亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        準(zhǔn)晶體及其性能研究進(jìn)展

        2017-07-10 10:26:57汪久根
        關(guān)鍵詞:方向

        錢 晨, 汪久根

        (浙江大學(xué) 機(jī)械工程學(xué)院, 杭州 310007)

        準(zhǔn)晶體及其性能研究進(jìn)展

        錢 晨, 汪久根

        (浙江大學(xué) 機(jī)械工程學(xué)院, 杭州 310007)

        基于準(zhǔn)晶體材料目前的研究現(xiàn)狀,簡(jiǎn)要介紹了根據(jù)結(jié)構(gòu)對(duì)稱性的準(zhǔn)晶體分類,討論了周期模型的構(gòu)建方法以及準(zhǔn)晶體與其近似相的關(guān)系,總結(jié)了塊體單準(zhǔn)晶的制備工藝,塑性變形過程中缺陷演化,表面結(jié)構(gòu)、表面性能以及其他物理性能的實(shí)驗(yàn)研究現(xiàn)狀,分析討論了采用連續(xù)介質(zhì)力學(xué)方法、分子動(dòng)力學(xué)模擬方法、Monte Carlo法以及有限元方法研究準(zhǔn)晶體的途徑和結(jié)果. 針對(duì)準(zhǔn)晶通常呈現(xiàn)的低表面能、低摩擦因數(shù)、耐磨損、優(yōu)異的彌散強(qiáng)化特性、高硬度、高彈性模量、高溫塑性、高熱阻、抗氧化、高電阻和耐腐蝕等特點(diǎn),展望其作為復(fù)合材料增強(qiáng)相、隔熱涂層、耐磨減磨涂層材料等的應(yīng)用前景. 指出準(zhǔn)晶體目前研究中所存在的高脆性、成品體積小和計(jì)算精度低等難題,提出了其工程應(yīng)用需要進(jìn)一步研究的問題.

        準(zhǔn)晶;結(jié)構(gòu)對(duì)稱性;近似相;研究方法;工程應(yīng)用

        1984年, Shechtman等[1]首次在文獻(xiàn)中報(bào)道了二十面體準(zhǔn)晶后,準(zhǔn)晶有別于傳統(tǒng)晶體的特殊對(duì)稱性引發(fā)了20世紀(jì)80年代和90年代準(zhǔn)晶研究的熱潮, Shechtman因?qū)?zhǔn)晶研究的貢獻(xiàn)于2011年獲得了諾貝爾化學(xué)獎(jiǎng). 在準(zhǔn)晶的基礎(chǔ)理論方面,我國(guó)從準(zhǔn)晶被首次發(fā)現(xiàn)開始的很長(zhǎng)一段時(shí)間內(nèi)保持著國(guó)際領(lǐng)先地位[2],但在準(zhǔn)晶的物理性能和工程應(yīng)用方面,和日本、法國(guó)等國(guó)相比仍存在一定差距.

        根據(jù)對(duì)于準(zhǔn)晶性能的文獻(xiàn)報(bào)道,準(zhǔn)晶具有低表面能[3]、低摩擦因數(shù)[4]、耐磨損[4-6]、優(yōu)異的彌散強(qiáng)化特性[7]、高硬度[8]、高溫塑性[9]、高熱阻[10]、耐腐蝕[11]、高電阻[12]、儲(chǔ)氫[13]等特點(diǎn),同時(shí)塊體準(zhǔn)晶所表現(xiàn)出來的室溫下高脆性[14]以及價(jià)格因素在一定程度上限制了準(zhǔn)晶作為結(jié)構(gòu)材料的商業(yè)化發(fā)展. 目前,準(zhǔn)晶的應(yīng)用在復(fù)合材料、表面涂層、塊體準(zhǔn)晶制備、儲(chǔ)氫材料、光學(xué)材料等方面研究較多. 如瑞典皇家工學(xué)院Nilsson等[15]研制的含準(zhǔn)晶相析出的馬氏體時(shí)效鋼12%Cr-9%Ni-4%Mo-2%Cu-1%Ti,抗拉強(qiáng)度接近3 000 MPa,硬度可達(dá)730 HV. 德州大學(xué)奧斯汀分校Lee等[16]研制的一種準(zhǔn)晶相體積分?jǐn)?shù)為71.18%的Al-Cu-Fe合金與碳化鎢的平均摩擦因數(shù)為0.076,僅為相同條件下軸承鋼的1/5,磨損率為1.41×10-5mm3/(N·m),為軸承鋼的1/5.52. 了解準(zhǔn)晶的微觀結(jié)構(gòu)及機(jī)制,有助于更有針對(duì)性地研究其物理性能,開發(fā)其工程應(yīng)用價(jià)值.

        本文擬從準(zhǔn)晶的發(fā)展歷史、微觀結(jié)構(gòu)、近似相、研究現(xiàn)狀和工程應(yīng)用幾方面介紹準(zhǔn)晶體的研究進(jìn)展與現(xiàn)狀.

        1 準(zhǔn)晶體按對(duì)稱性的分類

        根據(jù)準(zhǔn)周期的維數(shù),可以將準(zhǔn)晶分為三維準(zhǔn)晶、二維準(zhǔn)晶、一維準(zhǔn)晶. 三維準(zhǔn)晶分為二十面體對(duì)稱準(zhǔn)晶和立方準(zhǔn)晶;二維準(zhǔn)晶可分為十重準(zhǔn)晶、八重準(zhǔn)晶、十二重準(zhǔn)晶、十八重準(zhǔn)晶,下面對(duì)其作簡(jiǎn)要介紹.

        1.1 三維準(zhǔn)晶

        三維準(zhǔn)晶多數(shù)為二十面體準(zhǔn)晶,早期在急冷凝固的Al-Mn、Ti-Ni、Fe-Ti、Pd-U-Si等合金中觀察到,后來隨著穩(wěn)定二十面體準(zhǔn)晶在Al-Cu-Fe合金系中發(fā)現(xiàn),又陸續(xù)在緩冷凝固的Al-Pd-TM、 Mg-Zn-RE等合金系中發(fā)現(xiàn)穩(wěn)定的二十面體準(zhǔn)晶. 二十面體準(zhǔn)晶具有五重旋轉(zhuǎn)對(duì)稱、三重旋轉(zhuǎn)對(duì)稱和二重旋轉(zhuǎn)對(duì)稱,使其有別于五重孿晶而體現(xiàn)二十面體對(duì)稱. 根據(jù)結(jié)構(gòu),可分為簡(jiǎn)單二十面體準(zhǔn)晶(Al-Mn(Al-Mn-Si)、Zn-Mg-Sc、Ti-Ni、 Al-Li-Cu等)、面心二十面體(Al-Cu-Fe、 Al-Pd-Mn、 Al-Mg-Li、 Zn-Mg-Re、 Ho-Mg-Zn、 Mg-Zn-Y-Zr等),體心二十面體雖然目前還沒見報(bào)道,但已通過分子動(dòng)力學(xué)模擬證明其存在的可能[17]. 根據(jù)準(zhǔn)晶的團(tuán)簇,目前已發(fā)現(xiàn)的二十面體準(zhǔn)晶可分為:Mackay型準(zhǔn)晶團(tuán)簇、Bergman型準(zhǔn)晶團(tuán)簇、Tsai型準(zhǔn)晶團(tuán)簇. Mackay型準(zhǔn)晶團(tuán)簇可理解為兩個(gè)互相嵌套的二十面體原子殼外再嵌套一層三十二面體(截頂二十面體)形成的團(tuán)簇. Bergman型準(zhǔn)晶團(tuán)簇是第1層為二十面體原子殼,第2層為十二面體原子殼,第3層為二十面體原子殼互相嵌套形成的團(tuán)簇. Tsai型準(zhǔn)晶團(tuán)簇為第1層四面體,第2層十二面體,第3層二十面體,第4層三十二面體互相嵌套而成.

        此外,F(xiàn)ENG等[18]發(fā)現(xiàn)了V-Ni-Si三維立方準(zhǔn)晶,之后除了在快速凝固的Mg-Al合金中發(fā)現(xiàn)外,較少發(fā)現(xiàn)過類似準(zhǔn)晶. 目前的文獻(xiàn)中對(duì)于三維準(zhǔn)晶多數(shù)是指二十面體對(duì)稱準(zhǔn)晶,而對(duì)三維立方準(zhǔn)晶考慮較少.

        1.2 二維準(zhǔn)晶

        二維準(zhǔn)晶在一個(gè)平面上表現(xiàn)為準(zhǔn)周期性,而在垂直于準(zhǔn)周期平面的方向呈周期性排列. 二維準(zhǔn)晶可以根據(jù)二維準(zhǔn)周期平面的旋轉(zhuǎn)軸對(duì)稱次數(shù)來分類,在實(shí)驗(yàn)中已發(fā)現(xiàn)八重準(zhǔn)晶、十重準(zhǔn)晶、十二重準(zhǔn)晶及十八重準(zhǔn)晶.

        在二維準(zhǔn)晶中,被發(fā)現(xiàn)次數(shù)最多的是十重準(zhǔn)晶. 最早發(fā)現(xiàn)的十重準(zhǔn)晶是Bendersky等[19]在Al-Mn合金中發(fā)現(xiàn)的與二十面體準(zhǔn)晶共生的十重對(duì)稱準(zhǔn)晶. 同時(shí)KUO等[20]根據(jù)Mn-Ga十重準(zhǔn)晶的電子衍射圖指出,在三維二十面體準(zhǔn)晶中,五重反軸間的夾角與十重對(duì)稱準(zhǔn)晶中十重軸與偽五重軸間的夾角角度相近,十重準(zhǔn)晶與二十面體準(zhǔn)晶存在可能的近親關(guān)系. Schaefer等[21]首先在Al-Mn合金中觀察到了二十面體準(zhǔn)晶向十重準(zhǔn)晶的轉(zhuǎn)變,二十面體準(zhǔn)晶的五重軸與十重準(zhǔn)晶的十重軸和偽五重軸呈平行關(guān)系. 其對(duì)應(yīng)的準(zhǔn)周期拼砌(彭羅斯拼砌)結(jié)構(gòu)基元為36°菱形、72°菱形. 目前為止,在Al-Mn、Al-Fe、Ga-Mn、Al-Cu-Co、Al-Co、Al-Pd-Mn、Al-Ni-Co、Al-Ir-Os等合金體系中發(fā)現(xiàn)十重準(zhǔn)晶. Wasio等[22]在二茂鐵甲酸在Au(1,1,1)表面自組裝試驗(yàn)中,發(fā)現(xiàn)除了少量二聚物和缺陷,掃描隧道顯微鏡下的圖案顯示,五聚體幾乎覆蓋了整個(gè)單分子層表面,即五重對(duì)稱性. 圖1中用五邊形表示出的區(qū)域與P1型的彭羅斯拼砌具有高度相似性. 這是一種以弱氫鍵結(jié)合的有機(jī)十重對(duì)稱準(zhǔn)晶.

        圖1 Au(1,1,1)表面二茂鐵甲酸的STM圖與對(duì)應(yīng)的P1型彭羅斯圖[22]

        Fig.1 FcCOOH monolayer structure on Au(1,1,1) surface and corresponding P1 Penrose tiling[22]

        Ishimasa等[24]首先在急冷的Cr-Ni合金中發(fā)現(xiàn)二維十二重準(zhǔn)晶. 十二重準(zhǔn)晶準(zhǔn)周期面對(duì)應(yīng)的準(zhǔn)周期拼砌圖案由3種結(jié)構(gòu)基元組成: 30° 菱形、60°菱形、90°正方形,在其準(zhǔn)周期拼砌中,每條邊在30°的整數(shù)倍方向上. 十二重對(duì)稱準(zhǔn)晶在Cr-Ni、V-Ni、V-Ni-Si、Ta-Te、Ta-V-Te等合金系中發(fā)現(xiàn). 同時(shí), Zeng等[25]在超分子樹枝狀體系中觀察到了十二重準(zhǔn)晶,使得對(duì)原先準(zhǔn)晶只存在于合金體系的認(rèn)知拓展到了軟物質(zhì)準(zhǔn)晶.

        Fischer等[26]在研究PI30-PEO120膠團(tuán)的相行為時(shí)的小角度X射線衍射發(fā)現(xiàn),在質(zhì)量分?jǐn)?shù)為13%~18%,溫度在15~20 ℃時(shí),可以觀察到十二重X射線衍射對(duì)稱的穩(wěn)定相,當(dāng)溫度在10 ℃ 時(shí),可以觀察到十八重X射線衍射對(duì)稱的穩(wěn)定相,即十八重準(zhǔn)晶.

        Dotera等[27]通過Monte Carlo法,模擬得到了二十四重準(zhǔn)晶,但目前為止還未在實(shí)驗(yàn)中觀測(cè)到.

        1.3 一維準(zhǔn)晶

        類似于二維十重準(zhǔn)晶與三維二十面體準(zhǔn)晶存在的近親關(guān)系,一維準(zhǔn)晶常與二維十重準(zhǔn)晶共生,其中一維準(zhǔn)晶是由二維十重準(zhǔn)晶中的一個(gè)與十重軸正交的二重準(zhǔn)周期軸變成二重周期軸而生成的[28]. 一維準(zhǔn)晶存在一個(gè)周期平面(兩個(gè)正交的方向,一個(gè)是原來十重準(zhǔn)晶的周期方向,另一個(gè)是十重準(zhǔn)晶的十重軸變來的)和與周期平面垂直的準(zhǔn)周期方向,這種準(zhǔn)周期方向上的排列與Fibonacci數(shù)列有關(guān). 一維準(zhǔn)晶自從1985年在GaAs-AlAs合金系中被發(fā)現(xiàn)[29]以來(見圖2),此后,在Mo-V、Ga-As-Al、Nb-Cu、Si-N、Al-Pd、Al-Cu-Ni、Al-Ni-Al、Al-Cu-Co等合金系中被發(fā)現(xiàn)[30].

        圖2 一維準(zhǔn)晶的X射線衍射[29]

        此外,除了上述在實(shí)驗(yàn)條件下得到的準(zhǔn)晶,2009年, Bindi等[31]在隕石中發(fā)現(xiàn)了天然準(zhǔn)晶,這是人類第一次在實(shí)驗(yàn)室之外發(fā)現(xiàn)準(zhǔn)晶,再一次拓展了人類關(guān)于準(zhǔn)晶和天然礦物的認(rèn)知,該準(zhǔn)晶相為面心二十面體Al63Cu24Fe13準(zhǔn)晶. 這也促使大家思考準(zhǔn)晶在自然條件下的形成機(jī)制,也為實(shí)驗(yàn)室在之前未涉及的溫度和壓強(qiáng)下研究新的準(zhǔn)晶的形成和穩(wěn)定性提供了思路. 2015年,該課題組在同一塊隕石中又觀察到了十重對(duì)稱二維準(zhǔn)晶,Al71Ni24Fe5準(zhǔn)晶[32],該種準(zhǔn)晶相在1 120~1 200 K的溫度保持穩(wěn)定,目前認(rèn)為該準(zhǔn)晶在45億年前太陽系形成初期生成,當(dāng)時(shí)在均勻的(1 100 K

        2 準(zhǔn)晶體相關(guān)的準(zhǔn)周期模型構(gòu)建方法

        盡管以前在金屬玻璃中觀察到的Frank-Kasper相也可以呈現(xiàn)二十面體對(duì)稱[34-35],但Frank-Kasper相具有的有限范圍的二十面體對(duì)稱和較低的缺陷密度特點(diǎn)與實(shí)驗(yàn)中觀察到的較高的向錯(cuò)密度和長(zhǎng)程取向序有著較大區(qū)別,因此 Levine等[36]排除了Frank-Kasper相的可能性,提出彭羅斯模型. 盡管真實(shí)的準(zhǔn)晶可能并非嚴(yán)格意義上的彭羅斯拼圖,但準(zhǔn)周期模型有助于進(jìn)一步理解準(zhǔn)晶的原子結(jié)構(gòu).

        準(zhǔn)晶體的結(jié)構(gòu)模型有彭羅斯模型[36-39]、玻璃模型[40]、無規(guī)則堆砌模型[41]等. 目前,討論最多、影響最大的是彭羅斯模型,本文著重介紹彭羅斯模型.

        根據(jù)已有的研究結(jié)果,在彭羅斯模型的構(gòu)造中,介紹比較多的方法有:匹配與緊縮法,高維空間投影法和廣義對(duì)偶法,每一種方法所產(chǎn)生的準(zhǔn)周期圖案的種類不盡相同.

        2.1 匹配與膨脹法

        準(zhǔn)周期圖具備高度的自相似性,并遵守一定的拼砌規(guī)則,這對(duì)得到新的準(zhǔn)周期圖有很大幫助.

        這就是常說的Fibonacci數(shù)列.

        二維的彭羅斯圖具有高度的自相似性,如圖3所示.

        圖3 緊縮法則前后的彭羅斯單元的相互關(guān)系

        圖中用粗線標(biāo)示出兩種菱形單元,用這兩種菱形按比例縮小成兩種較小菱形裝飾,邊長(zhǎng)縮小為原來的1/τ[42],經(jīng)過緊縮法則變換后的兩種較小菱形單元變成另一種彭羅斯圖. 準(zhǔn)周期圖案的匹配規(guī)則較為多樣,如圖4所示. 然而,符合匹配與緊縮法則的準(zhǔn)周期拼砌在平鋪的過程中并不是完全理想的,會(huì)產(chǎn)生少數(shù)缺陷.

        圖4 彭羅斯拼砌的一種匹配法則

        2.2 廣義對(duì)偶法

        通過廣義對(duì)偶法所能產(chǎn)生的準(zhǔn)周期模型種類最多,然而,在二維和三維情況下,多重網(wǎng)格中常常會(huì)存在奇異點(diǎn),這時(shí),需要作一些特殊處理,一定程度上增加了操作的復(fù)雜程度.

        2.3 直接投影法

        準(zhǔn)周期拼砌可看作高維空間向低維空間的投影,可以從高維空間中的超立方點(diǎn)陣通過垂直子空間窗口向平行子空間投影得到.

        一維準(zhǔn)晶的直接投影法相對(duì)于二維準(zhǔn)晶和三維準(zhǔn)晶的直接投影法更為直觀,通過將二維網(wǎng)格中的條帶范圍內(nèi)的點(diǎn)投影到所選取的投影線上得到[44].

        圖5中,用實(shí)心圓標(biāo)示出的空心圓在投影線上的投影的坐標(biāo)為[38]

        (1)

        圖5 一維準(zhǔn)晶的直接投影示意圖

        Fig.5 Schematic of direct projection method of one dimensional quasicrystal

        相比于其他幾種方法,直接投影法具有方便生成、容易定量描述的優(yōu)點(diǎn),便于建立與近似相的關(guān)系,計(jì)算衍射圖案方面具有較大的優(yōu)勢(shì),但能生成的準(zhǔn)周期圖案種類較為有限.

        在準(zhǔn)晶的有關(guān)文獻(xiàn)中[49-51],也經(jīng)常會(huì)用到Tubingen三角形,其實(shí)質(zhì)和彭羅斯拼砌相同,且更便于操作.

        3 準(zhǔn)晶體的近似相

        實(shí)驗(yàn)發(fā)現(xiàn),準(zhǔn)晶經(jīng)常與具有相似元素配比的近似相共生,準(zhǔn)晶的近似相為晶體. 基于二十面體Al-Mn-Si準(zhǔn)晶與α-(Al-Mn-Si)晶體的相似性,Elser等[52]指出,準(zhǔn)晶可以用周期為足夠大的晶體近似. 鑒于準(zhǔn)晶的結(jié)構(gòu)解析在實(shí)驗(yàn)上存在諸多困難,不同元素原子的位置難以確定,通過對(duì)于準(zhǔn)晶體近似相晶體的研究有助于了解準(zhǔn)晶的結(jié)構(gòu)模型. 準(zhǔn)晶的近似相也可以通過高維空間投影得到. 目前,除了Takakura等[53]和Tsai等[54]在解析出來的Cd-Yd準(zhǔn)晶是結(jié)構(gòu)清楚的準(zhǔn)晶,其余均是通過與近似相結(jié)構(gòu)有關(guān)的假設(shè)得到的.

        當(dāng)對(duì)高維空間進(jìn)行切割時(shí)得到了準(zhǔn)周期點(diǎn)陣,倘若在切割過程中,用一系列的連分?jǐn)?shù)p/q(1/2 3/2 5/3…)去逼近黃金分割數(shù)τ,則得到的就是準(zhǔn)晶的近似相,且隨著連分?jǐn)?shù)次數(shù)的增加,近似相的周期增大,與準(zhǔn)晶之間擬合的程度也越好.

        4 準(zhǔn)晶性能的研究方法

        4.1 實(shí)驗(yàn)研究

        對(duì)于準(zhǔn)晶固有性能的研究,首先需要制備高質(zhì)量的大塊單準(zhǔn)晶,制備過程中需要滿足充足的緩冷凝固以及退火,使得準(zhǔn)晶體生長(zhǎng)過程中相位子弛豫,目前制備的工藝主要有Czochralski法、Bridgman法、自助溶劑法和浮區(qū)法. Czochralski法通過控制提拉速度、熔體溫度以及籽晶桿的冷卻速率制備塊體準(zhǔn)晶,并在塊體d-Al-Co-Ni單準(zhǔn)晶及其近似相單晶的制備中得到應(yīng)用[55-56]; Bridgman法通過控制溫度梯度以及生長(zhǎng)速度使熔體在下拉過程中先在坩堝尖端形核并定向生長(zhǎng),被用來制備大塊i-Ag-In-Yb單準(zhǔn)晶,然而由于包晶反應(yīng)和i-Ag-In-Yb與近似相液相線溫度較為接近,無法被用來制備其近似相[57]; 自助溶劑法依賴于熔體的元素配比以及傾析溫度,當(dāng)熔體通過液相線生長(zhǎng)出近似相單晶體或單準(zhǔn)晶還沒產(chǎn)生其它相時(shí)將單準(zhǔn)晶或近似相單晶與熔體分離,制備了大塊i-Ag-In-Yb單準(zhǔn)晶及其1/1、2/1近似相單晶和1/1Ag-In-Eu近似相單晶[58-59]; 浮區(qū)法控制鑄錠與紅外爐之間的相對(duì)運(yùn)動(dòng),使得運(yùn)動(dòng)過程中鑄錠的局部被不斷融化,并隨著籽晶沿著固定方向結(jié)晶,已被用于大塊d-Al-Co-Ni單準(zhǔn)晶和i-Al-Pd-Mn單準(zhǔn)晶的制備[60-61].

        通常認(rèn)為由于準(zhǔn)晶中位錯(cuò)的運(yùn)動(dòng)會(huì)產(chǎn)生相位子場(chǎng)層錯(cuò),進(jìn)而阻礙位錯(cuò)的運(yùn)動(dòng)[62]. Wollgarten等[63]對(duì)Al70Pd21Mn9在750 ℃下進(jìn)行壓縮變形實(shí)驗(yàn),當(dāng)變形量為25%時(shí),位錯(cuò)密度比實(shí)驗(yàn)前增加了兩個(gè)數(shù)量級(jí), Mompiou等[64]指出,此時(shí)位錯(cuò)攀移占主導(dǎo)地位. Messerschmidt等[65]通過對(duì)比Al-Pd-Mn準(zhǔn)晶的實(shí)驗(yàn)數(shù)據(jù)和理論分析,指出Al-Pd-Mn二十面體準(zhǔn)晶中的Mackay型團(tuán)簇在位錯(cuò)移動(dòng)過程中扮演了障礙物的角色,此時(shí)位錯(cuò)的移動(dòng)需要依靠熱激活來實(shí)現(xiàn). Texier等[66]在室溫高壓力(5 GPa)下觀察到了Al66.27Pd21.88Mn11.85位錯(cuò)滑移的特征. Zou等[67]通過將Al70Pd21.5Mn8.5二十面體準(zhǔn)晶加工成直徑為150 nm~2 μm的一系列微柱,用壓頭進(jìn)行壓縮實(shí)驗(yàn),在塑性變形過程中觀察到了位錯(cuò)的滑移,同時(shí),隨著尺度的減小(510~350 nm),準(zhǔn)晶的行為由脆性向韌性轉(zhuǎn)變; 在100~500 nm,屈服強(qiáng)度維持在約4.5 GPa的較高值. 在目前對(duì)于其他材料的微柱實(shí)驗(yàn)中,目前僅有測(cè)試的兩種準(zhǔn)晶Al70Pd21.5Mn8.5[67]二十面體準(zhǔn)晶和Al77Ni10.5Co12.5[68]二維十重準(zhǔn)晶相比都表現(xiàn)了極高的比強(qiáng)度(在1 MJ/kg左右). Schall等[69]在800 ℃~890 ℃溫度下在二維十重準(zhǔn)晶Al73Ni10Co17分別平行于、45°垂直于十重軸的方向進(jìn)行壓縮試驗(yàn),垂直于十重軸方向的屈服強(qiáng)度四倍于45°方向的屈服強(qiáng)度,在不同方向上呈現(xiàn)出顯著的塑性各向異性,F(xiàn)euerbacher等[70]指出這可能與不同方向上的位錯(cuò)特征有關(guān). Zou等[68]將對(duì)Al77Ni10.5Co12.5二維十重準(zhǔn)晶微柱的3個(gè)方向進(jìn)行壓縮試驗(yàn),發(fā)現(xiàn)隨著微柱尺寸的減小,屈服強(qiáng)度和塑性的各向異性隨之降低,直至幾乎消失,并指出該現(xiàn)象與溫度導(dǎo)致的位錯(cuò)阻力增加、尺寸縮小導(dǎo)致的位錯(cuò)更趨向與成核而非擴(kuò)散,以及高應(yīng)力和短的位錯(cuò)長(zhǎng)度導(dǎo)致的多個(gè)滑移系開啟等3個(gè)因素有關(guān). 實(shí)驗(yàn)中,在200~300 nm時(shí),臨界分剪切應(yīng)力接近模擬值[49]. Laplanche等[71]對(duì)比了ω-Al7Cu2Fe晶體相與二十面體Al-Cu-Fe準(zhǔn)晶,提出準(zhǔn)晶與晶體具有相似的變形機(jī)制,認(rèn)為在準(zhǔn)晶位錯(cuò)的運(yùn)動(dòng)過程中,雖然需要考慮相位子場(chǎng)缺陷和團(tuán)簇的作用,但并不主導(dǎo)位錯(cuò)的運(yùn)動(dòng)過程,這與先前的理論存在一定沖突,可作參考.

        在準(zhǔn)晶材料的表面性能方面,實(shí)驗(yàn)觀察到了Al-Cu-Fe準(zhǔn)晶具有低摩擦因數(shù)[4]及較高的硬度. Brunet等[7]比較了多種材料摩擦因數(shù)與硬度的關(guān)系,指出準(zhǔn)晶的低摩擦因數(shù)不僅與其高硬度有關(guān),也可能是由其較低的電子間相互作用造成的. Dubois等[3]通過Al-Cu-Fe準(zhǔn)晶的潤(rùn)濕性實(shí)驗(yàn),測(cè)得準(zhǔn)晶表面與水的黏著能僅為特氟龍的1.25倍. Park等[72]通過原子力顯微鏡測(cè)試了Al-Ni-Co二維十重準(zhǔn)晶不同方向上的摩擦性能,觀察到了顯著的各向異性,在周期方向的扭轉(zhuǎn)力為準(zhǔn)周期方向的8.2±0.44倍. Filippov等[73]提出的拓?fù)淠P徒忉屃藴?zhǔn)晶摩擦性能的各向異性,認(rèn)為這是由于在兩個(gè)方向上的原子平均間距不同導(dǎo)致的. Ye 等[74]模擬了準(zhǔn)晶的近似相與原子力顯微鏡尖端的接觸,模擬出的數(shù)值與實(shí)驗(yàn)相差較大,提出了準(zhǔn)晶的各向異性可能由尖端鈍化的硫醇與準(zhǔn)晶在周期方向的溝紋的卷吸作用引起的黏著摩擦造成的. Dubois等[75]對(duì)Al-Mn-Pd與兩種航空材料SS316L和AlSi52100進(jìn)行微動(dòng)磨損實(shí)驗(yàn)(5 N法向載荷,100次振動(dòng))后測(cè)量黏著力,幾乎未發(fā)生黏著. 根據(jù)以往對(duì)于晶體摩擦性能的研究,可以將摩擦因數(shù)分為黏著項(xiàng)和犁溝項(xiàng)[76]. 而犁溝項(xiàng)與晶體的硬化[77-78]、高溫下的熱激活[79]、再結(jié)晶[80-81]以及磨粒的剪切有關(guān);黏著項(xiàng)與晶體的表面能[82]、晶面上的臨界分切應(yīng)力[82]等因素有關(guān). 類似地,對(duì)準(zhǔn)晶塑性變形的深入研究有助于進(jìn)一步探索其摩擦性能.

        準(zhǔn)晶的表面結(jié)構(gòu)與其表面性能有關(guān),將離子濺射后進(jìn)行退火處理的準(zhǔn)晶表面在高真空環(huán)境下使用掃瞄隧道顯微鏡和低能電子衍射分析其表面結(jié)構(gòu). 對(duì)于Al-Pd-Mn和Al-Cu-Fe二十面體準(zhǔn)晶的五重表面,材料表面出現(xiàn)了一系列平臺(tái),平臺(tái)之間的高度為L(zhǎng)和S兩種比值為黃金數(shù)的距離的線性組合,排列符合Fibonacci數(shù)列. 表層為原子密排面,表層中Al元素含量較高,有利于降低表面能. 在Al-Cu-Fe二十面體準(zhǔn)晶的五重表面上還觀察到了五邊形淺坑和螺型位錯(cuò)[83-85]. 在Al-Pd-Mn二十面體準(zhǔn)晶三重表面的平臺(tái)上,呈現(xiàn)小面生長(zhǎng)的趨勢(shì)[86],其二重表面平臺(tái)之間的高度符合Fibonacci數(shù)列并出現(xiàn)小面生長(zhǎng)[87],表明Al-Pd-Mn準(zhǔn)晶二重和三重表面的穩(wěn)定性弱于五重表面. 對(duì)于Al-Pd-Re多晶準(zhǔn)晶的實(shí)驗(yàn)分析結(jié)果表明,其二重表面相比于其他兩種表面更穩(wěn)定[88]. Ag-In-Yb準(zhǔn)晶的表面分析結(jié)果表明:其3種對(duì)稱表面都穿過菱形三十面體團(tuán)簇中心,僅有二重表面是對(duì)應(yīng)方向上原子密度最高的面,3種對(duì)稱表面都是對(duì)應(yīng)方向上Ag原子含量較低的面,使其具有相對(duì)較低的表面能; 在3種表面上都沒有觀察到小面生長(zhǎng),表明這3個(gè)面都是穩(wěn)定的面,起連接作用的Yb 原子相比于團(tuán)簇中的Yb原子更不穩(wěn)定,會(huì)降低平臺(tái)表面的穩(wěn)定性[89-91]. Al-Co-Ni十重準(zhǔn)晶在二重表面上的原子結(jié)構(gòu)在十重軸方向上周期性排布,在二重軸方向上的排布呈現(xiàn)Fibonacci數(shù)列,與Takakura等提出的模型較符合[92-93]. 準(zhǔn)晶的清潔表面也被用來作為模板制備新型薄膜. Ledieu等[94]將銅原子沉積在i-Al-Pd-Mn的五重表面,銅原子分別在五重表面的5個(gè)主方向上形成條帶,在主方向上原子呈周期性排列,在垂直于主方向上呈符合Fibonacci數(shù)列的準(zhǔn)周期性排列,在580 K退火后準(zhǔn)周期性消失. Ledieu等[95]將Si原子沉積在i-Al-Pd-Mn的五重表面,觀察到Si原子被吸附在偽Mackay型團(tuán)簇的中心位置,并認(rèn)為與Mn原子周圍價(jià)電荷密度最大,與Si原子形成共價(jià)鍵有關(guān)[96]. Pd原子在i-Al-Pd-Mn準(zhǔn)晶五重表面的單層原子沉積表面,Pd原子在基體上出現(xiàn)準(zhǔn)周期排列,與基體的常數(shù)之比為黃金數(shù)1.618,并在費(fèi)米能級(jí)上呈現(xiàn)贗能隙[97]. Yadav等[30]將i-Al-Cu-Fe準(zhǔn)晶表面用NaOH溶液化學(xué)浸出后,通過掃描電子顯微鏡觀察其表面,結(jié)果顯示i-Al-Cu-Fe準(zhǔn)晶表面出現(xiàn)了大量尺寸規(guī)則的納米Cu立方體和少量的納米Fe立方體,為納米結(jié)構(gòu)材料的合成提供了新思路.

        在準(zhǔn)晶體的磁學(xué)、電學(xué)以及熱電性質(zhì)等方面,對(duì)于d-Al-Co-Ni及d-Al-Cu-Co的研究表明,300 K時(shí)垂直和平行于十重軸方向上的電阻率之比分別為8和7,且在垂直于十重軸方向上呈現(xiàn)負(fù)的溫度系數(shù),在平行于十重軸方向上呈現(xiàn)正的溫度系數(shù)[98]. 實(shí)驗(yàn)測(cè)得近似相Y-Al-Ni-Co在贗準(zhǔn)周期平面內(nèi)的兩個(gè)方向上表現(xiàn)為相差不大的正的磁化系數(shù),而贗十重軸方向上表現(xiàn)為負(fù)的磁化系數(shù)且絕對(duì)值比贗準(zhǔn)周期平面內(nèi)大很多[99]. d-Al-Co-Ni的塞貝克系數(shù)在十重軸方向上呈現(xiàn)先下降后上升的趨勢(shì),并由負(fù)值變?yōu)檎担跍?zhǔn)周期平面內(nèi)各方向上相近,十重軸方向與準(zhǔn)周期平面內(nèi)的塞貝克系數(shù)差別較大[100]. 需要引起特別注意的是,不同文獻(xiàn)中即使對(duì)于同種準(zhǔn)晶相同物理量的測(cè)量在數(shù)值或趨勢(shì)上也有較大差異,可能與樣品品質(zhì)及氧化層有關(guān)[101]. Bobnar等[100,102]分析了十重準(zhǔn)晶對(duì)稱性與張量的關(guān)系,認(rèn)為理想的十重準(zhǔn)晶在準(zhǔn)周期平面內(nèi)為各向同性,準(zhǔn)周期平面內(nèi)與十重軸之間各向異性,并比較了d-Al-Co-Ni不同方向上的磁化系數(shù)、電阻率、霍爾系數(shù)、摩爾比熱、導(dǎo)熱系數(shù),驗(yàn)證了這一觀點(diǎn). 通過分析二十面體對(duì)稱性與張量的關(guān)系,理想的二十面體對(duì)稱結(jié)構(gòu)的物理性能應(yīng)為各項(xiàng)同性,與i-Ag-In-Yb準(zhǔn)晶的磁化系數(shù)、電阻率、霍爾系數(shù)、摩爾比熱、導(dǎo)熱系數(shù)在二重軸、三重軸、五重軸上相近的實(shí)驗(yàn)數(shù)據(jù)吻合.

        4.2 模擬方法

        目前,除了實(shí)驗(yàn)手段,隨著計(jì)算機(jī)科學(xué)的發(fā)展,對(duì)于準(zhǔn)晶力學(xué)與機(jī)械性能模擬的手段趨于多樣化,主要有連續(xù)介質(zhì)力學(xué)方法[103],分子動(dòng)力學(xué)模擬方法[49-51,74,104-113],有限元方法[114-116]等.

        連續(xù)介質(zhì)力學(xué)方法在現(xiàn)有的準(zhǔn)晶力學(xué)行為的研究上應(yīng)用最多,研究范圍最廣,以國(guó)內(nèi)范天佑[104]等學(xué)者為代表,將具體問題轉(zhuǎn)化成偏微分方程邊界值問題,得到應(yīng)力場(chǎng)的解析解.

        如果在原子尺度上研究準(zhǔn)晶塑性及斷裂行為的微觀機(jī)理,分子動(dòng)力學(xué)模擬是一條直觀且有效的途徑. Mikulla等[49-51]模擬了二維十次準(zhǔn)晶在變形過程中的位錯(cuò)運(yùn)動(dòng),觀察到了準(zhǔn)晶中位錯(cuò)運(yùn)動(dòng)時(shí),其后會(huì)伴隨著相位子場(chǎng)層錯(cuò),指出其脆性與相位子場(chǎng)層錯(cuò)存在關(guān)系;而準(zhǔn)晶中的團(tuán)簇對(duì)位錯(cuò)和裂紋尖端的移動(dòng)起到阻礙的作用,當(dāng)?shù)谝粭l位錯(cuò)切過團(tuán)簇體時(shí)會(huì)減弱該團(tuán)簇的阻礙作用,造成應(yīng)變軟化,提出位錯(cuò)發(fā)射-相位子墻-斷裂機(jī)制. Trebin等[105]模擬了二元平面準(zhǔn)晶的裂紋擴(kuò)展,指出二元二維準(zhǔn)晶發(fā)生I型裂紋的過程中,位錯(cuò)尖端向36°方向發(fā)射位錯(cuò),并在其后產(chǎn)生相位子場(chǎng)層錯(cuò),沿著層錯(cuò)方向材料強(qiáng)度降低,材料容易開裂,且相位子場(chǎng)層錯(cuò)處鍵能下降,更容易生成位錯(cuò),造成軟化. Bunz等[104]基于原子跳躍引起了相位子場(chǎng)缺陷,模擬了十重對(duì)稱Al-Cu-Co中的原子跳躍,指出Al原子比過渡金屬更易動(dòng),跳躍方向傾向于沿著十重對(duì)稱軸方向或準(zhǔn)周期平面上. Schaaf等[106]模擬了三維二十面體準(zhǔn)晶在兩種剪切變形下的刃型位錯(cuò)運(yùn)動(dòng),觀測(cè)到了伴有位錯(cuò)攀移的位錯(cuò)滑移,并在位錯(cuò)運(yùn)動(dòng)過程中某些特定點(diǎn)上產(chǎn)生了釘扎效應(yīng),使得位錯(cuò)線呈彎曲狀,并指出穩(wěn)定的團(tuán)簇可能是準(zhǔn)晶位錯(cuò)控速機(jī)制中的重要因素,位錯(cuò)更傾向于在垂直于二重軸的平面上運(yùn)動(dòng). Rudhart等[109]模擬了在不同溫度下二維二元準(zhǔn)晶的斷裂,指出準(zhǔn)晶在3種不同溫度區(qū)間內(nèi)的3種不同失效模式. ENGEL等[113]模擬了準(zhǔn)晶相位子場(chǎng)翻轉(zhuǎn),指出勢(shì)能比均值更高的粒子更容易發(fā)生相位子場(chǎng)翻轉(zhuǎn). 盡管分子動(dòng)力學(xué)模擬方法直觀有效,但是目前為止,在大多數(shù)模擬中所采用的原子模型和勢(shì)函數(shù)都采取了比較理想化的人為簡(jiǎn)化,模擬結(jié)果雖然在一定程度上能反映準(zhǔn)晶的某些特性,但其精確性仍然有待提高. 由于準(zhǔn)晶體系中原子幾何排列的復(fù)雜性,與晶體的勢(shì)函數(shù)選取不同的是,準(zhǔn)晶中的勢(shì)函數(shù)通常具有若干個(gè)能量極值點(diǎn),也就是需要引入振蕩項(xiàng). 在模擬過程中的勢(shì)函數(shù),最早采用的是L-J勢(shì),之后的文獻(xiàn)中有采用了EAM勢(shì),以及精度相對(duì)較高的基于第一性原理計(jì)算得到的Realistic型對(duì)勢(shì). 早期的準(zhǔn)晶建模較多依賴于Tubingen三角形,而目前主要采取其近似相模型. 隨著Yb-Cd準(zhǔn)晶的成功解析[53],近年來又成功解析了Sc-Zn準(zhǔn)晶[117],為Tsai型二元準(zhǔn)晶原子結(jié)構(gòu)的精修提供了基礎(chǔ)[118],從而為之后準(zhǔn)晶的精確模擬提供了便利.

        在較為復(fù)雜的工程應(yīng)用中,有限元方法提供了獲得數(shù)值解的新思路. 楊連枝等[114]提出通過立方準(zhǔn)晶廣義能量泛函的變分方法得到靜力問題的有限元解法,并模擬了受到拉伸載荷的含有圓片狀裂紋的圓柱,其模擬結(jié)果與解析解結(jié)果較為一致. 盡管提出準(zhǔn)晶體的有限元模擬較晚,但隨著準(zhǔn)晶體的工程化應(yīng)用,有限元模擬對(duì)于準(zhǔn)晶在復(fù)雜工程問題上的數(shù)值求解有明顯優(yōu)勢(shì).

        5 應(yīng)用前景

        表面涂層材料. 考慮到準(zhǔn)晶體材料具有低粘著性,并且相對(duì)于傳統(tǒng)不粘鍋材料特氟龍具有耐刮擦、高溫穩(wěn)定的特點(diǎn),基于準(zhǔn)晶體的不粘鍋已有專利. 準(zhǔn)晶體較低的表面潤(rùn)濕性以及高硬度造成了其較強(qiáng)的耐磨性以及較低的摩擦因數(shù),使得其成為一種潛在的減摩涂層材料;但是表面氧化膜增加了其脆性,在工程應(yīng)用中需要克服其表面氧化膜帶來的不利影響. AlCuFe等準(zhǔn)晶具有與傳統(tǒng)隔熱涂層材料ZrO2類似的導(dǎo)熱系數(shù),與ZrO2不同的是,準(zhǔn)晶涂層與金屬基體具有相似的體積膨脹系數(shù),減小了涂層與基體之間的應(yīng)力,但受到了鋁基合金熔點(diǎn)普遍不高的限制,可使用溫度不如ZrO2,無法用于大型客機(jī),但比較適合用于小型發(fā)動(dòng)機(jī)葉片.

        復(fù)合材料增強(qiáng)相. 塊體準(zhǔn)晶呈現(xiàn)較為普遍的高脆性以及體積的限制使其目前難以作為結(jié)構(gòu)材料,但將其作為彌散增強(qiáng)相,仍可以保持較高的強(qiáng)度,可顯著增加其韌性,并具有較低的摩擦因數(shù)和磨損率. 前文中提到的含準(zhǔn)晶相析出的馬氏體時(shí)效剛12%Cr-9%Ni-4%Mo-2%Cu-1%Ti就是一個(gè)較為成功的應(yīng)用. Kenzari等[119]通過3D計(jì)算機(jī)輔助技術(shù)用選擇性激光燒結(jié)的方法得到的含AlCuFeB的聚酰胺零部件已得到應(yīng)用,該聚合物復(fù)合材料與其基體材料相比,摩擦因數(shù)和磨損率分別為后者的63%和30%,表面性能顯著提高.

        此外,準(zhǔn)晶體在儲(chǔ)氫材料、催化劑和光學(xué)材料方面也具有應(yīng)用價(jià)值.

        6 存在的問題

        目前,準(zhǔn)晶性能與工程應(yīng)用仍存在如下需要進(jìn)一步研究的問題:

        1)對(duì)于準(zhǔn)晶結(jié)構(gòu)的認(rèn)知仍較為有限,應(yīng)利用已有的結(jié)構(gòu)分析方法以及準(zhǔn)晶近似相的分析結(jié)果,對(duì)準(zhǔn)晶模型進(jìn)行結(jié)構(gòu)精修.

        2)用于模擬準(zhǔn)晶的勢(shì)函數(shù)以具有多個(gè)能量極值點(diǎn)為特征,精度高于傳統(tǒng)勢(shì)函數(shù),需要通過第一性原理計(jì)算得到.

        3)利用分子動(dòng)力學(xué)模擬等方法,對(duì)準(zhǔn)晶的結(jié)構(gòu)以及動(dòng)力學(xué)行為進(jìn)行探索,為新型準(zhǔn)晶的發(fā)現(xiàn)和設(shè)計(jì)提供思路.

        4)進(jìn)行準(zhǔn)晶的微觀模擬研究,在原子尺度上分析準(zhǔn)晶的塑性變形機(jī)制以及材料缺陷的演化.

        5)準(zhǔn)晶材料的改性研究問題. 準(zhǔn)晶仍受到高脆性的制約,需要尋找新的同時(shí)具有高韌性和高強(qiáng)度的合金系.

        6)準(zhǔn)晶材料的成本控制問題,盡管隨著工藝提高,準(zhǔn)晶的制造成本已顯著下降,塊材成品體積與品質(zhì)提升,但與傳統(tǒng)金屬材料相比仍不具備明顯優(yōu)勢(shì).

        7)準(zhǔn)晶的機(jī)械及力學(xué)行為的研究,建立動(dòng)態(tài)斷裂以及摩擦學(xué)模型,以便于更好地利用準(zhǔn)晶.

        8)準(zhǔn)晶材料機(jī)械零件的開發(fā),例如準(zhǔn)晶材料滾動(dòng)軸承和齒輪涂層的研究.

        9)準(zhǔn)晶機(jī)械零件的設(shè)計(jì)準(zhǔn)則與設(shè)計(jì)方法的研究. 利用準(zhǔn)晶材料的特殊性能,用于機(jī)械產(chǎn)品設(shè)計(jì).

        7 結(jié)束語

        目前,準(zhǔn)晶及其近似相的性能研究仍受到塊體體積與品質(zhì)的限制,高質(zhì)量大塊單準(zhǔn)晶及近似相單晶制備工藝的優(yōu)化有利于準(zhǔn)晶性能的更深入研究. 當(dāng)前已發(fā)現(xiàn)的準(zhǔn)晶所呈現(xiàn)的高脆性限制了其作為結(jié)構(gòu)材料的應(yīng)用,可利用準(zhǔn)晶彌散強(qiáng)化,低摩擦系數(shù)的特點(diǎn)開發(fā)適用于具體工況的低成本表面涂層和復(fù)合材料. 在理論研究方面,其模擬精度仍然受到其結(jié)構(gòu)模型和原子間相互作用勢(shì)的制約. 準(zhǔn)晶原子結(jié)構(gòu)的解析仍然有待發(fā)展,其有助于計(jì)算模擬精度的提高,為準(zhǔn)晶及含準(zhǔn)晶相合金的物理機(jī)制的研究和進(jìn)一步工程化應(yīng)用提供基礎(chǔ).

        [1] SHECHTMAN D,BLECH I,GRATIAS D,et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. DOI: 10.1103/PhysRevLett.53.1951.

        [2] ZHANG Z,YE H Q,KUO K H. A new icosahedral phase with m35 symmetry[J]. Philosophical Magazine A, 1985, 52(6): L49-L52.DOI: 10.1080/01418618508242135.

        [3] DUBOIS J M. New prospects from potential applications of quasicrystalline materials[J]. Materials Science and Engineering: A, 2000, 294: 4-9.DOI: 10.1016/S0921-5093(00)01305-8.

        [4] RABSON D A. Toward theories of friction and adhesion on quasicrystals[J]. Progress in Surface Science, 2012, 87(9): 253-271.DOI: 10.1016/j.progsurf.2012.10.001.

        [5] OLSSON S,BROITMAN E,GARBRECHT M,et al. Mechanical and tribological properties of AlCuFe quasicrystal and Al(Si)CuFe approximant thin films[J]. Journal of Materials Research, 2016, 31(2): 232-240.DOI: 10.1557/jmr.2015.384.

        [6]BRUNET P,ZHANG L M,SORDELET D J,et al. Comparative study of microstructural and tribological properties of sintered, bulk icosahedral samples[J]. Materials Science and Engineering: A, 2000, 294: 74-78.DOI: 10.1016/S0921-5093(00)01202-8.

        [7]INOUE A,ZHANG Tao,CHEN Minwei,et al. Mechanical properties of bulk amorphous Zr-Al-Cu-Ni-Ag alloys containing nanoscale quasicrystalline particles[J]. Materials Transactions, 1999, 40(12): 1382-1389.DOI: 10.2320/matertrans1989.40.1382.

        [8]WITTMANN R,URBAN K,SCHANDL M,et al. Mecanical properties of single quasicrystalline AlCuCoSi[J]. Journal of Materials Research, 1991, 6(6): 1165-1168.DOI: 10.1557/JMR.1991.1165.

        [9] YOKOYAMA Y,INOUE A,MASUMOTO T. Mechanical-properties, fracture mode and deformation-behavior of Al70Pd20Mn10 single quasicrystal[J]. Materials Transactions Jim, 1993, 34(2): 135-145.DOI: 10.2320/matertrans1989.34.135.

        [10]BLAS F J G ,ALGABA J M,ALVAREZ J,et al. Application of quasicrystalline materials as thermal barriers in aeronautics and future perspectives of use for these materials[C] // MRS 1998 Fall Meeting. [S.l.]: Cambridge Univ Press,1998:447.DOI: 10.1557/PROC-553-447.

        [11]DUBOIS J M,KANG S S,MASSIANI Y. Application of quasicrystalline alloys to surface coating of soft metals[J]. Journal of Non-Crystalline Solids, 1993, 153: 443-445.DOI: 10.1016/0022-3093(93)90392-B.

        [12]MIGLIERINI M,NASU S. Magnetic, electronic and structure-pro-perties of icosahedral quasicrystals[J]. Materials Transactions Jim, 1993, 34(2): 178-187.DOI: 10.2320/matertrans1989.34.178.

        [13]STROUD R M,VIANO A M,GIBBONS P C,et al. Stable Ti based quasicrystal offers prospect for improved hydrogen storage[J]. Applied physics letters, 1996, 69(20): 2998-3000.DOI: 10.1063/1.117756.

        [14]LUBENSKY T C,RAMASWAMY S ,TONER J. Dislocation motion in quasicrystals and implications for macroscopic properties[J]. Physical Review B, 1986, 33(11): 7715-7719.DOI: 10.1103/PhysRevB.33.7715.

        [15]LIU P,STIGENBERG A H,NILSSON J O. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr9Ni4Mo maraging stainless steel[J]. Acta Metallurgica Et Materialia, 1995, 43(7): 2881-2890.DOI: 10.1016/0956-7151(94)00461-P.

        [16]LEE K,HSU J L,NAUGLE D,et al. Multi-phase quasicrystalline alloys for superior wear resistance[J]. Materials & Design, 2016, 108: 440-447.DOI: 10.1016/j.matdes.2016.06.113.

        [17] ENGEL M, DAMASCENO P F, PHILLIPS C L, et al. Computational self-assembly of a one-component icosahedral quasicrystal[J]. Nature Materials, 2015, 14(1):109-116.DOI: 10.1038/nmat4152.

        [18]FENG Y C,LU G,WITHERS R L. An incommensurate structure with cubic point group symmetry in rapidly solidified V-Ni-Si alloy[J]. Journal of Physics Condensed Matter, 1989, 1(23): 3695-3700.

        [19]BENDERSKY L. Quasicrystal with one-dimensional translational sy-mmetry and a tenfold rotation axis[J]. Physical Review Letters, 1985, 55(14): 1461-1463.DOI: 10.1103/PhysRevLett.55.1461.[20]WU J S,KUO K H. Decagonal quasicrystal and related crystalline phases in Mn-Ga alloys with 52 to 63 a/o Ga[J]. Metallurgical and Materials Transactions A, 1997, 28(13): 729-742.DOI: 10.1007/s11661-997-1000-y.

        [21]SCHAEFER R J,BENDERSKY L. Replacement of icosahedral AlMn by decagonal phase[J]. Scripta Metallurgica, 1986, 20(5): 745-750.DOI: 10.1016/0036-9748(86)90504-1.

        [22]WASIO N A,QUARDOKUS R C,F(xiàn)ORREST R P,et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals[J]. Nature, 2014, 507(7490): 86-89.DOI: 10.1038/nature12993.

        [23]WANG N,CHEN H ,KUO K H. Two-dimensional quasicrystal with eightfold rotational symmetry[J]. Physical Review Letters, 1987, 59(9): 1010-1013.DOI: 10.1103/PhysRevLett.59.1010.

        [24]ISHIMASA T,NISSEN H U,F(xiàn)UKANO Y. New ordered state between crystalline and amorphous in Ni-Cr particles[J]. Physical Review Letters, 1985, 55(55): 511-513.DOI: 10.1103/PhysRevLett.55.511.

        [25]ZENG Xiangbing,UNGAR G, LIU Yongsong,et al. Supramolecular dendritic liquid quasicrystals[J]. Nature, 2004, 428(6979): 157-160.DOI: 10.1038/nature02368.

        [26]FISCHER S,EXNER A,ZIELSKE K,et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry[J]. Proceedings of the National Academy of Sciences, 2011, 108(5): 1810-1814.DOI: 10.1073/pnas.1008695108.

        [27]DOTERA T,OSHIRO T,ZIHERL P. Mosaic two-lengthscale quasicrystals[J]. Nature, 2014, 506(7487): 208-211.DOI: 10.1038/nature12938.

        [28]周公度,郭可信. 晶體和準(zhǔn)晶體的衍射[M].北京:北京大學(xué)出版社, 1999:251-252.

        ZHOU Gongdu, GUO Kexin. Diffraction of crystal and quasicrystal[M]. Beijing: Peking University Press, 1999:251-252.

        [29]MERLIN R,BAJEMA K,CLARKE R,et al. Quasiperiodic gaas-alas heterostructures[J]. Physical Review Letters, 1985, 55(17): 1768-1770.DOI: 10.1103/PhysRevLett.55.1768.

        [30]YADAV T P, MISHRA S S, SRIVASTAVA O N. Copper nanocubes on Al 65 Cu 20 Fe 15 quasicrystalline surface[J]. Journal of Alloys and Compounds, 2017, 712: 134-138.DOI: 10.1016/j.jallcom.2017.04.058.

        [31]BINDI L,STEINHARDT P J,YAO Nan,et al. Natural quasicrystals[J]. science, 2009, 324(5932): 1306-1309.DOI: 10.1126/science.1170827.

        [32]BINDI L, YAO N, LIN C, et al. Natural quasicrystal with decagonal symmetry[J]. Scientific Reports, 2015(5):9111.DOI: 10.1038/srep09111.

        [33]HOLLISTER L S, BINDI L, YAO N, et al. Impact-induced shock and the formation of natural quasicrystals in the early solar system.[J]. Nature Communications, 2014(5):4040.DOI: 10.1038/ncomms5040.

        [34]FRANK F C T,KASPER J S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures[J]. Acta Crystallographica, 1959, 12(7): 483-499.DOI: 10.1107/S0365110X59001499.

        [35]FRANK F C, KASPER J S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles[J]. Acta Crystallographica, 1958, 11(3): 184-190.DOI: 10.1107/S0365110X58000487.

        [36]LEVINE D,STEINHARDT P J. Quasicrystals: a new class of ordered structures[J]. Physical Review Letters, 1984, 53(26): 2477-2480.DOI: 10.1103/PhysRevLett.53.2477.

        [37]LEVINE D,STEINHARDT P J. Quasicrystals. I. Definition and structure[J]. Physical Review B, 1986, 34(2): 596-616.DOI: 10.1103/PhysRevB.34.596.

        [38]SOCOLAR J E S,STEINHARDT P J. Quasicrystals. II. Unit-cell configurations[J]. Physical Review B, 1986, 34(2): 617-647.DOI: 10.1103/PhysRevB.34.617.

        [39]PENROSE R. Pentaplexity a class of non-periodic tilings of the plane[J]. Mathematical Intelligencer, 1979, 2(1): 32-37. DOI: 10.1007/BF03024384.

        [40]STEPHENS P W, GOLDMAN A I. The structure of quasicrystals[J]. Scientific American, 1991, 150-151(3/4):44-47. DOI:10.1038/scientificamerican0491-44.

        [41]WIDOM M,STRANDBURG K J,SWENDSEN R H. Quasicrystal equilibrium state[J]. Physical Review Letters, 1987, 58(7): 706-709.DOI: 10.1103/PhysRevLett.58.706.

        [42]BRUIJN N G. Algebraic theory of Penrose′s non-periodic tilings of the plane. II[C] // Indagationes Mathematicae (Proceedings). North-Holland:Elsevier,1981:53-66.DOI: 10.1016/1385-7258(81)90017-2.

        [43]SOCOLAR J E S,STEINHARDT P J,LEVINE D. Quasicrystals with arbitrary orientational symmetry[J]. Physical Review B, 1985, 32(8): 5547-5550.DOI: 10.1103/PhysRevB.32.5547.

        [44]ELSER V. Indexing problems in quasicrystal diffraction[J]. Physical Review B, 1985, 32(8): 4892-4898. DOI:10.1103/PhysRevB.32.4892.

        [45]WANG Z M,KUO K H. The octagonal quasilattice and electron diffraction patterns of the octagonal phase[J]. Acta Crystallographica Section A: Foundations of Crystallography, 1988, 44(6): 857-863.DOI: 10.1107/S0108767388004921.

        [46]ISHIHARA K N,YAMAMOTO A . Penrose patterns and related structures. I. Superstructure and generalized Penrose patterns[J]. Acta Crystallographica Section A: Foundations of Crystallography, 1988, 44(4): 508-516.DOI: 10.1107/S0108767388002958.

        [47]YAMAMOTO A ,ISHIHARA K N. Penrose patterns and related structures. II. Decagonal quasicrystals[J]. Acta Crystallographica Section A: Foundations of Crystallography, 1988, 44(5): 707-714.DOI: 10.1107/S010876738800296X.

        [48]YANG Q B,WEI W D. Description of the dodecagonal quasicrystal by a projection method[J]. Physical Review Letters, 1987, 58(10): 1020-1023.DOI: 10.1103/PhysRevLett.58.1020.

        [49]MIKULLA R,ROTH J,TREBIN H R. Simulation of shear-stress in 2-dimensional decagonal quasicrystals[J]. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 1995, 71(5): 981-989.DOI: 10.1080/01418639508243601.

        [50]MIKULLA R,GUMBSCH P,TREBIN H R. Dislocations in quasicrystals and their interaction with cluster-like obstacles[J]. Philosophical Magazine Letters, 1998, 78(5): 369-376.DOI: 10.1080/095008398177760.

        [51]MIKULLA R,STADLER J,KRUL F,et al. Crack propagation in quasicrystals[J]. Physical Review Letters, 1998, 81(15): 3163-3166.DOI: 10.1103/PhysRevLett.81.3163.

        [52]ELSER V,HENLEY C L. Crystal and quasicrystal structures in Al-Mn-Si alloys[J]. Physical review letters, 1985, 55(26): 2883-2886.DOI: 10.1103/PhysRevLett.55.2883.

        [53]TAKAKURA H,GMEZ C P,YAMAMOTO A,et al. Atomic structure of the binary icosahedral Yb-Cd quasicrystal[J]. Nature Material, 2007, 6(6): 58-63.DOI: 10.1038/nmat1799.

        [54]TSAI A P,GUO J Q,ABE E,et al. Alloys: A stable binary quasicrystal[J]. Nature, 2000, 408(6812): 537-538.DOI: 10.1038/35046202.

        [55]BAUER B, MEISTERERNST G, HAERTWIG J, et al. Czochralski growth and X-ray topographic characterization of decagonal AlCoNi quasicrystals[J]. Philosophical Magazine, 2006, 86(3/4/5): 317-322.DOI: 10.1080/14786430500253927.

        [56]GILLE P, BAUER B, HAHNE M, et al. Single crystal growth of Al-based intermetallic phases being approximants to quasicrystals[J]. Journal of Crystal Growth, 2011, 318(1):1016-1020.DOI: 10.1016/j.jcrysgro.2010.10.021.

        [57]CUI C, TSAI A P. Growth of large single-grain quasicrystals in the Ag-In-Yb system by Bridgman method[J]. Journal of Crystal Growth, 2009, 312(1):131-135.DOI: 10.1016/j.jcrysgro.2009.09.038.

        [58]CUI C, TSAI A P. Growth of large-grain Ag-In-Yb icosahedral quasicrystals and approximant crystals[J]. Journal of Alloys & Compounds, 2012, 536(5):91-93.DOI: 10.1016/j.jallcom.2012.05.031.

        [59]CUI C, TSAI A P. Synthesis of large single-grain 1/1 approximant crystals in the Ag-In-Eu system by the self-flux method[J]. Philosophical Magazine, 2011, 91(19/20/21):2443-2449.DOI: 10.1080/14786435.2010.511600.

        [60]SATO T J, HIRANO T, TSAI A P. Single-crystal growth of the decagonal Al-Ni-Co quasicrystal[J]. Journal of Crystal Growth, 1998, 191(3):545-552.DOI: 10.1016/S0022-0248(98)00164-X.[61]TSAI A P. Discovery of stable icosahedral quasicrystals: progress in understanding structure and properties[J]. Chemical Society Reviews, 2013, 44(34):5352-5365.DOI: 10.1039/C3CS35388E.

        [62]SOCOLAR J E S,LUBENSKY T C,STEINHARDT P J. Phonons, phasons, and dislocations in quasicrystals[J]. Physical Review B, 1986, 34(5): 3345-3360.DOI: 10.1103/PhysRevB.34.3345.

        [63]WOLLGARTEN M,BEYSS M,URBAN K,et al. Direct evidence for plastic-deformation of quasicrystals by means of a dislocation mechanism[J]. Physical Review Letters, 1993, 71(4): 549-552.DOI: 10.1103/PhysRevLett.71.549.

        [64]MOMPIOU F,BRESSON L,CORDIER P,et al. Dislocation climb and low-temperature plasticity of an Al-Pd-Mn quasicrystal[J]. Philosophical Magazine, 2003, 83(27): 3133-3157.DOI: 10.1080/1478643031000155110.

        [65]MESSERSCHMIDT U,BARTSCH M,F(xiàn)EUERBACHER M,et al. Friction mechanism of dislocation motion in icosahedral Al-Pd-Mn quasicrystals[J]. Philosophical Magazine A, 1999, 79(9): 2123-2135.DOI: 10.1080/01418619908210412.

        [66]TEXIER M,PROULT A,BONNEVILLE J,et al. Microstructure of I-Al-Pd-Mn deformed at low and intermediate temperatures[J]. Materials Science and Engineering: A, 2004, 387: 1023-1027.DOI: 10.1016/j.msea.2004.01.120.

        [67]ZOU Y,KUCZERA P,SOLOGUBENKO A,et al. Superior room-temperature ductility of typically brittle quasicrystals at small sizes[J]. Nature Communications, 2016(7):12261.DOI: 10.1038/ncomms12261.

        [68]ZOU Y,KUCZERA P,STEURER W,et al. Disappearance of plastic anisotropy in decagonal quasicrystals at small scales and room temperature[J]. Extreme Mechanics Letters, 2016(8):229-234.DOI: 10.1016/j.eml.2016.02.005.

        [69]SCHALL P,F(xiàn)EUERBACHER M,URBAN K. Plastic deformation of decagonal Al73Ni10Co17 single quasicrystals[J]. Philosophical Magazine, 2004, 84(7): 705-718.DOI: 10.1080/14786430310001624857.

        [70]FEUERBACHER A,SCHALL P. Plastic behaviour of decagonal Al-Ni-Co single quasicrystals[J]. Scripta Materialia, 2003, 49(1): 25-31.DOI: 10.1016/S0921-5093(00)01653-1.

        [71]LAPLANCHE G,BONNEVILLE J,JOULAIN A,et al. Mechanical properties of Al-Cu-Fe quasicrystalline and crystalline phases: An analogy[J]. Intermetallics, 2014, 50: 54-58.DOI: 10.1016/j.intermet.2014.02.004.

        [72]PARK J Y,OGLETREE D F,SALMERON M,et al. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface[J]. Science, 2005, 309(5739): 1354-1356.DOI: 10.1126/science.1113239.

        [73]FILIPPOV A E,VANOSSI A,URBAKH M. Origin of friction anisotropy on a quasicrystal surface[J]. Physical review letters, 2010, 104(7): 074302.DOI: 10.1103/PhysRevLett.104.074302.

        [74]YE Z J.,MARTINI A,THIEL P,et al. Atomistic simulation of frictional anisotropy on quasicrystal approximant surfaces[J]. Physical Review B, 2016, 91(33): 4218-4229.DOI: 10.1103/PhysRevB.93.235438.

        [75]DUBOIS J M. Properties-and applications of quasicrystals and complex metallic alloys[J]. Chemical Society Reviews, 2012, 41(20): 6760-6777.DOI: 10.1039/C2CS35110B.

        [76]STEIJN R P. Friction and wear of single crystals[J]. Wear, 1964, 7(1): 48-66.DOI: 10.1016/0043-1648(64)90078-X.

        [77]DYER L D. Rolling friction on single crystals of copper in the plastic range[J]. Acta Metallurgica, 1961, 9(10): 928-936.DOI: 10.1016/0001-6160(61)90111-0.

        [78]BAILEY J M,GWATHMEY A T. Friction and surface deformation during sliding on a single crystal of copper[J]. Tribology Transactions, 1962, 5(1): 45-56.DOI: 10.1080/05698196208972452.

        [79]STEIJN R P. On the wear of sapphire[J]. Journal of Applied Physics, 1961, 32(10): 1951-1958.DOI: 10.1063/1.1728269.

        [80]BUCKLEY D H,JOHNSON R L. Friction and wear of hexagonal metals and alloys as related to crystal structure and lattice parameters in vacuum[J]. Tribology Transactions, 1966, 9(2): 121-135.DOI: 10.1080/05698196608972128.

        [81]BUCKLEY D H,JOHNSON R L. Influence of crystal structure on friction characteristics of rare-earth and related metals in vacuum to 10-10 mm of mercury[J]. Tribology Transactions, 1965, 8(2): 123-132.DOI: 10.1080/05698196508972086.

        [82]UCKLEY D H. The influence of the atomic nature of crystalline materials on friction[J]. Tribology Transactions, 1968, 11(2): 89-100.DOI: 10.1080/05698196808972212.

        [83]GR?NING O, R. WIDMER, P. RUFFIEUX, et al. Scanning tunnelling microscopy with atomic resolution on the twofold surface of the icosahedral AlPdMn quasicrystal[J]. Philosophical Magazine, 2006, 86(6/7/8):773-779.DOI: 10.1080/14786430500306535.

        [84]SHARMA H R, FOURNéE V, SHIMODA M, et al. Structure of the fivefold surface of the icosahedral Al-Cu-Fe quasicrystal: experimental evidence of bulk truncations at larger interlayer spacings[J]. Physical Review Letters, 2004, 93(16):165502.DOI: 10.1103/PhysRevLett.93.165502.

        [85]CAI T, SHI F, SHEN Z, et al. Structural aspects of the fivefold quasicrystalline Al-Cu-Fe surface from STM and dynamical LEED studies[J]. Surface Science, 2001, 495(1/2):19-34.DOI: 10.1016/S0039-6028(01)01500-X.

        [86]ROUXEL D, CAI T H, JENKS C J, et al. Structural aspects of the threefold surface of icosahedral Al-Pd-Mn[J]. Surface Science, 2000, 461(1):L521-L527.DOI: 10.1016/S0039-6028(00)00513-6.

        [87]SHEN Z, JENKS C J, ANDEREGG J, et al. Structure and stability of the twofold surface of icosahedral Al-Pd-Mn by low-energy electron diffraction and X-ray photoemission spectroscopy[J]. Physical Review Letters, 1997, 78(6):1050-1053.DOI: 10.1103/PhysRevLett.78.1050.

        [88]TAMURA R, YADAV T P, MCLEOD I M, et al. Scanning tunneling microscopy of a polygrain Al-Pd-Re quasicrystal: study of the relative surface stability.[J]. Journal of Physics Condensed Matter, 2013, 25(39):395007.DOI: 10.1088/0953-8984/25/39/395007.

        [89]NUGENT P J, SMERDON J A, MCGRATH R, et al. Step-terrace morphology and reactivity to C60 of the five-fold icosahedral Ag-In-Yb quasicrystal[J]. Philosophical Magazine, 2011, 91(19/20/21): 2862-2869.DOI: 10.1080/14786435.2010.514870.

        [90]CUI C, NUGENT P J, SHIMODA M, et al. The atomic structure of the threefold surface of the icosahedral Ag-In-Yb quasicrystal[J]. Journal of Physics Condensed Matter, 2012, 24(44):445011.DOI: 10.1088/0953-8984/24/44/445011.

        [91]CUI C, NUGENT P J, SHIMODA M, et al. Structure of the twofold surface of the icosahedral Ag-In-Yb quasicrystal[J]. Journal of Physics: Condensed Matter, 2013, 26(1): 015001.DOI: 10.1088/0953-8984/26/1/015001.

        [92]PARK J Y, OGLETREE D F, SALMERON M, et al. Atomic scale coexistence of periodic and quasiperiodic order in a 2-fold Al-Ni-Co decagonal quasicrystal surface[J]. Physical Review B, 2005, 72(22):220201(1/2/3/4).DOI: 10.1103/PhysRevB.72.220201.

        [93]TAKAKURA H, YAMAMOTO A, TSAI A P. The structure of a decagonal Al72Ni20Co8 quasicrystal[J]. Acta Crystallographica, 2001, 57(57):576-585.DOI: 10.1107/S0108767301007942.

        [94]LEDIEU J, HOEFT J T, REID D E, et al. Copper adsorption on the fivefold Al70Pd21Mn9, quasicrystal surface[J]. Physical Review B, 2005, 72(3):035420.DOI: 10.1103/PhysRevB.72.035420.

        [95]LEDIEU J. Ordering of Si atoms on the fivefold Al-Pd-Mn quasicrystal surface[J]. Physical Review B, 2006. 73 (1): 012204. DOI: 10.1103/PhysRevB.73.012204.

        [97]LEDIEU J, LEUNG L, WEARING L H, et al. Self-assembly, structure and electronic properties of a quasiperiodic lead monolayer[J]. Physical Review B, 2008, 77(7):439-446.DOI: 10.1103/PhysRevB.77.073409.

        [98]MARTIN S, HEBARD A F, KORTAN A R, et al. Transport properties of Al65Cu15Co20, and Al70Ni15Co15, decagonal quasicrystals[J]. Physical Review Letters, 1991, 67(6):719-722.DOI: 10.1103/PhysRevLett.67.719.

        [99]SMONTARA A, IVKOV J. Anisotropic magnetic, electrical, and thermal transport properties of the Y-Al-Ni-Co decagonal approximant[J]. Physical Review B Condensed Matter, 2008, 78(10): 104204.DOI: 10.1103/PhysRevB.78.104204.

        [103]范天佑. 固體與軟物質(zhì)準(zhǔn)晶數(shù)學(xué)彈性與相關(guān)理論及應(yīng)用[M].北京:北京理工大學(xué)出版社, 2014:51-271.

        FAN Tianyou.Mathematical theory of elasticity and relevant topics of solid and solft-matter quasicrystals and its applications[M]. Beijing: Beijing Institute of Technology Press,2014:51-271.

        [104]BUNZ D,ZEGER G,ROTH J,et al. Molecular dynamic studies of atomic jumps in d-Al-Cu-Co[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000, 294: 675-679.DOI: 10.1016/S0921-5093(00)01187-4.

        [105]TREBIN H R,MIKULLA R,STADLER J,et al. Molecular dyna-mics simulations of crack propagation in quasicrystals[J]. Computer Physics Communications, 1999, 121: 536-539.DOI: 10.1016/S0010-4655(99)00400-2.

        [106]SCHAAF G D,ROTH J,TREBIN H R. Numerical simulation of dislocation motion in three-dimensional icosahedral quasicrystals[J]. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2000, 80(7): 1657-1668.DOI: 10.1080/01418610008212142.

        [107]RUDHART C, R?SCH F, GHLER F, et al. Crack propagation in icosahedral model quasicrystals[J]. High Performance Computing in Science & Engineering, 2003:107-116.DOI: 10.1007/978-3-642-55876-4_8.

        [108]SCHAAF G D,ROTH J,TREBIN H R. Dislocation motion in icosahedral quasicrystals at elevated temperatures: numerical simulation[J]. Philosophical Magazine, 2003, 83(21): 2449-2465.DOI: 10.1080/0141861031000113352.

        [109]RUDHART C,TREBIN H R,GUMBSCH P. Crack propagation in perfectly ordered and random tiling quasicrystals[J]. Journal of Non-Crystalline Solids, 2004, 334: 453-456.DOI: 10.1016/j.jnoncrysol.2003.12.039.

        [110]ROSCH F,RUDHART C,ROTH J,et al. Dynamic fracture of icosahedral model quasicrystals: A molecular dynamics study[J]. Physical Review B, 2005, 72(1):014128.DOI: 10.1103/PhysRevB.72.014128.

        [111]SASAJIMA Y,TANAKA H,ITABA M,et al. Computer experiments of fracture of 2-dimensional henley-elser type quasi-crystals[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1994, 176(1/2): 283-288.DOI: 10.1016/0921-5093(94)90987-3.

        [112]TREBIN H R,MIKULLA R,ROTH J. Motion of dislocations in two-dimensional decagonal quasicrystals[J]. Journal of non-crystalline so-lids, 1993, 153: 272-275.DOI: 10.1016/0022-3093(93)90356-3.[113]ENGEL M, UMEZAKI M, TREBIN H R, et al. Dynamics of particle flips in two-dimensional quasicrystals[J]. Physical Review B Condensed Matter, 2010, 82(13):087201.DOI: 10.1103/PhysRevB.82.134206.

        [114]YANG L Z,HE F M,GAO Y .Finite element method for static problems of cubic quasicrystals[J]. Acta Physica Polonica, 2014, 126(2): 471-473.DOI:10.12693/APhysPolA.126.471.

        [115]楊連枝, 何蕃民, 高陽,等. 二十面體Al-Pd-Mn準(zhǔn)晶板的斷裂行為研究[C]//北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集.北京:中國(guó)學(xué)術(shù)期刊電子出版社,2014:.

        YANG Lianzhi, HE Fanmin, GAO Yang, et al. Study of frature behavior of icosahedral Al-Pd-Mn quasicrystal slab[C]// The Proceedings of the 20th Annual Conference of Beijing Society of Theoretical and Applied Mechanics. Beijing: China Academic Journal Electronic Publishing House, 2014.

        [116]吳祥法,范天佑,安冬梅. 用路徑守恒積分計(jì)算平面準(zhǔn)晶裂紋擴(kuò)展的能量釋放率[J]. 計(jì)算力學(xué)學(xué)報(bào), 2000, 17(1): 34-42.DOI: 10.3969/j.issn.1007-4708.2000.01.006.

        WU Xiangfa, FAN Tianyou,AN Dongmei. Energy release rate of plane quasicrystals with crack determined by path-independent E-integral[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 34-42.DOI: 10.3969/j.issn.1007-4708.2000.01.006.

        [117]AMADA T,TAKAKURA H,EUCHNER H,et al. Atomic structure and phason modes of the Sc-Zn icosahedral quasicrystal[J]. Iucrj, 2016(3): 247-258.DOI: 10.1107/S2052252516007041.

        [118]YAMADA T, TAKAKURA H, KONG T, et al. Atomic structure of the i-R-Cd quasicrystals and consequences for magnetism[J]. Physical Review B, 2016, 94(6): 060103.DOI: 10.1103/PhysRevB.94.060103.

        [119]KENZARI S,BONINA D,DUBOIS J M,et al. Quasicrystal-polymer composites for selective laser sintering technology[J]. Materials & Design, 2012, 35: 691-695.DOI: 10.1016/j.matdes.2011.10.032.

        (編輯 楊 波)

        Progress in quasicrystals and their properties research

        QIAN Chen, WANG Jiugen

        (College of Mechanical Engineering, Zhejiang University, Hangzhou 310007, China)

        Based on present research status of quasicrystal, the classification with structural symmetry, the construction of quasi-periodic model and the correlation between quasicrystal and its approximants were introduced briefly. The preparation technology of bulk single grian quasicrystal, defect evolution during plastic deformation, surface structure, surface property and other physical properties were summarized. Theoretical research such as continuum mechanics, atomistic simulation, Monte Carlo simulation and Finite Element Method were also discussed. The application of quasicrystal was prospected according to its physical properties including low surface energy, low friction coefficient and wear rate, excellent dispersion strengthening, high hardness and Young’s Modulus, plasticity at high temperature, high thermal resistance and corrosion resistance, etc. Current limitations such as brittleness and bulk volume were pointed out, and issues which remain to be solved for further engineering applications were listed.

        quasicrystal; structural symmetry; approximants; research methods; engineering applications

        10.11918/j.issn.0367-6234.201703145

        2017-03-28

        國(guó)家自然科學(xué)基金(51375436); 國(guó)家高技術(shù)研究發(fā)展計(jì)劃(2015AA043002); 浙江省重大科技專項(xiàng)(2016C01G5130970)

        錢 晨(1993—),男,博士研究生; 汪久根(1963—),教授、博士生導(dǎo)師

        汪久根, me_jg@zju.edu.cn

        TG146

        A

        0367-6234(2017)07-0001-11

        猜你喜歡
        方向
        2023年組稿方向
        方向
        青年運(yùn)動(dòng)的方向(節(jié)選)
        2022年組稿方向
        2022年組稿方向
        2021年組稿方向
        如何確定位置與方向
        2021年組稿方向
        2021年組稿方向
        大自然中的方向
        国产黑色丝袜在线观看视频| 久久性爱视频| 久久香蕉国产线熟妇人妻| 黑人巨大videos极度另类 | 精品18在线观看免费视频| 少妇又色又爽又刺激的视频| 婷婷色婷婷开心五月四| 精品国产一区av天美传媒| 国产免费专区| 亚洲综合精品一区二区三区| 国产精品久久久免费精品| 亚洲avav天堂av在线网爱情| 热久久亚洲| 日本一区二区三区精品不卡| 美女被内射中出在线观看| 国产丝袜一区丝袜高跟美腿| 日韩欧美在线综合网另类 | 无码人妻精品一区二区三区下载| 国产精品短视频| 国产精品午夜福利天堂| 天天综合天天爱天天做| 亚洲aⅴ天堂av天堂无码麻豆| 国产清品夜色一区二区三区不卡| 亚洲偷自拍国综合第一页国模| 久久天堂av综合合色| 99久久国产综合精品麻豆| 久久久久久AV无码成人| 国产不卡在线观看视频| 中文字幕乱码一区av久久不卡 | 精品一区二区三区在线视频观看| 极品粉嫩嫩模大尺度视频在线播放 | 亚洲av无码一区二区乱子伦| 日本一区二区视频免费观看| 在线播放亚洲丝袜美腿| 在线高清理伦片a| 久久久久亚洲AV无码专区喷| 97久久综合精品国产丝袜长腿 | 国内揄拍国内精品少妇| 国产目拍亚洲精品一区二区| 农村国产毛片一区二区三区女| 亚洲综合色区一区二区三区|