王 芳,江 瑾,于艷玲,呂 健,王萬(wàn)春
(1.青島市口腔醫(yī)院,山東 青島 266000; 2. 青島市中心醫(yī)院,山東 青島 266042)
?
新型5-苯亞甲基-3,4-二鹵-2(5H)-呋喃酮衍生物的合成與生物活性
王 芳1*,江 瑾2,于艷玲1,呂 健1,王萬(wàn)春1
(1.青島市口腔醫(yī)院,山東 青島 266000; 2. 青島市中心醫(yī)院,山東 青島 266042)
以粘鹵酸為起始原料,經(jīng)還原縮合、再縮合、成醚反應(yīng)合成了15個(gè)5-苯亞甲基-3,4-二鹵-2(5H)-呋喃酮衍生物4a-4o,其結(jié)構(gòu)經(jīng)1H-NMR、13C-NMR、MS譜確證. 研究所有化合物對(duì)細(xì)菌脂多糖LPS誘導(dǎo)RAW264.7細(xì)胞的抗炎作用. 初步活性結(jié)果顯示,4a-4o對(duì)于LPS誘導(dǎo)RAW264.7細(xì)胞所產(chǎn)生的NO有抑制作用,其中化合物4h和4i的NO抑制率比較高. 生物活性的研究結(jié)果表明,鹵代呋喃酮結(jié)構(gòu)、吡啶環(huán)上連有給電子基團(tuán)都可以提高化合物的體外抗炎生物活性,為臨床上炎癥等相關(guān)疾病的治療提供新的藥物設(shè)計(jì)和研究思路.
5-苯亞甲基-3,4-二鹵-2(5H)-呋喃酮衍生物;合成;生物活性
一般來(lái)說(shuō),炎癥反應(yīng)是動(dòng)物機(jī)體對(duì)各種致炎因子及局部損傷所產(chǎn)生的防御性反應(yīng). 臨床上,炎癥是最常見(jiàn)的病理過(guò)程,是許多疾病的病理基礎(chǔ),局部表現(xiàn)為紅、腫、熱、痛及功能障礙,并伴有不同程度的全身反應(yīng). 當(dāng)致炎因子如細(xì)菌感染宿主時(shí),會(huì)導(dǎo)致機(jī)體組織受損,進(jìn)而可以激活和募集大量免疫細(xì)胞,如巨噬細(xì)胞,激活后的巨噬細(xì)胞可以產(chǎn)生大量的一氧化氮和超氧陰離子,還會(huì)產(chǎn)生很多促炎性細(xì)胞因子,如TNF-α、IL-12、IL-6等. 另外,也會(huì)異常激活巨噬細(xì)胞中炎癥相關(guān)的信號(hào)通路,如NF-κB、MAPK等[1]. 這些變化都可使慢性感染的宿主組織引起炎癥反應(yīng),并導(dǎo)致疾病的癥狀加重和永久性器官損傷[2].
過(guò)氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor gamma, PPARγ) 在體內(nèi)廣泛分布,它通過(guò)與配體結(jié)合被激活后,具有多種生物學(xué)功能[3]. 研究數(shù)據(jù)證明,在臨床上,PPARγ通過(guò)與噻唑烷二酮類合成配體結(jié)合活化,參與調(diào)節(jié)體內(nèi)多種與炎癥反應(yīng)相關(guān)疾病的病理生理過(guò)程[4]. 其中,已有的文獻(xiàn)研究報(bào)道,PPARγ激動(dòng)劑羅格列酮在心、肺、腎、胃腸道等諸多器官的急性、慢性炎癥反應(yīng)中都具有抗炎作用[5]. SASAKI等[6]研究發(fā)現(xiàn),羅格列酮可以抑制TNF-α介導(dǎo)的大鼠潰瘍性結(jié)腸炎中黏附因子的表達(dá)量. CUZZOCREA等[7]研究逐漸發(fā)現(xiàn),大鼠足跖內(nèi)注射角叉菜膠,構(gòu)建大鼠足腫脹模型,給予羅格列酮治療,會(huì)抑制COX-2、NO等炎癥介質(zhì)的作用,進(jìn)而減輕大鼠足腫脹的嚴(yán)重程度和面積來(lái)發(fā)揮抗炎作用. 另外,研究也證實(shí),由細(xì)菌引起的肺上皮細(xì)胞炎癥反應(yīng)能被羅格列酮所阻斷[8-9]. 因此,以羅格列酮為模板化合物進(jìn)行結(jié)構(gòu)優(yōu)化改造極有可能發(fā)現(xiàn)新型抗炎藥物.
臨床研究數(shù)據(jù)顯示,PPARγ激動(dòng)劑羅格列酮在改善糖尿病患者血脂等方面的療效低于吡格列酮[10]. 同屬噻唑烷二酮類化合物,二者的結(jié)構(gòu)差異僅在于吡啶基連接的側(cè)鏈部分,因此我們推測(cè)對(duì)于羅格列酮吡啶基側(cè)鏈部分的改造有利于提高該類藥物的活性. 據(jù)報(bào)道,海洋紅藻Delisea pulchra能夠產(chǎn)生一種鹵代呋喃酮化合物,通過(guò)阻斷細(xì)菌的群體感應(yīng)系統(tǒng),使細(xì)菌不能在Delisea pulchra表面產(chǎn)生群聚,進(jìn)而抑制細(xì)菌的生長(zhǎng)[11]. 眾所周知,細(xì)菌長(zhǎng)期慢性感染是引起炎癥疾病的重要因素,因此我們?cè)O(shè)想引入鹵代呋喃酮結(jié)構(gòu)有利于提高該類化合物的抗炎活性.
總之,本研究通過(guò)改善吡啶基側(cè)鏈部分,引入具有抑制細(xì)菌群體感應(yīng)系統(tǒng)的活性藥效團(tuán)3,4-二鹵-2(5H)-呋喃酮結(jié)構(gòu)[12-13],設(shè)計(jì)合成新型5-苯亞甲基-3,4-二鹵-2(5H)-呋喃酮衍生物4a-4o,見(jiàn)圖1. 以粘鹵酸為起始原料,在NaBH4和濃H2SO4作用下生成3,4-二鹵-2(5H)-呋喃酮2[14]. 然后與苯甲醛類試劑進(jìn)行Knoevenagel縮合反應(yīng),生成中間體3a-3f[15]. 將3a-3f與吡啶醇類試劑進(jìn)行Mitsunobu成醚反應(yīng)合成目標(biāo)化合物4a-4o[16],化合物的合成見(jiàn)圖2.
圖1 4a-4o設(shè)計(jì)策略Fig.1 Design strategy for 4a-4o
圖2 目標(biāo)化合物4a-4o的合成路線Fig.2 Synthetic route of target compounds 4a-4o
1.1 儀器與試劑
Bruker-AV300MHz型核磁共振儀(瑞士Bruker公司),內(nèi)標(biāo)物TMS,3a-3f溶劑為DMSO-d6,4a-4o溶劑為CDCl3;API2000型質(zhì)譜儀(美國(guó)應(yīng)用生物系統(tǒng)公司);旋轉(zhuǎn)蒸發(fā)儀(日本Eyela公司);DF-101S集熱式恒溫加熱磁力攪拌器(鄭州長(zhǎng)城科工貿(mào)有限公司);CZCL-A數(shù)顯智能控溫磁力攪拌器(江蘇金壇醫(yī)療儀器廠);循環(huán)水式真空泵(鞏義市英裕予華儀器廠);分析天平(上海精密科學(xué)儀器有限公司);WRS-1B數(shù)字熔點(diǎn)測(cè)定儀(上海精密科學(xué)儀器有限公司);DLSB低溫冷卻液循環(huán)泵(鄭州長(zhǎng)城科工貿(mào)有限公司);低溫反應(yīng)儀(鄭州長(zhǎng)城科工貿(mào)有限公司). 所有試劑均為分析純.
1.2 化合物的合成
1.2.1 3,4-二鹵-2(5H)-呋喃酮(2)
稱取粘溴酸或粘氯酸(1.0 mmol)加到35 mL CH3OH中,低溫下緩慢加入NaBH4(1.7 mmol),反應(yīng)15 min. 再緩慢滴加H2SO4(1.3 mmol),繼續(xù)反應(yīng)15 min,停止反應(yīng). 旋蒸,加入二氯甲烷和水萃取,合并有機(jī)相,飽和碳酸氫鈉洗滌,無(wú)水硫酸鈉干燥,旋蒸,粗品濕法上樣,硅膠柱層析(石油醚和乙酸乙酯體積比為10∶1)過(guò)柱,得到白色固體(產(chǎn)率99.1%). 實(shí)驗(yàn)結(jié)果與文獻(xiàn)報(bào)道相一致[17].
1.2.2 (Z)-3,4-二溴-5-(4-羥基-3-甲氧基苯亞甲基)-2(5H)-呋喃酮(3a)
稱取3,4-二溴-2(5H)-呋喃酮(1.0 mmol)和香草醛(1.0 mmol)加到25 mL甲苯中,氮?dú)獗Wo(hù)下緩慢滴加2-甲基哌啶1.3 mL,再滴加冰醋酸1.3 mL,滴畢,溫度調(diào)至125 ℃,TLC檢測(cè)反應(yīng)至3,4-二溴-2(5H)-呋喃酮反應(yīng)完全,停止反應(yīng). 反應(yīng)液用無(wú)水甲醇溶解,旋蒸,黑色粗品干法上樣,硅膠柱層析(石油醚和乙酸乙酯的體積比為12∶1)過(guò)柱,得到黃色固體(產(chǎn)率32.1%).
分別以乙基香蘭素、對(duì)羥基苯甲醛和3,4-二溴-2(5H)-呋喃酮投料,同法操作,制得3b和3c.
1.2.3 (Z)-3,4-二氯-5-(4-羥基-3-甲氧基苯亞甲基)-2(5H)-呋喃酮(3d)的合成
稱取3,4-二氯-2(5H)-呋喃酮(1.0 mmol)和香草醛(1.0 mmol)加到30 mL甲苯中,氮?dú)獗Wo(hù)下緩慢滴加2-甲基哌啶1.3 mL,再滴加冰醋酸1.3 mL,滴畢,將溫度調(diào)至125 ℃,TLC檢測(cè)反應(yīng)至3,4-二氯-2(5H)-呋喃酮反應(yīng)完全,停止反應(yīng). 反應(yīng)液用無(wú)水甲醇溶解,旋蒸,得到黑色粗產(chǎn)物,干法上樣,硅膠柱層析(石油醚和乙酸乙酯的體積比為12∶1)過(guò)柱,得到黃色固體(產(chǎn)率36.1%).
分別以乙基香蘭素、對(duì)羥基苯甲醛和3,4-二氯-2(5H)-呋喃酮投料,同法操作,制得3e和3f.
1.2.4 (Z)-3,4-二溴-5-(4-(2-吡啶基乙氧基)苯亞甲基)-2(5H)-呋喃酮(4a)
稱取3c(1.0 mmol)和三苯基膦(1.5 mmol)加到圓底燒瓶中,抽真空、充氮?dú)?,氮?dú)獗Wo(hù)下加入3 mL四氫呋喃,再加入2-吡啶乙醇(2.0 mmol),5 min后緩慢滴加偶氮二甲酸二乙酯DEAD(1.5 mmol),滴畢繼續(xù)反應(yīng)30 min,轉(zhuǎn)移至室溫,攪拌反應(yīng),TLC檢測(cè)反應(yīng)至3c反應(yīng)完全,停止反應(yīng). 加入少量乙醚,有黃色沉淀析出,直接抽濾干燥,得到黃色固體(產(chǎn)率35.1%).
以2-吡啶甲醇和3c投料,同法操作,制得4b.
以5-乙基-2-吡啶乙醇和3c投料,同法操作,制得4g.
分別以2-吡啶乙醇、2-吡啶甲醇、5-乙基-2-吡啶乙醇和3a投料,同法操作,制得4c、4f和4h.
分別以2-吡啶乙醇、2-吡啶甲醇、5-乙基-2-吡啶乙醇和3b投料,同法操作,制得4d、4e和4i.
1.2.5 (Z)-3,4-二氯-5-(4-(2-吡啶基甲氧基)苯亞甲基)-2(5H)-呋喃酮(4j)的合成
稱取3f(1.0 mmol)和三苯基膦(1.5 mmol)加入到兩口圓底燒瓶中,抽真空、充氮?dú)?,反?fù)操作4次,在氮?dú)獗Wo(hù)下加入3 mL四氫呋喃,再加入2-吡啶甲醇(2.0 mmol),5 min后緩慢滴加偶氮二甲酸二乙酯DEAD(1.5 mmol),滴畢繼續(xù)反應(yīng)30 min,再轉(zhuǎn)移至室溫,攪拌反應(yīng),TLC檢測(cè)反應(yīng)至3f反應(yīng)完全,停止反應(yīng). 加入少量乙醚,有黃色沉淀析出,直接抽濾干燥,得到黃色固體(產(chǎn)率71.0%).
分別將3d、3e和2-吡啶甲醇投料,同法操作,制得4k和4l.
分別將3f、3d、3e和2-吡啶乙醇投料,同法操作,制得4m、4n和4o.
1.3 目標(biāo)化合物的藥理活性測(cè)試
超凈工作臺(tái)(蘇凈集團(tuán)安泰公司);微量移液器(德國(guó)Eppendorf公司);旋渦混合器XW-80型(上海第一醫(yī)學(xué)儀器廠);恒溫水浴鍋(上海醫(yī)用恒溫設(shè)備廠);HHW21-600低溫高速離心機(jī)(德國(guó)Beckman公司);多功能酶標(biāo)儀(美國(guó)Bio-Rad公司);細(xì)菌濁度儀(鄭州南北儀器設(shè)備有限公司);紫外可見(jiàn)分光光度計(jì)(上海譜元儀器有限公司);HPS-250生化恒溫培養(yǎng)箱(哈爾濱市東明醫(yī)療儀器廠);ZHWY-2102C恒溫培養(yǎng)振蕩器(上海智城分析儀器制造有限公司).
小鼠腹腔巨噬細(xì)胞RAW264.7來(lái)自于中科院上海生命科學(xué)研究院細(xì)胞庫(kù). 陽(yáng)性對(duì)照藥羅格列酮和吲哚美辛來(lái)自于中國(guó)食品藥品檢定研究所.
將RAW264.7細(xì)胞懸液以每孔5×104個(gè)/100 μL接種于96孔板. 設(shè)置空白組(細(xì)胞培養(yǎng)液)、對(duì)照組(細(xì)胞培養(yǎng)液和LPS)和加藥組(細(xì)胞培養(yǎng)液,藥液和LPS). 培養(yǎng)24 h后,加入不同藥物(濃度均為10 μmol/L)處理2 h,再加入LPS(濃度為100 ng/mL),培養(yǎng)48 h. 取上清液100 μL,加入等體積的Griess試劑,混勻后讀取酶標(biāo)儀540 nm處的吸光值,以羅格列酮和吲哚美辛為陽(yáng)性對(duì)照[18],計(jì)算目標(biāo)產(chǎn)物對(duì)NO釋放的抑制率[NO抑制率/% = (OD對(duì)照組-OD加藥組) / (OD對(duì)照組-OD空白組) ×100],實(shí)驗(yàn)平行3次,結(jié)果以平均值±標(biāo)準(zhǔn)差表示.
2.1 化學(xué)合成部分
在目標(biāo)化合物4a-4o的合成步驟中,成醚反應(yīng)選擇了Mitsunobu反應(yīng),它本身是雙分子親核取代反應(yīng),具有反應(yīng)產(chǎn)率較高、立體選擇性較高、產(chǎn)物可在少量乙醚溶劑中析出而無(wú)需過(guò)硅膠柱分離等優(yōu)點(diǎn)[19]. 這些化合物的核磁共振氫譜、碳譜和質(zhì)譜如下所示.
3a:黃色固體;1H NMR (300 MHz, DMSO-d6)δ9.88 (s, 1H), 7.44 (s, 1H), 7.39 (d,J= 1.8 Hz, 1H), 6.87 (d,J= 1.8 Hz, 1H), 6.58 (s, 1H), 3.81 (s, 3H);13C NMR (75 MHz, DMSO-d6)δ163.9, 149.8, 148.2, 144.0, 138.0, 125.8, 123.9, 116.6, 115.2, 114.9, 111.2, 56.1;ESI-MSm/z: 375.4 [M-H]-.
3b:紅色固體;1H NMR (300 MHz, DMSO-d6)δ9.83 (s, 1H), 7.44 (s, 1H), 7.40 (d,J= 1.8 Hz, 1H), 6.90 (d,J= 1.8 Hz, 1H), 6.58 (s, 1H), 4.08 (q,J= 7.2 Hz, 2H), 1.36 (t,J= 7.2 Hz, 3H);13C NMR (75 MHz, DMSO-d6)δ163.9, 150.0, 147.4, 144.0, 138.0, 125.9, 124.0, 116.7, 116.4, 114.9, 111.2, 64.4, 15.1;ESI-MSm/z: 389.4 [M-H]-.
3c:黃色固體;1H NMR (300 MHz, DMSO-d6)Ztypeδ10.28 (s, 1H), 7.72 (d,J= 8.7 Hz, 2.07H), 6.86 (d,J= 8.7 Hz, 2.06H), 6.57 (s, 0.99H);Etypeδ10.28 (s, 1H), 7.35 (d,J= 8.8 Hz, 0.10H), 7.16 (s, 0.09H), 6.81 (d,J= 8.8 Hz, 0.12H);13C NMR (75 MHz, DMSO-d6)δ163.9, 160.1, 143.9, 138.0, 133.5, 123.6, 116.7, 114.6, 111.3;ESI-MSm/z: 345.2 [M-H]-.
3d:黃色固體;1H NMR (300 MHz, DMSO-d6)δ9.91 (s, 1H), 7.41 (d,J= 1.8 Hz, 1H), 7.37 (d,J= 1.8 Hz, 1H), 6.90 (d, 1H), 6.62 (s, 1H), 3.81 (s, 3H);13C NMR (75 MHz, DMSO-d6)δ162.5, 149.8, 148.3, 142.5, 141.4, 126.0, 123.7, 117.2, 116.6, 115.2, 113.7, 56.1;ESI-MSm/z: 285.3 [M-H]-.
3e:紅色固體;1H NMR (300 MHz, DMSO-d6)δ9.83 (s, 1H), 7.40 (d,J= 1.8 Hz, 1H), 7.35 (d,J= 1.8 Hz, 1H), 6.90 (d, 1H), 6.62 (s, 1H), 4.07 (q,J= 7.2 Hz, 2H), 1.37 (t,J= 7.2 Hz, 3H);13C NMR (75 MHz, DMSO-d6)δ162.5, 150.1, 147.4, 142.5, 141.3, 126.0, 123.7, 117.2, 116.7, 116.5, 113.7, 64.4, 15.1;ESI-MSm/z: 299.4 [M-H]-.
3f:黃色固體;1H NMR (300 MHz, DMSO-d6)Ztypeδ10.27 (s, 1H), 7.71 (d,J= 8.7 Hz, 1.98H), 6.88 (d,J= 8.7 Hz, 1.96H), 6.62 (s, 0.97H);Etypeδ10.27 (s, 1H), 7.40 (d,J= 9.0 Hz, 0.10H), 7.31 (s, 0.08H), 6.82 (d,J= 9.0 Hz, 0.12H);13C NMR (75 MHz, DMSO-d6)δ162.6, 160.1, 142.5, 141.3, 133.6, 123.3, 117.2, 116.7, 113.4;ESI-MSm/z: 255.2 [M-H]-.
4a:黃色固體;1H NMR (300 MHz, CDCl3)δ8.56 (d,J= 5.6 Hz, 1H), 7.74 (d,J= 11.6 Hz, 2H), 7.62 (dd,J= 10.4, 2.4 Hz, 1H), 7.28 (d,J= 10.4 Hz, 1H), 7.16 (dd,J= 5.6, 2.4 Hz, 1H), 6.92 (d,J= 11.6 Hz, 2H), 6.37 (s, 1H), 4.43 (t,J= 8.8 Hz, 2H), 3.28 (t,J= 8.8 Hz, 2H);13C NMR (75 MHz, CDCl3)δ163.5, 160.5, 158.0, 149.4, 144.0, 137.2, 136.3, 132.8, 124.6, 123.7, 121.6, 115.1, 114.2, 111.3, 67.2, 37.8;ESI-MSm/z: 450.2 [M+H]+.
4b:黃色固體;1H NMR (300 MHz, CDCl3)δ8.61 (d,J= 4.8 Hz, 1H), 7.77 (d,J= 9.0 Hz, 2H), 7.73 (d,J= 7.8, 4.8 Hz, 1H), 7.50 (d,J= 7.8 Hz, 1H), 7.25~7.21 (m, 1H), 7.02 (d,J= 9.0 Hz, 2H), 6.39 (s, 1H), 5.25 (s, 2H);13C NMR (75 MHz, CDCl3)δ163.5, 159.9, 156.6, 149.4, 144.4, 137.2, 136.9, 133.0, 125.2, 122.8, 121.4, 115.5, 114.0, 111.8, 70.7;ESI-MSm/z: 436.2 [M+H]+.
4c:黃色固體;1H NMR (300 MHz, CDCl3)δ8.56 (d,J= 4.5 Hz, 1H), 7.68 (td,J= 7.5, 1.5 Hz, 1H), 7.41 (d,J= 1.8 Hz, 1H), 7.35 (d,J= 7.5 Hz, 1H), 7.29 (dd,J= 8.4, 1.8 Hz, 1H), 7.21 (dd,J= 4.5, 1.5 Hz, 1H), 6.93 (d,J= 8.4 Hz, 1H), 6.36 (s, 1H), 4.48 (t,J= 6.9 Hz, 2H), 3.9 (s, 3H), 3.38 (t,J= 6.9 Hz, 2H);13C NMR (75 MHz, CDCl3)δ163.5, 160.3, 157.5, 150.3, 149.5, 148.5, 144.3, 137.3, 125.8, 125.2, 124.3, 122.0, 114.5, 113.5, 112.9, 111.6, 68.1, 56.1, 37.4;ESI-MSm/z: 480.2 [M+H]+.
4d:黃色固體;1H NMR (300 MHz, CDCl3)δ8.55 (d,J= 4.8 Hz, 1H), 7.63 (td,J= 7.7, 1.8 Hz, 1H), 7.41 (d,J= 2.1 Hz, 1H), 7.34 (d,J= 7.7 Hz, 1H), 7.32~7.27 (m, 1H), 7.16 (dd,J= 4.8, 1.8 Hz, 1H), 6.93 (d,J= 8.7 Hz, 1H), 6.36 (s, 1H), 4.45 (t,J= 6.8 Hz, 2H), 4.07 (q,J= 7.0 Hz, 2H), 3.33 (t,J= 6.8 Hz, 2H), 1.44 (t,J= 7.0 Hz, 3H);13C NMR (75 MHz, CDCl3)δ163.5, 158.2, 150.9, 149.3, 148.9, 144.1, 137.2, 136.4, 125.8, 125.1, 124.0, 121.7, 115.4, 114.6, 113.1, 111.4, 68.1, 64.8, 37.8, 14.7;ESI-MSm/z: 494.2 [M+H]+.
4e:黃色固體;1H NMR (300 MHz, CDCl3)δ8.58 (d,J= 4.5 Hz, 1H), 7.71 (td,J= 7.8, 1.8 Hz, 1H), 7.56 (d,J= 7.8 Hz, 1H), 7.44 (d,J= 1.8 Hz, 1H), 7.26-7.17 (m, 2H), 6.90 (d,J= 8.4 Hz , 1H), 6.34 (s, 1H), 5.31 (s, 2H), 4.17 (q,J= 7.0 Hz, 2H), 1.50 (t,J= 7.0 Hz, 3H);13C NMR (75 MHz, CDCl3)δ163.4, 156.8,150.1, 149.0, 144.3, 137.2, 136.9, 125.5, 122.7, 121.1, 114.91, 114.4, 113.7, 111.6, 71.3, 64.7, 14.8;ESI-MSm/z: 480.3 [M+H]+.
4f:黃色固體;1H NMR (300 MHz, CDCl3)δ8.58 (d,J= 4.5 Hz, 1H), 7.70 (td,J= 7.7, 1.8 Hz, 1H), 7.52 (d,J= 7.7 Hz, 1H), 7.43 (d,J= 1.8 Hz, 1H), 7.25~7.16 (m, 2H), 6.90 (d,J= 8.4 Hz, 1H), 6.35 (s, 1H), 5.31 (s, 2H), 3.95 (s, 3H);13C NMR (75 MHz, CDCl3)δ163.4, 156.6, 149.8, 149.6, 149.2, 144.3, 137.2, 136.9, 125.5, 125.5, 122.8, 121.3, 114.3, 113.3, 113.3, 111.7, 71.3, 56.1; ESI-MSm/z: 468.3 [M+H]+.
4g:黃色固體;1H NMR (300 MHz, CDCl3)δ8.40 (s, 1H), 7.73 (d,J= 9.0 Hz, 2H), 7.47 (d,J= 7.8 Hz, 1H), 7.19 (d,J= 7.8 Hz, 1H), 6.93 (d,J= 9.0 Hz, 2H), 6.38 (s, 1H), 4.40 (t,J= 6.7 Hz, 2H), 3.25 (t,J= 6.7 Hz, 2H), 2.64 (q,J= 7.6 Hz, 2H), 1.25 (t,J= 7.6 Hz, 3H);13C NMR (75 MHz, CDCl3)δ163.5, 160.7, 155.3, 148.9, 144.1, 137.3, 136.0, 133.0, 132.1, 124.6, 123.4, 115.1, 114.4, 111.5, 67.4, 37.3, 25.8, 15.5;ESI-MSm/z: 478.3 [M+H]+.
4h:黃色固體;1H NMR (300 MHz, CDCl3)δ8.39 (s, 1H), 7.47 (d,J= 7.9 Hz, 1H), 7.42 (d,J= 2.1 Hz, 1H), 7.30 (dd,J= 8.4, 2.1 Hz, 1H), 7.22 (d,J= 7.9 Hz, 1H), 6.94 (d,J= 8.4 Hz, 1H), 6.38 (s, 1H), 4.46 (t,J= 7.1 Hz, 2H), 3.90 (s, 3H), 3.32 (t,J= 7.1 Hz, 2H), 2.64 (q,J= 7.6 Hz, 2H), 1.25 (t,J= 7.6 Hz, 3H);13C NMR (75 MHz, CDCl3)δ163.5, 155.1, 150.5, 149.5, 148.8, 144.2, 137.3, 137.2, 136.0, 125.7, 125.0, 123.5, 114.5, 113.5, 112.8, 111.5, 68.3, 56.1, 37.2, 25.7, 15.3;ESI-MSm/z: 508.3 [M+H]+.
4i:黃色固體;1H NMR (300 MHz, CDCl3)δ8.39 (s, 1H), 7.47 (d,J= 7.5 Hz, 1H), 7.41 (d,J= 1.5 Hz, 1H), 7.30~7.27 (m, 2H), 6.92 (d,J= 8.4 Hz, 1H), 6.36 (s, 1H), 4.43 (t,J= 6.8 Hz, 2H), 4.07 (q,J= 7.0 Hz, 2H), 3.31 (t,J= 6.8 Hz, 2H), 2.64 (q,J= 7.6 Hz, 2H), 1.44 (t,J= 7.0 Hz, 3H), 1.24 (t,J= 7.6 Hz, 3H);13C NMR (75 MHz, CDCl3)δ163.5, 155.3, 151.0, 148.9, 148.8, 144.1, 137.2, 136.9, 135.9, 125.8, 125.0, 123.7, 115.4, 114.6, 113.1, 111.4, 68.2, 64.8, 37.4, 25.7, 15.3, 14.7;ESI-MSm/z: 522.2 [M+H]+.
4j:黃色固體;1H NMR (300 MHz, CDCl3)δ8.60 (d,J= 4.8 Hz, 1H), 7.76 (d,J= 8.9 Hz, 2H), 7.70 (m, 1H), 7.50 (d,J= 7.8 Hz, 1H), 7.25~7.21 (m, 1H), 7.02 (d,J= 8.9 Hz, 1H), 6.34 (s, 1H), 5.24 (s, 1H);13C NMR (75 MHz, CDCl3)δ162.4, 159.9, 156.4, 149.3, 142.6, 141.9, 136.9, 133.0, 124.9, 122.8, 121.3, 118.2, 115.5, 112.5, 70.7;ESI-MSm/z: 348.1 [M+H]+.
4k:黃色固體;1H NMR (300 MHz, CDCl3)δ8.61 (d,J= 4.5 Hz, 1H), 7.73 (td,J= 7.8, 1.8 Hz, 1H), 7.55 (d,J= 7.8 Hz, 1H), 7.45 (d,J= 1.8 Hz, 1H), 7.27 (d,J= 8.4, 1.8 Hz, 1H), 7.24 (d,J= 1.8 Hz, 1H), 6.93 (d,J= 8.4 Hz, 1H), 6.34 (s, 1H), 5.34 (s, 2H), 3.98 (s, 3H);13C NMR (75 MHz, CDCl3)δ162.3, 156.5, 149.8, 149.6, 149.2, 142.6, 142.0, 136.9, 125.5, 125.2, 122.8, 121.3, 118.2, 113.4, 113.3, 112.8, 71.3, 56.1;ESI-MSm/z: 378.2 [M+H]+.
4l:黃色固體;1H NMR (300 MHz, CDCl3)δ8.61 (d,J= 4.5 Hz, 1H), 7.74 (td,J= 7.8, 1.8 Hz, 1H), 7.58 (d,J= 7.8 Hz, 1H), 7.47 (d,J= 1.8 Hz, 1H), 7.26~7.23 (m, 2H), 6.93 (d,J= 8.4 Hz, 1H), 6.34 (s, 1H), 5.34 (s, 2H), 4.20 (q,J= 7.0 Hz, 2H), 1.53 (t,J= 7.0 Hz, 3H);13C NMR (75 MHz, CDCl3)δ162.3, 156.8, 150.2, 149.1, 142.6, 141.9, 136.9, 125.5, 125.3, 122.7, 121.1, 118.2, 114.9, 113.7, 112.9, 112.4, 71.3, 64.7, 14.7;ESI-MSm/z: 392.4 [M+H]+.
4m:黃色固體;1H NMR (300 MHz, CDCl3)δ8.58 (dd,J= 4.9, 0.8 Hz, 1H), 7.74 (d,J= 8.8 Hz, 2H), 7.66 (dd,J= 7.5, 2.1 Hz, 1H), 7.36 (m, 1H), 7.19 (td,J= 7.5, 4.9, 0.8 Hz, 1H), 6.95 (d,J= 8.8 Hz, 2H), 6.36 (s, 1H), 4.46 (d,J= 6.6 Hz, 2H), 3.30 (t,J= 6.6 Hz, 2H);13C NMR (75 MHz, CDCl3)δ162.5, 160.5, 158.0, 149.4, 142.7, 141.7, 136.5, 132.9, 124.4, 123.8, 121.7, 117.9, 115.2, 112.8, 67.2, 37.8;ESI-MSm/z: 362.2 [M+H]+.
4n:黃色固體;1H NMR (300 MHz, CDCl3)δ8.57 (d,J= 4.8 Hz, 1H), 7.65 (td,J= 7.7, 2.0 Hz, 1H), 7.40 (d,J= 2.1 Hz, 1H), 7.33 (d,J= 7.7 Hz, 1H), 7.30 (d,J= 8.7, 2.1 Hz, 1H), 7.22~7.15 (m, 1H), 6.95 (d,J= 8.7 Hz, 1H), 6.34 (s, 1H), 4.49 (t,J= 7.0 Hz, 2H), 3.90 (s, 3H), 3.37 (t,J= 7.0 Hz, 2H);13C NMR (75 MHz, CDCl3)δ162.4, 157.9, 150.4, 149.5, 149.1, 142.6, 141.8, 136.7, 125.7, 124.8, 124.0, 121.8, 113.6, 113.0, 112.8, 112.6, 68.1, 56.1, 37.6;ESI-MSm/z: 392.3 [M+H]+.
4o:黃色固體;1H NMR (300 MHz, CDCl3)δ8.54 (d,J= 4.8 Hz, 1H), 7.62 (td,J= 7.5, 1.5 Hz, 1H), 7.39 (d,J= 1.8 Hz, 1H), 7.33 (d,J= 7.5 Hz, 1H), 7.29 (dd,J= 8.4, 1.8 Hz,1H), 7.15 (dd,J= 4.8, 1.5 Hz, 1H), 6.92 (d,J= 8.4 Hz, 1H), 6.31 (s, 1H), 4.45 (t,J= 6.8 Hz, 2H), 4.06 (q,J= 7.0 Hz, 2H), 3.33 (t,J= 6.8 Hz, 2H), 1.43 (t,J= 7.0 Hz, 3H);13C NMR (75 MHz, CDCl3)δ162.4, 158.2, 150.9, 149.3, 148.9, 142.6, 141.7, 136.3, 125.8, 124.8, 124.0, 121.6, 117.9, 115.4, 113.1, 113.1, 68.1, 64.8, 37.8, 14.7;ESI-MSm/z: 406.4 [M+H]+.
2.2 目標(biāo)化合物對(duì)NO的抑制活性
以小鼠腹腔巨噬細(xì)胞RAW264.7為供試對(duì)象,采用Griess試劑法測(cè)定目標(biāo)化合物對(duì)于LPS誘導(dǎo)RAW264.7細(xì)胞NO釋放的抑制作用,結(jié)果見(jiàn)表3. 根據(jù)實(shí)驗(yàn)結(jié)果可以得出,與LPS組相比,陽(yáng)性藥和目標(biāo)化合物對(duì)于LPS誘導(dǎo)RAW264.7細(xì)胞的NO抑制率大小不等,具有顯著性差異(P< 0.05). 化合物4j和4m的NO抑制率與羅格列酮相當(dāng),其余目標(biāo)化合物的NO抑制率均高于羅格列酮;化合物4j、4k和4m的NO抑制率低于吲哚美辛,4b和4f的NO抑制率與吲哚美辛相當(dāng),其余10個(gè)化合物的NO抑制率高于吲哚美辛. 在所有目標(biāo)化合物中,4h和4i這兩個(gè)化合物的NO抑制率比較高,分別是(75.8±4.3)%和(80.1±4.1)%,均超過(guò)70%,值得進(jìn)一步的研究.
根據(jù)NO抑制率實(shí)驗(yàn)結(jié)果,分析構(gòu)效關(guān)系如下:引入3,4-二鹵-2(5H)-呋喃酮結(jié)構(gòu)有利于提高化合物NO抑制活性;中間苯環(huán)上R1是給電子取代基時(shí),目標(biāo)化合物表現(xiàn)出較好的NO抑制活性;當(dāng)R1取代基相同時(shí),兩個(gè)碳原子連接時(shí)的NO抑制率大于一個(gè)碳原子連接時(shí)的NO抑制率;當(dāng)R1取代基相同、n相同時(shí),吡啶環(huán)上是給電子取代基時(shí),目標(biāo)化合物表現(xiàn)出較好的NO抑制活性.
表1 化合物4a-4o 的NO抑制率Table 1 NO Inhibition of 4a-4o
*P< 0.05表示加藥組與對(duì)照組相比,有顯著性差異;**P< 0.01表示加藥組與對(duì)照組相比,有非常顯著性的差異.
本文以粘溴酸或粘氯酸為原料,設(shè)計(jì)合成了15個(gè)未見(jiàn)文獻(xiàn)報(bào)道的含3,4-二鹵-2(5H)-呋喃酮結(jié)構(gòu)片段的衍生物. 基于生物活性的研究結(jié)果可知,目標(biāo)化合物4a-4o對(duì)LPS誘導(dǎo)RAW264.7細(xì)胞所產(chǎn)生的炎癥因子NO有抑制作用,其中4h和4i的NO抑制率較高. 因此,從結(jié)構(gòu)上來(lái)看,3,4-二鹵-2(5H)-呋喃酮結(jié)構(gòu)及吡啶環(huán)上連有給電子取代基可以顯著提高化合物的體外抗炎生物活性,為臨床上炎癥等相關(guān)疾病的治療提供新的藥物設(shè)計(jì)的思路,但其具體的構(gòu)效關(guān)系、作用機(jī)制與意義有待進(jìn)一步研究.
[1] LI W, HUANG H, ZHANG Y, et al. Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-alpha, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-kappaB activation and MAPK pathway [J]. European Journal of Pharmacology, 2013(1/3), 715: 62-71.
[2] SMITH R S, HARRIS S G, PHIPPS R, et al. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo [J]. Journal of Bacteriology, 2002, 184(4): 1132-1139.
[3] LEHRKE M, LAZAR M A. The many faces of PPARgamma [J]. Cell, 2005, 123(6): 993-999.
[4] WADA K, KAMISAKI Y. Anti-inflammatory effect of PPARgamma agonists: basics and clinical applications [J]. Nihon Rinsho Japanese Journal of Clinical Medicine, 2010, 68(2): 278-283.
[5] ESPOSITO K, CIOTOLA M, MERANTE D, et al. Rosiglitazone cools down inflammation in the metabolic syndrome [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26(6): 1413-1414.
[6] SASAKI M, JORDAN P, WELBOURNE T, et al. Troglitazone, a PPAR-gamma activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-alpha [J]. BMC Physiology, 2005, 5(1): 3-7.
[7] CUZZOCREA S, PISANO B, DUGO L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation [J]. Euro-pean Journal of Pharmacology, 2004, 483(1): 79-93.
[8] JAHOOR A, PATEL R, BRYAN A, et al. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer [J]. Journal of Bacteriology, 2008, 190(13): 4408-4415.
[9] CUZZOCREA S, PISANO B, DUGO L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation [J]. European Journal of Pharmacology, 2004, 483(1): 79-93.[10] KRENTZ A. Thiazolidinediones: effects on the development and progression of type 2 diabetes and associated vascular complications [J]. Diabetes/Metabolism Research and Reviews, 2009, 25(2): 112-126.
[11] MANEFIELD M, DE NYS R, KUMAR N, et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein [J]. Microbiology, 1999, 145(2): 283-291.
[12] GUO J L, LI B Z, CHEN W M, et al. Synthesis of substituted 1H-pyrrol-2(5H)-ones and 2(5H)-furanones as inhibitors of Pseudomonas aeruginosa biofilm [J]. Letters in Drug Design & Discovery, 2009, 6(2): 107-113.
[13] 陳衛(wèi)民, 葉春強(qiáng), 王玉真, 等. 基于穩(wěn)定的膦葉立德合成2(5H)-呋喃酮和2(5H)-吡咯酮作為細(xì)菌群體感應(yīng)抑制劑的研究 [J]. 化學(xué)通報(bào), 2009, 72(5): 438-443.
CHEN W M, YE C Q, WANG Y Z, et al. Syntheses of 2(5H)-furanones and 2(5H)-pyrrolones as the bacterial quorum sensing inhibitor by using the stabilized phosphorus ylide [J]. Chemistry Bulletin, 2009, 72(5): 438-443.
[14] LIU G Y, GUO B Q, CHEN W N, et al. Synthesis, molecular docking, and biofilm formation inhibitory activity of 5-substituted 3,4-dihalo-5H-furan-2-one derivatives on Pseudomonas aeruginosa [J]. Chemical Biology & Drug Design, 2012, 79(5): 628-638.
[15] WU Y, KARNA S, CHOI C H, et al. Synthesis and biological evaluation of novel thiazolidinedione analogues as 15-hydroxyprostaglandin dehydrogenase inhibitors [J]. Journal of Medicinal Chemistry, 2011, 54(14): 5260-5264.
[16] SWAMY K C, KUMAR N N, BALARAMAN E, et al. Mitsunobu and related reactions: advances and applications [J]. Chemical Reviews, 2009, 109(6): 2551-2651.
[17] BELLINA F, ROSSI R. An efficient and inexpensive multigram synthesis of 3,4-dibromo- and 3,4-dichlorofuran-2(5H)-one [J]. Synthesis, 2007, 26(12): 1887-1889.
[18] KUMAR SA, LOHANI M, PARTHSARTHY R. Synthesis, characterization and anti-inflammatory activity of some 1, 3,4-oxadiazole derivatives [J]. Iranian Journal of Pharmaceutical Research, 2013, 12(2): 319-323.
[19] 張慶文, 周后元, 尤啟冬. Mitsunobu反應(yīng)及其在藥物化學(xué)中的應(yīng)用 [J]. 中國(guó)醫(yī)藥工業(yè)雜志, 2007, 38(10): 731-739.
ZHANG Q W, ZHOU H Y, YOU Q D. Mitsunobu reaction and its applications in medicinal chemistry [J]. Chinese Journal of Pharmaceuticals, 2007, 38(10): 731-739.
[責(zé)任編輯:張普玉]
Synthesis and biological evaluation of novel 5-benzylidene-3,4-dihalo-furan-2-one derivatives
WANG Fang1*, JIANG Jin2, YU Yanling1, Lü Jian1, WANG Wanchun1
(1.QingdaoStomatologicalHospital,Qingdao266000,Shandong,China; 2.QingdaoCenterHospital,Qingdao266042,Shandong,China)
The 5-benzylidene-3,4-dihalo-furan-2-one derivatives 4a-4o were synthesized from mucobromic acid or mucochloric acidviaseveral steps: reduction condensation,condensation and aethrization, and their structures were characterized by1H-NMR,13C-NMR and MS. Their anti-inflammatory activities in vitro were evaluated by utilizing mice macrophage cells RAW264.7 which were induced by bacterial lipopolysaccharide LPS. Results of biological activity showed that 4a-4o had inhibitory effect on NO production in LPS-stimulated RAW264.7 cells, which 4h and 4i displayed excellent inhibitory activities on the production of NO. These research findings showed that compounds with halogenated furanone structure and electronic group on the pyridine ring had excellent anti-inflammatory activity, providing further new drug design and research strategy for the treatment of inflammation.
5-benzylidene-3,4-dihalo-furan-2-one derivatives; synthesis; biological activity
2017-01-17.
青島市市南區(qū)科技發(fā)展資金項(xiàng)目(2016-3-042-YY);青島市2015年度醫(yī)藥科研指導(dǎo)計(jì)劃(2015-WJZD094).
王 芳(1988-),女,博士生,從事藥物研究.*
,E-mail:dami525@126.com.
O626.1
A
1008-1011(2017)03-0335-08