jié)肢動(dòng)物具有良好的選擇性,且對(duì)哺乳動(dòng)物、鳥(niǎo)類(lèi)、魚(yú)等的毒性低,此外也有研究表明氯蟲(chóng)苯甲酰胺對(duì)一些鱗翅目的害蟲(chóng)有顯著殺卵作用(Ioriattietal., 2009; Lahmetal., 2009),在亞致死濃度處理下,會(huì)影響雌性蘋(píng)果蠹蛾(Cydiapomonella)的交配比例(Knightetal., 2007)。
細(xì)胞色素P450(cytochrome P450)是參與殺蟲(chóng)劑代謝重要解毒酶系之一,在殺蟲(chóng)劑的氧化、還原等化學(xué)反應(yīng)及殺蟲(chóng)劑抗性的形成中發(fā)揮重要作用(Zhouetal., 2010),其中昆蟲(chóng)已有超過(guò)1 000個(gè)細(xì)胞色素P450基因被確定(Nelson, 2009),主要分布在CYP4、CYP6、CYP9、CYP28、CYP321和CYP12家族(Feyereisen, 2005),常參與殺蟲(chóng)劑代謝和抗性相關(guān)的P450基因分布于CYP4、CYP6、CYP9、CYP12亞家族中(Feyereisen, 2006; Lietal., 2007)。大量研究表明, 細(xì)胞色素P450過(guò)表達(dá)是昆蟲(chóng)產(chǎn)生抗藥性的重要機(jī)制之一(Liuetal., 1998; Lietal., 2006)。Bautista等(2007)研究發(fā)現(xiàn)氯菊酯小菜蛾(Plutellaxylostella)抗性品系中CYP6BG1和CYP6BG2的轉(zhuǎn)錄水平較高。已有研究表明CYP321E1參與了小菜蛾對(duì)氯蟲(chóng)苯甲酰胺的抗性形成(Huetal., 2014)。筆者實(shí)驗(yàn)室前期研究發(fā)現(xiàn)舞毒蛾CYP6AN15v1基因在殺蟲(chóng)劑溴氰菊酯、甲萘威、氧化樂(lè)果(15 mg·L-1)脅迫下主要以下調(diào)表達(dá)為主(Sunetal., 2014); 并采用RNA干擾(RNAi)技術(shù)通過(guò)體外合成CYP6AN15v1的dsRNA顯微注射至舞毒蛾3齡幼蟲(chóng)體內(nèi),發(fā)現(xiàn)dsRNA可以在特定時(shí)間內(nèi)高效特異的沉默舞毒蛾體內(nèi)CYP6AN15v1基因的mRNA表達(dá),且舞毒蛾幼蟲(chóng)對(duì)有機(jī)磷類(lèi)殺蟲(chóng)劑的敏感性顯著提高(曹傳旺等, 2015)。然而,RNAi不能穩(wěn)定遺傳,只能達(dá)到瞬時(shí)干擾基因表達(dá)的目的,轉(zhuǎn)基因昆蟲(chóng)技術(shù)是在昆蟲(chóng)基因組中插入具有特定的基因,分析這些基因功能。黑腹果蠅(Drosophilamelanogaster)作為重要的模式生物,其所具有的轉(zhuǎn)基因技術(shù)優(yōu)勢(shì),促進(jìn)了生物學(xué)諸多領(lǐng)域的研究進(jìn)展(周秀娟等, 2008)。目前,已有昆蟲(chóng)學(xué)者將與殺蟲(chóng)劑作用相關(guān)基因轉(zhuǎn)入黑腹果蠅中,以驗(yàn)證其參與殺蟲(chóng)劑代謝(孫麗麗等,2016; 薛緒亭等, 2016)。Riveron等(2013; 2014)借助于GAL4/UAS系統(tǒng)將按蚊(Anophelesfunestus)CYP6P9a、CYP6P9b和CYP6M7基因分別表達(dá)于果蠅體內(nèi),證實(shí)其參與氯菊酯和溴氰菊酯的抗性形成。本文在分析舞毒蛾轉(zhuǎn)錄本文庫(kù)的基礎(chǔ)上,克隆分析了CYP6AN15v1基因的cDNA全長(zhǎng),并通過(guò)轉(zhuǎn)基因技術(shù)研究CYP6AN15v1在舞毒蛾對(duì)氯蟲(chóng)苯甲酰胺類(lèi)殺蟲(chóng)劑的脅迫響應(yīng),旨在深入探索舞毒蛾CYP6AN15v1參與魚(yú)尼丁受體抑制劑類(lèi)殺蟲(chóng)劑抗藥性形成機(jī)制以及為在生產(chǎn)實(shí)踐中進(jìn)行抗藥性監(jiān)測(cè)和治理提供理論依據(jù)。
1.1 供試?yán)ハx(chóng)
供試舞毒蛾卵塊和人工飼料均購(gòu)自于中國(guó)林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護(hù)研究所,放置于溫度(25±1)℃、光照14 L∶10D、相對(duì)濕度75%的條件下人工飼養(yǎng)。
黑腹果蠅來(lái)源于中國(guó)科學(xué)院上海生命科學(xué)研究院生物化學(xué)與細(xì)胞生物學(xué)研究所果蠅資源與技術(shù)平臺(tái),置于(25±1)℃、相對(duì)濕度60%、光照14 L∶10D人工養(yǎng)蟲(chóng)室內(nèi)飼養(yǎng)。所用人工飼料主要成分為蔗糖10 g,玉米粉10 g,酵母粉0.5 g,瓊脂1 g,100 mL蒸餾水,丙酸0.7 mL,每4天將蟲(chóng)子換入新飼料瓶中,保持瓶?jī)?nèi)空氣流通。
黑腹果蠅品系: attP40果蠅品系(即25C)基因型為y[1] M {vas-int.Dm}ZH-2A w[*], P{CaryP}attP40; 雜交果蠅品系為ywR13 s=yw, sp/Cyo, MKRS/TM2。
1.2 主要試劑
考馬斯亮藍(lán)G-250、牛血清白蛋白(BSA)、苯甲基磺酰氟(PMSF)、二硫蘇糖醇(DTT)、乙二胺四乙酸(EDTA)、丙基硫氧嘧啶(PTU)、還原性輔酶Ⅱ(NADPH)和二甲基亞砜(DMSO)均購(gòu)自于SIGMA公司; 磷酸二氫鈉、磷酸氫二鈉、濃鹽酸、氯仿、乙醇、磷酸、氫氧化鈉、丙酮均為分析純級(jí),購(gòu)自天津永大試劑有限公司。氯蟲(chóng)苯甲酰胺原藥(96%,國(guó)家生物農(nóng)藥工程中心);XhoI和XbaI限制性?xún)?nèi)切酶、T4 DNA連接酶、DNase I均購(gòu)自于Promega公司; RNA提取試劑盒購(gòu)自Qiagen公司; pMD18-T載體和PrimeScriptTMRT reagent Kit cDNA合成試劑盒購(gòu)自TaKaRa公司,SYBR Green Real-time PCR Master mix購(gòu)自Toyobo公司,西班牙瓊脂糖購(gòu)自Gene公司; pUAST-attB載體為美國(guó)奧本大學(xué)劉喃喃教授贈(zèng)予; 大腸桿菌(Escheriacoli)DH5α為本實(shí)驗(yàn)室保存。
1.3LdCYP6AN15v1基因克隆與分析
根據(jù)舞毒蛾幼蟲(chóng)cDNA文庫(kù)獲得的舞毒蛾CYP6AN15v1基因序列(命名為L(zhǎng)dCYP6AN15v1)。設(shè)計(jì)全長(zhǎng)cDNA引物進(jìn)行PCR,切膠回收后連接于pMD18-T 載體上,轉(zhuǎn)化至大腸桿菌DH5α,在含氨芐抗性的平板上挑取重組克隆,獲得的陽(yáng)性菌株,進(jìn)一步進(jìn)行測(cè)序分析,最終確定所獲得的LdCYP6AN15v1基因cDNA序列,并將此重組載體記為CYP6AN15v1/pMD18-T。
應(yīng)用ORF founder(http://www.ncbi.nlm.nih.gov/gorf.html)程序確定其開(kāi)放讀碼框。用NCBI的Conserved Domains程序(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)預(yù)測(cè)蛋白的保守區(qū),并檢查蛋白質(zhì)序列的結(jié)構(gòu)域及功能基序; 利用Blast 程序(http://www.ncbi.nlm.nih.gov/BLAST/)進(jìn)行序列同源性搜索,選擇與其相似程度高的其他昆蟲(chóng)GPCR蛋白氨基酸序列,用多序列聯(lián)配程序Clustalx(1.83)進(jìn)行多序列比對(duì)。應(yīng)用Clustalx(1.83)和MEGA(5.1),采用鄰接法(Neighbor-Joining, N-J)構(gòu)建系統(tǒng)發(fā)育樹(shù),
1.4 果蠅表達(dá)載體構(gòu)建及轉(zhuǎn)LdCYP6AN15v1果蠅品系的建立
分別用限制性?xún)?nèi)切酶XhoI和XbaI酶切CYP6AN15v1/pMD18-T質(zhì)粒和 pUAST-attB載體質(zhì)粒,酶切產(chǎn)物進(jìn)行1.5%瓊脂糖凝膠電泳檢測(cè)后,分別回收LdCYP6AN15v1基因片段和pUAST-attB載體,通過(guò)T4 DNA連接酶,16 ℃連接16 h,轉(zhuǎn)化至大腸桿菌DH5α,在含氨芐抗性的平板上挑取重組克隆,經(jīng)質(zhì)粒PCR和雙酶切消化后的陽(yáng)性克隆,送至北京六合華大生物技術(shù)科技有限公司測(cè)序驗(yàn)證,成功構(gòu)建的重組質(zhì)粒命名為pUAST-attB-CYP6AN15v1。
轉(zhuǎn)基因果蠅定點(diǎn)注射委托中國(guó)科學(xué)院上海生命科學(xué)研究院生物化學(xué)與細(xì)胞生物學(xué)研究所果蠅資源與技術(shù)平臺(tái)完成,具體步驟如下: 將重組質(zhì)粒經(jīng)Qiagen質(zhì)粒提取試劑盒去內(nèi)毒素抽提后,注射至帶attp背景的親本果蠅胚胎中,定點(diǎn)微量注射入2#染色體; y[1] M {vas-int.Dm}ZH-2A w[*], P{CaryP}attP40] G0代果蠅胚胎中,羽化后的G0代果蠅雄蠅與yw, sp/Cyo, MKRS/TM2處女蠅單雜交(或者羽化后的G0代果蠅處女蠅與yw, sp/Cyo, MKRS/TM2雄單雜交); 約2周后,檢查這些果蠅的G1代,從中挑選眼睛為紅色或橘黃色的果蠅,可初步認(rèn)定為轉(zhuǎn)基因果蠅。挑取帶balancer紅眼(或橘黃色)雄果蠅,再與yw, sp/Cyo, MKRS/TM2處女蠅雜交; 挑選帶Cyo的轉(zhuǎn)基因紅眼果蠅自交,雜合或純合保種,查紅眼獲得穩(wěn)定的轉(zhuǎn)基因果蠅品系,命名為attP40>CYP6AN15v1,目的基因均以單拷貝插入到果蠅的2#染色體上。
1.5 轉(zhuǎn)LdCYP6AN15v1果蠅品系分子驗(yàn)證
采用Omega 試劑盒提取attP40>CYP6AN15v1、attP40(25C)果蠅品系DNA,以DNA為模板,用全長(zhǎng)特異性引物進(jìn)行RT-PCR擴(kuò)增(引物見(jiàn)表1)。采用RNeasy Mini動(dòng)物組織總RNA提取試劑盒(Qiagen)提取attP40>CYP6AN15v1、attP40(25C)果蠅品系總RNA,利用反轉(zhuǎn)錄試劑盒PrimeScriptTMRT reagent Kit(TaKaRa)合成cDNA,以cDNA為模板用全長(zhǎng)特異性引物進(jìn)行RT-PCR擴(kuò)增(引物見(jiàn)表1)。反應(yīng)體系如下: 10×LA Buffer 1 μL,正向和反向引物各0.5 μL,dNTP 0.2 μL,cDNA(或DNA)1.0 μL,LATaq酶 0.2 μL,ddH2O補(bǔ)足至10 μL。PCR擴(kuò)增程序?yàn)椋?94 ℃預(yù)變性 3 min; 94 ℃變性 30 s,60 ℃退火 30 s,72 ℃ 延伸2 min,35個(gè)循環(huán); 72 ℃ 延伸10 min。1.0%瓊脂糖凝膠電泳檢測(cè)目的基因擴(kuò)增產(chǎn)物。
表1 本文中所用的引物Tab. 1 Primer sequences used in this experiment
1.6 轉(zhuǎn)LdCYP6AN15v1果蠅致毒處理
參考王曉軍等(2006)和薛緒亭等(2016)方法采用藥膜法生物測(cè)定,取200 μL不同濃度的氯蟲(chóng)苯甲酰胺藥液在閃爍瓶中形成均勻藥膜,挑取30頭不同品系果蠅放入瓶中,以G0代果蠅品系為對(duì)照,每個(gè)處理3次重復(fù),于24 h統(tǒng)計(jì)死亡率,采用POLO軟件,計(jì)算致死中濃度LC50。
取200 μL氯蟲(chóng)苯甲酰胺(LC20=7.17 mg·L-1)藥液于閃爍瓶中,水平轉(zhuǎn)動(dòng)形成均勻藥膜,加入少許的人工飼料(約1 cm3)。分別取180頭大小、顏色一致的對(duì)照和轉(zhuǎn)基因果蠅成蟲(chóng)置于處理的閃爍瓶中,以丙酮處理為對(duì)照組,每個(gè)處理30頭,6個(gè)重復(fù),分別于6,12,24,48和72 h挑取20頭活潑的果蠅放于離心管中,液氮速凍后,置于-80 ℃冰箱內(nèi),分別用于實(shí)時(shí)熒光RT-PCR和細(xì)胞色素P450酶活性測(cè)定。1.7 細(xì)胞色素P450活性測(cè)定
1.7.1 酶液制備 從超低溫冰箱內(nèi)依次取出不同時(shí)間點(diǎn)處理的果蠅品系,以冷凍狀態(tài)輕敲裝有果蠅成蟲(chóng)的離心管,隨機(jī)挑選10頭快速倒至5 mL玻璃勻漿器內(nèi),加入4.0 mL 0.1 mol·L-1pH 7.5的磷酸緩沖液(含0.1 mmol·L-1DTT、1 mmol·L-1EDTA、1 mmol·L-1PTU、1 mmol·L-1PMSF),冰上研磨充分,12 000 g離心15 min,上清液即為原酶液。蛋白質(zhì)含量測(cè)定參照Bradford(1976)的考馬斯亮藍(lán)G-250法。
1.7.2 細(xì)胞色素P450活性測(cè)定 將1 mL原酶液、800 μL 0.1 mol·L-1pH 7.5磷酸緩沖液、100 μL 4.8 mmol·L-1NADPH,100 μL 20 mmol·L-1對(duì)硝基苯甲醚底物放入10 mL離心管中充分振蕩混勻,30 ℃水浴溫育30 min,加入40 μL濃鹽酸終止反應(yīng),再加入5 mL氯仿,劇烈振蕩20 min,靜置3~5 min,4 200 g,4 ℃離心15 min,吸取下層清液3 mL并轉(zhuǎn)移至10 mL離心管中,加入3 mL 0.5 mol·L-1氫氧化鈉溶液,劇烈震蕩15 min,靜置5 min,吸取上層萃取液為待測(cè)液。空白對(duì)照組采用3 mL氫氧化鈉溶液,每個(gè)處理3次重復(fù),于412 nm測(cè)定生成對(duì)硝基苯酚OD值,再根據(jù)對(duì)硝基苯酚標(biāo)準(zhǔn)曲線求出對(duì)硝基苯酚含量。以3 mL 0.5 mol·L-1氫氧化鈉溶液中加入不同濃度對(duì)硝基苯酚,劇烈震蕩15 min,靜置5 min,吸取上層萃取液測(cè)定412 nm下OD值,根據(jù)OD值和對(duì)硝基苯酚濃度制作標(biāo)準(zhǔn)曲線。根據(jù)反應(yīng)時(shí)間、對(duì)硝基苯酚的生成量和蛋白質(zhì)含量計(jì)算細(xì)胞色素P450比活力(nmol·min-1mg-1)。
1.8 實(shí)時(shí)熒光定量RT-PCR
圖1 舞毒蛾LdCYP6AN15v1基因的cDNA及由此推導(dǎo)的氨基酸序列Fig.1 The cDNA and deduced amino acid sequence of LdCYP6AN15v1 in L. dispar
采用RNeasy Mini動(dòng)物組織總RNA提取試劑盒提取對(duì)照(丙酮)、氯蟲(chóng)苯甲酰胺(LC20=7.17 mg·L-1)處理的果蠅成蟲(chóng)總RNA,采用PrimeScriptTMRT reagent Kit cDNA合成試劑盒合成cDNA,將此cDNA模板稀釋10倍,作為實(shí)時(shí)熒光定量RT-PCR模板。實(shí)時(shí)熒光定量RT-PCR使用試劑盒SYBR Green Real-time PCR Master mix,內(nèi)參為RpL32、ATP基因(Willisetal., 2010),引物序列見(jiàn)表1。實(shí)時(shí)熒光定量RT-PCR反應(yīng)體系為: 10 μL 2×SYBR premix ExTaq酶、正向和反向引物(10 μmol·L-1)各1,2 μL稀釋后cDNA模板,加去離子水補(bǔ)至20 μL。實(shí)時(shí)熒光定量PCR反應(yīng)條件為: 94 ℃預(yù)變性30 s,94 ℃變性12 s,60 ℃退火30 s,72 ℃延伸40 s,81 ℃讀板1 s,45個(gè)循環(huán),每個(gè)樣品重復(fù)3次,用2-△△Ct方法進(jìn)行基因的相對(duì)定量分析(Pfaffletal., 2002)。1.9 數(shù)據(jù)統(tǒng)計(jì)分析
運(yùn)用SPSS17.0軟件,采用Duncan方法對(duì)氯蟲(chóng)苯甲酰胺脅迫下不同處理時(shí)間P450酶活性和LdCYP6AN15v1基因轉(zhuǎn)錄水平進(jìn)行顯著性差異分析(P< 0.05)。
2.1LdCYP6AN15v1基因分析
獲得的舞毒蛾LdCYP6AN15v1基因的閱讀框(ORF)長(zhǎng)1 539 bp,編碼512個(gè)氨基酸(圖1)。用SignalP4.1軟件對(duì)LdCYP6AN15v1氨基酸序列前70個(gè)氨基酸殘基進(jìn)行信號(hào)肽預(yù)測(cè)。預(yù)測(cè)結(jié)果如圖2 所示,在信號(hào)肽切割位點(diǎn)位于第17~18個(gè)氨基酸之間即VYF-TR間,表明這種蛋白是分泌型蛋白。采用NCBI的CDD軟件分析LdCYP6AN15v1蛋白的保守結(jié)構(gòu)域表明該蛋白屬于P450家族。
圖2 舞毒蛾LdCYP6AN15v1基因的保守結(jié)構(gòu)域Fig.2 The cDNA and deduced amino acid sequence of LdCYP6AN15v1 in L. dispar
通過(guò)BLASTP多序列比對(duì),選擇與舞毒蛾LdCYP6AN15v1蛋白相似程度極高的16種昆蟲(chóng)P450蛋白進(jìn)行多序列比對(duì),構(gòu)建的16種昆蟲(chóng)P450基因系統(tǒng)進(jìn)化樹(shù)表明P450蛋白聚為2大類(lèi),其中舞毒蛾CYP6AN15v1蛋白與甜菜夜蛾(Spodopteralittoralis)和棉鈴蟲(chóng)(Helicoverpaarmigera)親緣關(guān)系近而聚為一類(lèi)(圖3)。
2.2 轉(zhuǎn)LdCYP6AN15v1基因果蠅載體構(gòu)建
將LdCYP6AN15v1基因連接至pUAST-attB載體,獲得重組轉(zhuǎn)基因質(zhì)粒pUAST-attB-CYP6AN15v1,重組質(zhì)粒分別經(jīng)XhoI和XbaI雙酶切檢測(cè),可見(jiàn)1 539 bp目的基因條帶。將重組質(zhì)粒進(jìn)行測(cè)序,其結(jié)果與目的基因序列完全一致,沒(méi)有序列發(fā)生缺失或突變,表明pUAST-attB-CYP6AN15v1載體構(gòu)建成功。
2.3 轉(zhuǎn)LdCYP6AN15v1基因果蠅驗(yàn)證
圖4顯示表達(dá)LdCYP6AN15v1基因果蠅純合品系表現(xiàn)型。提取表征為紅眼的轉(zhuǎn)基因果蠅總RNA,反轉(zhuǎn)錄合成cDNA,以cDNA為模板,引物見(jiàn)表1,PCR檢測(cè)CYP6AN15v1基因,結(jié)果顯示轉(zhuǎn)基因果蠅品系中CYP6AN15v1基因得以表達(dá)。以DNA為模板進(jìn)行PCR擴(kuò)增時(shí),attP40>CYP6AN15v1果蠅品系的PCR產(chǎn)物片段大小為1 539 bp(圖5),非轉(zhuǎn)基因attP40果蠅品系未見(jiàn)目的條帶,這表明舞毒蛾的CYP6AN15v1基因成功整合到黑腹果蠅的基因組中。
2.4 氯蟲(chóng)苯甲酰胺對(duì)轉(zhuǎn)LdCYP6AN15v1基因果蠅毒力
與非轉(zhuǎn)基因attP40果蠅品系相比,表達(dá)LdCYP6AN15v1果蠅品系attP40>CYP6AN15v1對(duì)氯蟲(chóng)苯甲酰胺的敏感性增加,LC50值高于親本,為對(duì)照親本的2.92倍(表2)。
圖3 16種昆蟲(chóng)P450蛋白系統(tǒng)進(jìn)化樹(shù)Fig.3 Phylogenetic analysis of P450 proteins from 16 insects
圖4 轉(zhuǎn)LdCYP6AN15v1基因和非轉(zhuǎn)基因黑腹果蠅品系表現(xiàn)型Fig.4 Phenotype of transformant and untransformant D.melanogaster A: 轉(zhuǎn)基因果蠅attP40>CYP6AN15v1 Transformant D.melanogaster attP40>CYP6AN15v1; B: 非轉(zhuǎn)基因果蠅attP40 Untransformant D.melanogaster attP40.
品系Lines24hLC50(95%CL)/(mg·L-1)斜率Slope(mean±SE)卡方值χ2(df)抗性比率Resistanceratio(RR)attP40>CYP6AN15v13984(3408~4467)514±0941001(11)292attP401364(996~1674)301±0502625(19)1
① χ2(11,0.05)=19.68; χ2(19,0.05)=30.14。
圖5 轉(zhuǎn)基因果蠅品系LdCYP6AN15v1 基因PCR檢測(cè)Fig.5 PCR analysis of LdCYP6AN15v1 in transformant D.melanogaster 1: attP40>CYP6AN15v1果蠅品系DNA為模板DNA of attP40>CYP6AN15v1 D.melanogaster line as template; 2: attP40>CYP6AN15v1果蠅品系cDNA為模板cDNA of attP40>CYP6AN15v1 D.melanogaster line as template; 3: attP40果蠅品系DNA為模板 DNA of attP40 D.melanogaster line as template; 4: attP40果蠅品系cDNA為模板 cDNA of attP40 D.melanogaster line as template.
2.5 氯蟲(chóng)苯甲酰胺對(duì)轉(zhuǎn)LdCYP6AN15v1果蠅P450活性影響
氯蟲(chóng)苯甲酰胺(7.17 mg·L-1)脅迫下轉(zhuǎn)基因果蠅和非轉(zhuǎn)基因果蠅品系體內(nèi)的P450活性結(jié)果顯示,除12 h外,其余各時(shí)間點(diǎn)轉(zhuǎn)基因果蠅品系P450比活力均高于對(duì)照果蠅品系。處理初期0 ~ 12 h, attP40>CYP6AN15v1果蠅品系的總酶活性與對(duì)照組attP40的相比,均無(wú)顯著性差異(P> 0.05)(圖6),隨脅迫時(shí)間的延長(zhǎng)(24 ~ 72 h),attP40>CYP6AN15v1果蠅品系的P450活性顯著高于對(duì)照組attP40品系(P< 0.05); 脅迫72 h,轉(zhuǎn)基因果蠅品系的P450活性顯著高于對(duì)照組,活性增加93.08%,為未處理轉(zhuǎn)基因果蠅品系的2.55倍。
圖6 氯蟲(chóng)苯甲酰胺對(duì)黑腹果蠅品系P450活性影響Fig.6 Effects of chlorantraniliprole on cytochrome P450 activities in D.melanogaster *表示同一時(shí)間轉(zhuǎn)基因和對(duì)照組果蠅品系P450活性差異顯著(P<0.05),下同。 * indicates the P450 activities between transgenic- and control-D.melanogaster are significant at the same time at 0.05 level. The same below.
圖7 氯蟲(chóng)苯甲酰胺對(duì)黑腹果蠅品系CYP6AN15v1表達(dá)量影響Fig.7 Effects of chlorantraniliprole on CYP6AN15v1 gene expression in transformant D.melanogaster
2.6 氯蟲(chóng)苯甲酰胺對(duì)轉(zhuǎn)基因果蠅CYP6AN15v1表達(dá)量影響
采用qRT-PCR法測(cè)定了氯蟲(chóng)苯甲酰胺(7.17 mg·L-1)脅迫下轉(zhuǎn)基因和非轉(zhuǎn)基因果蠅品系CYP6AN15v1的轉(zhuǎn)錄水平影響。氯蟲(chóng)苯甲酰胺顯著誘導(dǎo)了attP40>CYP6AN15v1果蠅品系體內(nèi)CYP6AN15v1的表達(dá)(P<0.05),相對(duì)表達(dá)量為對(duì)照組44.54~137.80倍; 其中,12 hCYP6AN15v1的誘導(dǎo)表達(dá)水平最低,為對(duì)照組的44.54倍(圖7)。
昆蟲(chóng)細(xì)胞色素P450兼具單加氧酶和氧化酶的功能,參與許多生物體內(nèi)內(nèi)源性化合物(如昆蟲(chóng)激素、脂肪酸和甾醇等)的生物合成(Lietal., 2007),也具有對(duì)外源性化合物的催化代謝能力(Lvaylo, 2001; Zhaoetal., 2002; Lietal., 2004),在昆蟲(chóng)的生長(zhǎng)發(fā)育和對(duì)環(huán)境的適應(yīng)性方面具有重要的作用(Feyereisen, 2012)。昆蟲(chóng)產(chǎn)生抗藥性的主要機(jī)制是P450介導(dǎo)的殺蟲(chóng)劑代謝解毒作用,P450增強(qiáng)殺蟲(chóng)劑代謝解毒作用一是與酶量增加相關(guān),二是由于酶結(jié)構(gòu)變化導(dǎo)致解毒活性的增強(qiáng)。細(xì)胞色素P450表達(dá)量的增加主要有2種機(jī)制: 一是基因組層面上的基因拷貝數(shù)增加,二是基因轉(zhuǎn)錄水平的基因上調(diào)表達(dá),其中第2種機(jī)制更為普遍(邱星輝, 2014)。已有研究證實(shí)P450參與了對(duì)有機(jī)磷類(lèi)、擬除蟲(chóng)菊酯類(lèi)、新煙堿類(lèi)、氨基甲酸酯類(lèi)等化學(xué)合成殺蟲(chóng)劑以及天然的植物防御化合物的代謝解毒(Guengerich, 2004)。Chiu等(2008)通過(guò)原核表達(dá)CYP6Z1蛋白具有代謝DDT的作用,證實(shí)該基因的上調(diào)表達(dá)參與了岡比亞按蚊(Anophelesgambiae)對(duì)DDT的抗性; Zhu等(2010)報(bào)道赤擬谷盜(Triboliumcastaneum)QTC279品系對(duì)溴氰菊酯的抗性是源于腦部特異性過(guò)量表達(dá)CYP6BQ9。
本文利用模式動(dòng)物果蠅轉(zhuǎn)基因技術(shù)研究了舞毒蛾CYP6AN15v1基因?qū)β认x(chóng)苯甲酰胺誘導(dǎo)解毒功能,結(jié)果表明氯蟲(chóng)苯甲酰胺脅迫下轉(zhuǎn)基因果蠅品系CYP6AN15v1基因表達(dá)和P450活性均顯著高于非轉(zhuǎn)基因果蠅品系,且轉(zhuǎn)CYP6AN15v1基因果蠅品系對(duì)氯蟲(chóng)苯甲酰胺的敏感性降低,這可能是由于CYP6AN15v1基因誘導(dǎo)表達(dá)增加解毒能力導(dǎo)致的。曹傳旺等(2015)利用RNAi技術(shù)體外合成CYP6AN15v1 dsRNA微量注射入經(jīng)饑餓處理12 h舞毒蛾3齡幼蟲(chóng)體內(nèi),并將沉默后的幼蟲(chóng)置于混有40 mg·L-1的氧化樂(lè)果飼料中,48 h時(shí)試驗(yàn)組舞毒蛾幼蟲(chóng)死亡率為60.00%,比對(duì)照組ddH2O、GFPdsRNA分別高出26.67%和40.00%,表現(xiàn)出對(duì)氧化樂(lè)果高敏感性,這表明CYP6AN15v1基因表達(dá)量減少降低了細(xì)胞色素P450對(duì)氧化樂(lè)果的解毒能力。
近些年來(lái),已有研究報(bào)道了細(xì)胞色素P450家族基因參與氯蟲(chóng)苯甲酰胺解毒代謝。邢靜等(2011)采用亞致死劑量(LC10和LC25)氯蟲(chóng)苯甲酰胺連續(xù)處理小菜蛾5代后,發(fā)現(xiàn)細(xì)胞色素P450 O-脫乙基(ECOD)的比活力顯著高于對(duì)照,為對(duì)照組的1.65和1.56倍; Liu等(2015)篩選52代氯蟲(chóng)苯甲酰胺抗性品系小菜蛾P(guān)450酶活性是敏感品系的4.26倍。氯蟲(chóng)苯甲酰胺抗性品系和敏感品系小菜蛾轉(zhuǎn)錄組中,發(fā)現(xiàn)19個(gè)P450、3個(gè)GST解毒酶基因和魚(yú)丁尼受體基因均上調(diào)表達(dá)(Lin等, 2013)。歐善生等(2012)研究表明亞致死劑量氯蟲(chóng)苯甲酰胺(LC10、LC25和LC50)處理棉鈴蟲(chóng)3齡幼蟲(chóng)時(shí),P450-ECOD比活力為L(zhǎng)C10> LC25> LC50。王學(xué)貴等(2015)研究發(fā)現(xiàn)以0.02 mg·kg-1氯蟲(chóng)苯甲酰胺處理甜菜夜蛾,3種P450基因(CYP9A9、CYP4G37、CYP6B)和細(xì)胞色素P450還原酶基因HQ852049 mRNA上調(diào)表達(dá)以及P450酶活表達(dá)增加,其中中腸的P450基因CYP9A9、CYP4G37、CYP6B的相對(duì)表達(dá)量為對(duì)照的1.53 ~ 4.48倍,而處理組P450酶活性為對(duì)照組1.90 ~ 2.92倍。這些研究結(jié)果表明雙酰胺類(lèi)氯蟲(chóng)苯甲酰胺殺蟲(chóng)劑作用靶標(biāo)為魚(yú)尼丁受體外,眾多細(xì)胞色素P450家族基因參與了抗性形成和誘導(dǎo)代謝。
利用轉(zhuǎn)基因技術(shù)成功構(gòu)建了轉(zhuǎn)舞毒蛾P(guān)450基因CYP6AN15v1的果蠅品系attP40>CYP6AN15v1; 明確了氯蟲(chóng)苯甲酰胺可能通過(guò)誘導(dǎo)CYP6AN15v1基因mRNA的上調(diào)表達(dá)而增加了黑腹果蠅細(xì)胞色素P450酶活性,轉(zhuǎn)舞毒蛾CYP6AN15v1果蠅對(duì)氯蟲(chóng)苯甲酰胺敏感性降低可能源于P450活性的增加解毒能力增強(qiáng)導(dǎo)致的。有關(guān)舞毒蛾CYP6AN15v1表達(dá)P450蛋白對(duì)氯蟲(chóng)苯甲酰胺解毒機(jī)制還有待于進(jìn)一步研究。
曹傳旺, 高彩球, 孫麗麗, 等. 2015. 舞毒蛾CYP6AN15v1基因dsRNA及其在無(wú)公害防治中的應(yīng)用. 申請(qǐng)?zhí)枺?201510054278.1
(Cao C W, Gao C Q, Sun L L,etal. 2015. dsRNA ofCYP6AN15v1 inLymantriadisparand its application in friendly control. Application No. 201510054278.1.
陳偉國(guó), 董瑞華, 孫海燕, 等. 2010. 農(nóng)用殺蟲(chóng)劑氯蟲(chóng)苯甲酰胺對(duì)家蠶的毒性研究. 蠶業(yè)科學(xué), 36(1):84-90.
(Chen W G, Dong R H, Sun H Y,etal. 2010. An investigation on toxicity of the agricultural pesticide chlorantraniliprole to the silkworm,Bombyxmori. Science of Sericulture, 36(1): 84-90. [in Chinese])
董 波, 孫國(guó)俊, 蔣林忠, 等. 2009. 茚蟲(chóng)威15%乳油和氯蟲(chóng)苯甲酰胺20%懸浮劑對(duì)稻縱卷葉螟的防效試驗(yàn). 農(nóng)藥科學(xué)與管理, 30(3):31-32.
(Dong B, Sun G J,Jiang L Z,etal. 2009. Effect tests of indoxacarb and chlorantraniliprole onCnaphalocrocismedialisGuenee. Pesticide Science and Administration, 30(3): 31-32. [in Chinese])
侯雅芹, 南 楠, 李鎮(zhèn)宇. 2009. 舞毒蛾研究進(jìn)展. 河北林果研究, 24(4):439-444.
(Hou Y Q, Nan N, Li Z Y. 2009.Research advances ofLymantriadispar. Hebei Journal of Forestry and Orchard Research, 24(4):439-444. [in Chinese])
劉 熠, 王國(guó)勝. 2009. 魚(yú)尼丁受體類(lèi)新型殺蟲(chóng)劑氯蟲(chóng)酰胺的研究概述.化學(xué)工程師, 171(11):44-47.
(Liu Y, Wang G S. 2009. Summary of chlorantraniliprole—a new type of ryanodines receptor insecticide. Chemical Engineer, 171(11):44-47. [in Chinese])
倪 鳴, 柴汝松, 張 鵬, 等. 2009. 不同藥劑對(duì)舞毒蛾和春尺蠖的毒力測(cè)定. 東北林業(yè)大學(xué)學(xué)報(bào), 37(5):121-122.
(Ni M, Chai R S, Zhang P,etal. 2009. Toxicity test of different kinds of insecticides toLymantriadisparandApocheimacinerarius. Journal of Northeast Forestry University, 37(5):121-122. [in Chinese])
歐善生, 梁 沛, 宋敦倫, 等. 2012. 氯蟲(chóng)苯甲酰胺亞致死劑量對(duì)棉鈴蟲(chóng)生長(zhǎng)發(fā)育和解毒酶活性的影響. 植物保護(hù), 38(4):1-8.
(Ou S S, Liang P, Song D L,etal. 2012. Effects of sublethal dosage of chlorantraniliprole on development and detoxifying enzymes activity ofHelicoverpaarmigera. Plant Protection, 38(4):1-8. [in Chinese])
邱星輝. 2014. 細(xì)胞色素 P450介導(dǎo)的昆蟲(chóng)抗藥性的分子機(jī)制. 昆蟲(chóng)學(xué)報(bào), 57(4):477-482.
(Qiu X H. 2014. Molecular mechanisms of insecticide resistance mediated by cytochrome P450s in insects. Acta Entomologica Sinica, 57(4):477-482. [in Chinese])
孫麗麗,劉 鵬,王志英,等.2016.轉(zhuǎn)LdOA1基因果蠅品系GSTs基因表達(dá)及對(duì)溴氰菊脂脅迫響應(yīng).北京林業(yè)大學(xué)學(xué)報(bào),38(6):72-78.
(Sun L L, Liu P, Wang Z Y,etal. 2016. Glutathione S-transferase gene expression in transformantDrosophilaexpressing ocular albinism type 1 from gypsy moth and its response to deltamethrin stress.Journal of Beijing Forestry University,38(6):72-87.[in Chinese])
王曉軍, 張宗儉, 姜 輝, 等. 2006. NY/T1154.7-2006農(nóng)藥室內(nèi)生物測(cè)定試驗(yàn)準(zhǔn)則. 北京: 中國(guó)標(biāo)準(zhǔn)出版社.
(Wang X J, Zhang Z J, Jiang H,etal. 2006. NY/T1154.7-2006 Guidelines for indoor bioassay of pesticide. Beijing: China Standard Press.[in Chinese])
王學(xué)貴, 余慧靈, 梁 沛, 等. 2015. 氯蟲(chóng)苯甲酰胺誘導(dǎo)甜菜夜蛾細(xì)胞色素P450 基因上調(diào)表達(dá). 昆蟲(chóng)學(xué)報(bào), 58(3): 281-287.
(Wang X G, Yu H L, Liang P,etal. 2015. Chlorantraniliprole induces up-regulated expression of cytochrome P450 genes inSpodopteraexigua(Lepidoptera: Noctuidae). Acta Entomologica Sinica, 58(3): 281-287. [in Chinese])
邢 靜, 梁 沛, 高希武. 2011. 亞致死濃度氯蟲(chóng)苯甲酰胺對(duì)小菜蛾藥劑的敏感度和解毒酶活性的影響. 農(nóng)藥學(xué)學(xué)報(bào), 13(5): 467-470.
(Xing J, Liang P, Gao X W,etal. 2011. Effects of sublethal concentrations of chlorantraniliprole on insecticide susceptibility and detoxifying enzyme activity inPlutellaxylostella. Chinese Journal of Pesticide Science, 13(5): 464-470. [in Chinese])
許 娜, 孫寶麗. 2009. 舞毒蛾的發(fā)生及防治. 現(xiàn)代農(nóng)業(yè)科技, 17:172-173.
(Xu N,Sun B L. 2009. Occurrence and control ofLymantriadispar. Modern Agricultural Science and Technology, 17:172-173. [in Chinese])
薛緒亭,孫麗麗,劉 鵬,等.2016.表達(dá)LdCYP6B53果蠅品系建立及對(duì)殺蟲(chóng)劑的敏感性.中國(guó)農(nóng)學(xué)通報(bào),32(19):97-101.
(Xue X T,Sun L L, Liu P,etal. 2016. Construction of transgenicDrosophilaexpressingLdCYP6B53 and its susceptibility to insecticides.Chinese Agricultural Science Bulletin,32(19):97-101.[in Chinese])
周秀娟,牛長(zhǎng)纓,雷朝亮. 2008. 轉(zhuǎn)基因昆蟲(chóng)的應(yīng)用研究進(jìn)展. 昆蟲(chóng)知識(shí),45(3): 368-373.
(Zhou X J, Niu C Y, Lei C L.2008. The application of transgenic insect technology. Chinese Bulletin of Entomology, 45(3):368-373.)
Bassi A, Molnar I, Zielinski D,etal. 2008. Chlorantraniliprole (Rynaxypyr?, Coragen?): a novel anthranilic diamide insecticide with outstanding control of Colorado Potato Beetle (Leptinotarsadecemlineata)∥Proceedings of the 17th Triennial Conference of the EAPR-International Potato Conference, 6-10, July 2008, Brasov, Romania.
Bassi A, Rison J L, Wiles J A. 2009. Chlorantraniliprole (DPX-E2Y45, Rynaxypyr?, Coragen?), a new diamide insecticide for control of codling moth (Cydiapomonella), Colorado potato beetle (Leptinotarsadecemlineata) and European grapevine moth (Lobesiabotrana). Zbornik predavanj in referatov 9 slovenskega posvetovanja o varstvu rastlin z mednarodno udele?bo.
Bautista M A M, Tanaka T, Miyata T. 2007. Identification of permethrin-inducible cytochrome P450s from the diamondback moth,Plutellaxylostella(L.) and the possibility of involvement in permethrin resistance. Pesticide Biochemistry and Physiology, 87(1): 85-93.
Chiu T L, Wen Z, Rupasinghe S G,etal. 2008. Comparative molecular modeling ofAnophelesgambiaeCYP6Z1, a mosquito P450 capable of metabolizing DDT. Proceeding of the National Academy of Sciences USA, 105(26): 8855-8860.
Cordova D, Benner E A, Sacher M D,etal. 2006. Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84: 196-214.
Dhawan A, Saini S, Singh K,etal. 2009. Persistence and residual toxicity of some insecticides againstPhenacoccussolenopsison cotton (Gossypiumspp.). Indian Journal of Agricultural Sciences, 79(3): 203-206.
Feyereisen R. 2005. Insect cytochrome P450 in comprehensive molecular insect science∥Gilbert L I, Iatrou K, Gill S S. Comprehensive Molecular Insect Science.Elsevier, Oxford, UK, 1-77.
Feyereisen R. 2006. Evolution of insect P450. Biochemical Society Transactions, 34(6): 1252-1255.
Feyereisen R, Jindra M. 2012. The silkworm coming of age-early. PLoS Genetics, 8(3):e1002591.
Guengerich F R, Krauser J A, Johnson W W. 2004.Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2. Biochemistry, 43(33): 10775-10788.
Hu Z,Lin Q, Chen H,etal. 2014. Identification of a novel cytochrome P450 gene,CYP321E1 from the diamondback moth,Plutellaxylostella(L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Bulletin of Entomological Research, 104 (6): 716.
Ioriatti C, Anfora G, Angeli G,etal. 2009. Effects of chlorantraniliprole on eggs and larvae ofLobesiabotrana(Denis & Schiffermüller) (Lepidoptera: Tortricidae). Pest Management Science, 65(6): 717-722.
Knight A L, Flexner L. 2007. Disruption of mating in codling moth (Lepidoptera: Tortricidae) by chlorantranilipole, an anthranilic diamide insecticide. Pest Management Science, 63(2): 180-189.
Koppenh?fer A M, Fuzy E M. 2008. Effect of the anthranilic diamide insecticide, chlorantraniliprole, onHeterorhabditisbacteriophora(Rhabditida: Heterorhabditidae) efficacy against white grubs (Coleoptera: Scarabaeidae). Biological Control, 45: 93-102.
Kuhar T, Doughty H, Hitchner E,etal. 2008. Evaluation of foliar insecticides for the control of Colorado potato beetle in potatoes in Virginia,2007. Arthropod Management, 17(1):140-145.
Lahm G, Cordova D, Barry J. 2009. New and selective ryanodine receptor activators for insect control. Bioorganic & Medicinal Chemistry, 17(12): 4127-4133.
Leonard D E. 1981. Bioecology of the gypsy moth∥Doane C C, McManus M L. The gypsy moth: Research toward integrated pest management. Washington, D.C.: U.S. Department of Agriculture, Forest Service, Science and Education Agency, Animal and Plant Health Inspection Service, 9-29.
Li X C, Baudry J, Berenhaum M R,etal. 2004. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proceeding of the National Academy of Sciences USA, 101(9):2939-2944.
Li X C, Schuler M A, Berenbaum M R. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52: 231-253.
Li A, Yang Y, Wu S,etal. 2006. Investigation on the resistance mechanisms to fipronil in diamondback moth. Journal of Economic Entomology, 99(3): 914-919.
Lin Q, Jin F, Hu Z,etal. 2013. Transcriptome analysis of chlorantraniliprole resistance development in the diamondback mothPlutellaxylostella. PLoS One, 8(8):e72314.
Liu X, Wang H Y, Ning Y B,etal. 2015. Resistance selection and characterization of chlorantraniliprole resistance inPlutellaxylostella(Lepidoptera: Plutellidae). Journal of Economic Entomology, 108(4):1978-1985.
Liu N, Scott J G. 1998. Increased transcription ofCYP6D1 causes cytochrome P450-mediated insecticide resistance in housefly. Insect Molecular Biology, 28(8): 531-535.
Lvaylo S. 2001.Cytochrome P450s: coupling development and environment. Trends in Genetics, 17(11):629-632.
Nelson D R.2009.The cytochrome P450 homepage.Human Genomics,4(1):59-65.
Pfaffl M W, Horgan G W, Dempfle L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9):e36.
Riveron J M, Ibrahim S S, Chanda E,etal. 2014. The highly polymorphicCYP6M7 cytochrome P450 gene partners with the directionally selectedCYP6P9aandCYP6P9bgenes to expand the pyrethroid resistance front in the malaria vectorAnophelesfunestusin Africa. BMC Genomics, 15: 817.
Riveron J M, Irving H, Ndula M,etal. 2013. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vectorAnophelesfunestus. Proceeding of the National Academy of Sciences USA, 110(1): 252-257.
Spomer N A, Kamble S T, Siegfried B D. 2009. Bioavailability of chlorantraniliprole and indoxacarb to eastern subterranean termites (Isoptera: Rhinotermitidae) in various soils. Journal of Economic Entomology, 102(5): 1922-1927.
Sun L L, Wang Z Y, Zou C S,etal. 2014. Transcription profiling of 12 Asian gypsy moth(Lymantriadispar)cytochrome P450 genes in response to insecticides. Archives of Insect Biochemistry and Physiology, 85(4):181-194.
Teixeira L A F, Gut L J, Wise J C,etal. 2009. Lethal and sublethal effects of chlorantraniliprole on three species ofRhagoletisfruit flies (Diptera: Tephritidae). Pest Management Science, 65(2): 137-143.
Willis D K, Wang J, Lindholm J,etal. 2010. Microarray analysis of juvenile hormone response inDrosophilamelanogasterS2 cells. Journal Insect Science, 10: 66.
Yeoh B, Lee C Y. 2007. Tunneling responses of the Asian subterranean termite,Coptotermesgestroiin termiticide-treated sand (Isoptera: Rhinotermitidae). Sociobiology, 50(2): 457-468.
Zhao Y, Hull A K, Gupta N R,etal. 2002. Trp-dependent auxin biosynthesis inArabidopsis: involvement of cytochrome P450sCYP79B2 andCYP79B3. Genes & Development, 16(23): 3100-3112.
Zhou X J, Ma C X, Li M,etal. 2010.CYP9A12 andCYP9A17 in the cotton bollwormHelicoverpaarmigera: sequence similarity, expression profile and xenobiotic response. Pest Management Science, 66(1):65-73.
Zhu F, Parthasarathy R, Bai H,etal. 2010. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain ofTriboliumcastaneum. Proceeding of the National Academy of Sciences USA, 107(19):8557-8562.
(責(zé)任編輯 朱乾坤)
Chlorantraniliprole Stress
Dang Yingqiao Yin Jingjing Chen Chuanjia Sun Lili Liu Peng Cao Chuanwang
(CollegeofForestry,NortheastForestryUniversityHarbin150040)
【Objective】Lymantriadisparis a major forest pest. Cytochrome P450 is ubiquitous key metabolic detoxification enzyme for xenobiotics in insects. This study onCYP6AN15v1 detoxifying pesticides aims to provide theoretical basis forL.disparcontrol. 【Method】 The full length cDNA ofLdCYP6AN15v1 was cloned by RT-PCR technology. The transformantDrosophilavector expressingCYP6AN15v1 gene was constructed with the method of traditional restriction endonuclease digestion and ligation. Homozygous transformantDrosophilalines withLdCYP6AN15v1 were successfully constructed by using transformant technology. The effects of low dosage of chlorantraniliprole on cytochrome P450 activity andCYP6AN15v1 expression levels in transformant and untransformantDrosophilawere examined using spectrophotometry and real-time RT-PCR technology, respectively. 【Result】 The full length cDNA ofCYP6AN15v1 (namelyLdCYP6AN15v1) was isolated fromL.dispartranscriptome. The open reading frame (ORF) ofLdCYP6AN15v1 was 1 539 bp encoding a protein of 512 amino acid residues with the molecular mass of 59.02 kDa. Phylogenetic analysis of CYP proteins showed CYP6AN15v1 ofL.disparclustered into a group withSpodopteraexiguaandHelicoverpaarmigera. The transformantDrosophilaattP40>CYP6AN15v1 was detected 1 539 bp of target gene using DNA and cDNA as template showing successful expression ofLdCYP6AN15v1 into transformantDrosophila. Compared to untransformant attP40Drosophila, the susceptibility of attP40>CYP6AN15v1Drosophilato chlorantraniliprole was significantly decreased by 2.92-fold of untransformantDrosophilafor LC50. Under 7.17 mg·L-1chlorantraniliprole stress, the cytochrome P450 activity andCYP6AN15v1 expression inL.disparwere dependent on time effects. The cytochrome P450 activity of attP40>CYP6AN15v1Drosophilawas from 1.09- to 1.93-fold of untransformantDrosophilawhile mRNA expression levels ofCYP6AN15v1 in attP40>CYP6AN15v1Drosophilawere 44.54- to 137.80-fold of untransformantDrosophilashowing induction effects. 【Conclusion】 The transformantDrosophilaline attP40>CYP6AN15v1 was successfully constructed by using transgenic technology. The results suggest that the up-regulated expression ofLdCYP6AN15v1 gene induced by chlorantraniliprole could enhance P450 activity inL.disparlarvae to detoxify the chlorantraniliprole.
Lymantriadispar; transformantDrosophila; chlorantraniliprole;CYP6AN15v1; induced expression
10.11707/j.1001-7488.201706011
2016-08-13;
2017-01-20。
國(guó)家自然科學(xué)基金項(xiàng)目(31570642); 黑龍江省自然科學(xué)基金項(xiàng)目(C201409); 東北林業(yè)大學(xué)本科生創(chuàng)新項(xiàng)目(201510225183)。
S763.306
A
1001-7488(2017)06-0094-11
*曹傳旺為通訊作者。