劉 俊 陳林聰,2) 孫建橋
?(華僑大學(xué)土木工程學(xué)院,福建廈門(mén)361021)?(加州大學(xué)Merced分校工程學(xué)院,美國(guó)加利福尼亞州95343)
-動(dòng)力學(xué)與控制
隨機(jī)激勵(lì)下滯遲系統(tǒng)的穩(wěn)態(tài)響應(yīng)閉合解1)
劉 俊?陳林聰?,2)孫建橋?
?(華僑大學(xué)土木工程學(xué)院,福建廈門(mén)361021)?(加州大學(xué)Merced分校工程學(xué)院,美國(guó)加利福尼亞州95343)
滯遲系統(tǒng)屬于一類(lèi)典型的強(qiáng)非線性系統(tǒng),滯遲力不僅取決于系統(tǒng)的瞬時(shí)變形,還與變形歷程有關(guān).雖然滯遲系統(tǒng)的隨機(jī)振動(dòng)問(wèn)題已被廣泛研究,但至今尚未得到滯遲系統(tǒng)隨機(jī)響應(yīng)概率密度函數(shù)的精確閉合解.本文運(yùn)用迭代加權(quán)殘值法獲得了高斯白噪聲激勵(lì)下Bouc-Wen滯遲系統(tǒng)穩(wěn)態(tài)響應(yīng)概率密度函數(shù)的近似閉合解.首先,運(yùn)用等效線性化法求出系統(tǒng)的穩(wěn)態(tài)高斯概率密度函數(shù);然后以此構(gòu)造權(quán)函數(shù),應(yīng)用加權(quán)殘值法求得了系統(tǒng)指數(shù)多項(xiàng)式形式的非高斯概率密度函數(shù);最后引入迭代的過(guò)程,逐步優(yōu)化權(quán)函數(shù),提高計(jì)算所得結(jié)果的精度.以隨機(jī)地震激勵(lì)下鋼纖維陶粒混凝土結(jié)構(gòu)的穩(wěn)態(tài)響應(yīng)作為算例,其中Bouc-Wen模型的參數(shù)是基于擬靜力學(xué)試驗(yàn)數(shù)據(jù),并應(yīng)用最小二乘法辨識(shí)獲得.與Monte Carlo模擬結(jié)果相比,等效線性化法得到的結(jié)果精度較差;由加權(quán)殘值法得到的結(jié)果能夠表現(xiàn)出非線性特征,但其精度依然無(wú)法令人滿(mǎn)意;采用迭代加權(quán)殘值法得到的近似閉合解與Monte Carlo模擬的結(jié)果吻合非常好;對(duì)于較強(qiáng)隨機(jī)激勵(lì)情形,采用漸進(jìn)迭代加權(quán)殘值法具有較高的求解效率,所獲得的理論解析解具有較高的精度.結(jié)果表明,所獲得的近似閉合解不僅對(duì)于土木工程領(lǐng)域具有重要的實(shí)際應(yīng)用價(jià)值,而且還可作為檢驗(yàn)其他非線性系統(tǒng)隨機(jī)響應(yīng)預(yù)測(cè)方法的精度的標(biāo)準(zhǔn).
滯遲系統(tǒng),穩(wěn)態(tài)響應(yīng),閉合解,迭代加權(quán)殘值法,鋼纖維陶?;炷两Y(jié)構(gòu)
滯遲現(xiàn)象如彈塑性[13]、鐵電性[4]、形狀記憶合金材料[5]等常出現(xiàn)在科學(xué)研究和工程實(shí)際的不同領(lǐng)域,強(qiáng)烈震動(dòng)載荷下的結(jié)構(gòu)系統(tǒng)通常表現(xiàn)出滯遲現(xiàn)象[67].學(xué)術(shù)界提出了許多模型描述這些滯遲關(guān)系,如雙線性模型[89],Ramberg-Osgood模型[10],Bouc-Wen模型[67],Ozdemir模型[11],Masing模型[12],Duhem 模型[13],Preisach模型[14]等,其中Bouc-Wen模型是較為通用的一種.
滯遲力不僅與系統(tǒng)當(dāng)前的狀態(tài)有關(guān),而且還與系統(tǒng)過(guò)去的狀態(tài)有關(guān).因此,滯遲動(dòng)力學(xué)系統(tǒng)屬于一類(lèi)典型的強(qiáng)非線性系統(tǒng).近年來(lái),滯遲系統(tǒng)的隨機(jī)振動(dòng)問(wèn)題已被廣泛研究,但至今尚未獲得精確的閉合解,因此,學(xué)術(shù)界提出了各種近似解法.如,Iwan[15]采用基于克雷洛夫-包哥留波夫假設(shè)的等效線性化法研究了雙線性滯遲系統(tǒng)的隨機(jī)響應(yīng).Roberts[16-17]分別采用標(biāo)準(zhǔn)隨機(jī)平均法及能量包線隨機(jī)平均法研究了雙線性滯遲系統(tǒng)的隨機(jī)響應(yīng).Bouc[7]釆用FPK方程法研究了滯遲系統(tǒng)的隨機(jī)響應(yīng).Wen[7,18]采用線性化方法研究了滯遲系統(tǒng)的隨機(jī)響應(yīng).Zhu等[19]采用能量包線隨機(jī)平均法研究分布彈塑性元件為滯遲恢復(fù)力模型的滯遲系統(tǒng)的隨機(jī)響應(yīng).Lin等[20]采用能量包線隨機(jī)平均法研究了Bouc-Wen滯遲系統(tǒng)的隨機(jī)響應(yīng).Ying等[21]采用能量包線隨機(jī)平均法研究了Duhem滯遲系統(tǒng)的隨機(jī)響應(yīng).對(duì)具有非局部記憶特性的Preisach滯遲系統(tǒng),Mayergoyz和Korman[22]研究了隨機(jī)輸入下 Preisach系統(tǒng)的平均輸出,Ni等[23]基于方差和非局部記憶滯遲本構(gòu)模型的切換概率分析,近似得到了Preisach滯遲系統(tǒng)的非線性隨機(jī)動(dòng)力響應(yīng)的二階統(tǒng)計(jì)量.Spanos等[24]和Wang等[25]分別采用標(biāo)準(zhǔn)隨機(jī)平均和能量包線隨機(jī)平均法研究了 Preisach滯遲系統(tǒng)的隨機(jī)響應(yīng).最近,Jin等[26]運(yùn)用隨機(jī)平均法和伽遼金法獲得了隨機(jī)地震激勵(lì)下滯遲系統(tǒng)的近似瞬態(tài)響應(yīng).
然而,上述方法都存在一些不足,如隨機(jī)平均法僅限于能量耗散很小且弱激勵(lì)情形;等效線性化法能得到較準(zhǔn)確的均方速度和均方位移,但是這種方法只局限于高斯統(tǒng)計(jì)的情形,在參激情況下常被認(rèn)為是不充足或不合適的;非高斯閉合法在尾部通常會(huì)獲得負(fù)值概率,特別是參激情形.因此,還需進(jìn)一步開(kāi)展滯遲非線性系統(tǒng)的隨機(jī)響應(yīng)預(yù)測(cè)研究.
Er[2729]提出了一種指數(shù)多項(xiàng)式閉合法求解穩(wěn)態(tài)FPK方程,但由于采用了高斯概率密度函數(shù)構(gòu)造權(quán)函數(shù),因此指數(shù)多項(xiàng)式閉合解法的應(yīng)用范圍受到了很大限制.Di Paola和Sof[30]改進(jìn)了指數(shù)多項(xiàng)式閉合法,提出采用一種簡(jiǎn)單有效的迭代過(guò)程以提高近似解的精確性,但該方法沒(méi)有從根本上解決指數(shù)閉合解的局限性問(wèn)題.最近,文獻(xiàn)[31]提出了一種求解FPK方程穩(wěn)態(tài)解的新方法——迭代加權(quán)殘值法,該方法的核心思想是逐步優(yōu)化權(quán)函數(shù),目前已被成功應(yīng)用于求解多種復(fù)雜單自由度強(qiáng)非線性系統(tǒng)[3132].
本文將迭代加權(quán)殘值法進(jìn)一步應(yīng)用于Bouc-Wen滯遲系統(tǒng),構(gòu)造其穩(wěn)態(tài)概率密度函數(shù).首先,將穩(wěn)態(tài)FPK方程的解設(shè)為指數(shù)多項(xiàng)式,然后借助加權(quán)殘值法確定假設(shè)解中的待定系數(shù);引入迭代方法,逐步優(yōu)化權(quán)函數(shù),提高加權(quán)殘值法的精度,得到系統(tǒng)穩(wěn)態(tài)響應(yīng)的近似閉合解.作為應(yīng)用,本文獲得了高斯白噪聲激勵(lì)下鋼纖維陶?;炷量蚣芙Y(jié)構(gòu)的近似穩(wěn)態(tài)響應(yīng)概率密度函數(shù)閉合解.研究表明,所獲得的閉合解與Monte Carlo模擬結(jié)果吻合得較好.
迭代加權(quán)殘值法主要由兩個(gè)步驟組成.首先,應(yīng)用加權(quán)殘值法獲得系統(tǒng)的近似穩(wěn)態(tài)概率密度響應(yīng);然后,引入迭代過(guò)程,逐步優(yōu)化權(quán)函數(shù),提高加權(quán)殘值法的精度,最終得到具有較高精度的近似閉合穩(wěn)態(tài)解.
1.1 加權(quán)殘值法
考慮外激高斯白噪聲激勵(lì)下的 Bouc-Wen系統(tǒng),其運(yùn)動(dòng)方程如下
式中,X,Y與Z分別表示系統(tǒng)位移、速度與滯遲力;ξ為黏滯阻尼率;α∈(0,1)是屈服前后的剛度比;λ,β,γ與n為滯回環(huán)參數(shù),β與γ控制滯回環(huán)的形狀,λ控制滯回環(huán)的幅值,n控制滯回環(huán)曲線的光滑性;W(t)是強(qiáng)度為2Dδ(t)的高斯白噪聲.
與系統(tǒng)(1)相應(yīng)的穩(wěn)態(tài)FPK方程為
式中,p=p(x,y,z).目前,式(2)尚未獲得精確解析解.
構(gòu)造如下形式的近似解
其中,C0為歸一化常數(shù),φ(x,y,z,cijk)為關(guān)于狀態(tài)變量的n階多項(xiàng)式,可表示為
其中,cijk為待求系數(shù).ˉp(x,y,z)的存在條件為
其中,x=Rsinθcosφ,y=Rsinθsinφ,z=Rcosθ.將方程(3)代入式(2)中,得殘差
由于ˉp(x,y,z)只是p(x,y,z)的近似值.因此,殘差r(x,y,z,cijk)通常不為零.根據(jù)加權(quán)殘值法,引入一組權(quán)函數(shù) Mijk(x,y,z),使其與殘差r(x,y,z,cijk)的乘積在域內(nèi)的積分為零,即
權(quán)函數(shù)可取為[27-29]
其中,pm(x,y,z)是由等效線性化法或隨機(jī)平均法等方法獲得的系統(tǒng)概率密度函數(shù).值得注意的是,在數(shù)值計(jì)算時(shí)方程(7)中的積分域通常為有限積分域,但通常難以確定.為此,運(yùn)用Monte Carlo模擬法粗略估計(jì)積分域Ωs.方程(7)可近似表示為
其中,0<i+j+k≤l,l為解的階數(shù).將式(10)進(jìn)行數(shù)值積分,即可得到一組關(guān)于cijk的二次非線性代數(shù)方程組.采用牛頓法求解該方程組,可獲得系統(tǒng)的近似穩(wěn)態(tài)響應(yīng)概率密度.
1.2 迭代過(guò)程
滯遲系統(tǒng)屬于強(qiáng)非線性系統(tǒng),僅使用一次加權(quán)殘值法可能得不到具有足夠精度的解.因此,采用文獻(xiàn)[30-31]中的迭代技術(shù)來(lái)提高解的精度.令(k)為迭代k次后得到的近似穩(wěn)態(tài)概率密度函數(shù),取代式(9)中的pm,再應(yīng)用加權(quán)殘值法求出下一個(gè)近似穩(wěn)態(tài)概率密度函數(shù)ˉp(k+1).重復(fù)此步驟直到滿(mǎn)足以下收斂條件
其中,ε0為預(yù)設(shè)誤差,N1,N2與N3為常數(shù),分別表示狀態(tài)空間離散的數(shù)目,Δx,Δy和Δz表示離散積分步長(zhǎng).
其中,pR(x,y,z)表示Monte Carlo模擬得到的穩(wěn)態(tài)概率密度函數(shù).
需要指出的是,當(dāng)pm與真實(shí)解相差較大時(shí),上述迭代過(guò)程可能不會(huì)收斂,特別是當(dāng)系統(tǒng)為強(qiáng)非線性的情況.文獻(xiàn)[31]提出了一種漸近迭代的方案,即先應(yīng)用加權(quán)殘值法獲得系統(tǒng)弱非線性情形時(shí)或弱阻尼弱激勵(lì)情形時(shí)的近似穩(wěn)態(tài)概率密度函數(shù),然后以此構(gòu)造權(quán)函數(shù),再在非線性參數(shù)空間漸近迭代.例如,針對(duì)滯遲系統(tǒng)(1),為了獲得激勵(lì)強(qiáng)度D=0.2情形時(shí)的近似穩(wěn)態(tài)響應(yīng)概率密度函數(shù),首先采用迭代加權(quán)殘值法獲得弱隨機(jī)激勵(lì)D=0.1情形時(shí)的近似穩(wěn)態(tài)概率函數(shù)pm1;然后將pm1代入式(9),以此構(gòu)造新的權(quán)函數(shù),再次利用迭代加權(quán)殘值法,求得隨機(jī)激勵(lì)D=0.15情形時(shí)的近似穩(wěn)態(tài)概率函數(shù) pm2;最后將pm2代入式(9),構(gòu)造新的權(quán)函數(shù),利用迭代加權(quán)殘值法求解D=0.2時(shí)的概率密度函數(shù).這種漸近迭代的方法可有效避免選取的初始值 pm與真實(shí)解相差較大時(shí)導(dǎo)致的不收斂情況,提高了求解的效率.
考慮如圖1所示的水平隨機(jī)地震作用下單自由度鋼纖維陶?;炷量蚣軠t系統(tǒng),其平衡條件為
其中,x(t)是集中質(zhì)量的相對(duì)位移;xt(t)是集中質(zhì)量的總位移;g(x,)是恢復(fù)力.
圖1 地震地面運(yùn)動(dòng)下單自由度鋼釬維陶?;炷量蚣芙Y(jié)構(gòu)Fig.1 Steel fibe reinforced ceramsite concrete(SFRCC)single degree of freedom frame subjected to earthquake ground motion
由圖1中可得
式中,xg和分別表示地面的位移和加速度,將方程(15)代入方程(13)可得
其中,F(xiàn)(t)為圖2所示導(dǎo)致水平地面加速度的等效載荷.該框架結(jié)構(gòu)被簡(jiǎn)化為如圖2所示的等效系統(tǒng).
圖2 等效系統(tǒng)Fig.2 Equivalent system
將方程(17)無(wú)量綱化,并把等效載荷理想化為獨(dú)立的高斯白噪聲.該系統(tǒng)的動(dòng)力學(xué)方程化為
其中,x為無(wú)量綱化的位移,ξ為黏滯阻尼率,α是屈服前后的剛度比,k1為常數(shù),W1(t)是強(qiáng)度為2D1的高斯白噪聲,z為恢復(fù)力中依賴(lài)于時(shí)間的滯遲力,由以下公式表示
本文基于鋼纖維陶?;炷林芩降椭芊磸?fù)加載試驗(yàn)所得的數(shù)據(jù),經(jīng)最小二乘法辨識(shí)獲得滯遲系統(tǒng)的參數(shù):n= 1,λ=1.1037,β=0.202和γ=0.3147.理論曲線和試驗(yàn)曲線對(duì)比如圖3所示,二者吻合較好.系統(tǒng)的其他參數(shù)為:ξ=0.025,α=0.2,D=0.1,ε0=0.001.
圖3 鋼纖維陶?;炷林耆苄噪A段試驗(yàn)曲線和理論曲線(實(shí)線表示理論結(jié)果,虛線表示試驗(yàn)結(jié)果)Fig.3 Theoretical curve and practical curve of SFRCC column in fully plastic stage(the solid line denotes the theoretical curve and the dotted line denotes the practical curve)
最終可得如下形式的運(yùn)動(dòng)方程
本文首先運(yùn)用等效線性化法獲得了系統(tǒng)的近似穩(wěn)態(tài)響應(yīng)概率密度函數(shù),表達(dá)式如下
然后以式(21)構(gòu)造權(quán)函數(shù),運(yùn)用加權(quán)殘值法獲得了新的近似穩(wěn)態(tài)響應(yīng)概率密度函數(shù),即
根據(jù)誤差公式(11),式(21)與式(22)的誤差分別為0.163和0.249.顯然,式(22)的精度低于式(21).因此,為了進(jìn)一步提高精度,現(xiàn)以解(22)構(gòu)造權(quán)函數(shù),經(jīng)過(guò)1次迭代,獲得了誤差為0.035的解
圖4給出了關(guān)于p(x,z)的穩(wěn)態(tài)邊緣概率密度函數(shù).由圖4和圖5可知,等效線性化的結(jié)果與Monte Carlo模擬結(jié)果相差甚遠(yuǎn);加權(quán)殘值法的計(jì)算結(jié)果精度尚未令人滿(mǎn)意,但已經(jīng)表現(xiàn)出系統(tǒng)的一些非線性特征;迭代加權(quán)殘值法得到結(jié)果與Monte Carlo模擬的結(jié)果吻合較好.
另外,以式(23)構(gòu)造權(quán)函數(shù),采用漸進(jìn)迭代加權(quán)殘值法,經(jīng)過(guò)3次迭代獲得了較強(qiáng)隨機(jī)激勵(lì)D=0.2情形時(shí)系統(tǒng)的近似穩(wěn)態(tài)概率密度函數(shù)閉合解
圖4 D=0.1情形時(shí)關(guān)于p(x,z)的穩(wěn)態(tài)邊緣概率密度函數(shù)Fig.4 The steady-state marginal probability density function p(x,z)in case of D=0.1
圖5 D=0.1情形時(shí)的穩(wěn)態(tài)邊緣概率密度函數(shù)p1(x)和p2(z)(?,?表示Monte Carlo模擬數(shù)據(jù))Fig.5 The steady-state marginal probability density function p1(x)and p2(z)in case of D=0.1(?,? represent the Monte Carlo simulation data)
式(24)的精度為0.040.圖6給出D=0.2情形時(shí)的穩(wěn)態(tài)邊緣概率密度函數(shù).圖6(a)與6(b)表示關(guān)于p(x,z)的穩(wěn)態(tài)邊緣概率密度函數(shù).圖6(c)與圖6(d)分別表示關(guān)于p1(x)及p2(z)的穩(wěn)態(tài)邊緣概率密度及均方差.符號(hào)(?,?)表示樣本數(shù)為40000的Monte Carlo模擬結(jié)果.由圖6可知,理論解析解與模擬結(jié)果在較強(qiáng)隨機(jī)激勵(lì)情形時(shí)仍吻合得較好.
圖6 D=0.2情形時(shí)穩(wěn)態(tài)邊緣概率密度函數(shù)(?,?表示Monte Carlo模擬結(jié)果)Fig.6 The steady-state marginal probability density function in case of D=0.2(?,? represent results from Monte Carlo simulation)
本文首次獲得Bouc-Wen滯遲系統(tǒng)的穩(wěn)態(tài)響應(yīng)概率密度函數(shù)的近似閉合解.首先,利用等效線性化法獲得的高斯概率密度函數(shù)構(gòu)造權(quán)函數(shù),然后應(yīng)用加權(quán)殘值法獲得系統(tǒng)指數(shù)多項(xiàng)式形式的非高斯概率密度函數(shù),最后引入迭代的辦法提高了加權(quán)殘值法計(jì)算所得結(jié)果的精度.對(duì)較強(qiáng)隨機(jī)激勵(lì)情形,以弱隨機(jī)激勵(lì)情形時(shí)的穩(wěn)態(tài)響應(yīng)概率密度函數(shù)構(gòu)造權(quán)函,再在隨機(jī)激勵(lì)的參數(shù)空間內(nèi)漸近迭代.作為算例,本文研究了隨機(jī)激勵(lì)下鋼纖維陶?;炷两Y(jié)構(gòu)的穩(wěn)態(tài)響應(yīng),其中Bouc-Wen系統(tǒng)的參數(shù)是基于擬靜力學(xué)試驗(yàn)由最小二乘法辨識(shí)獲得.對(duì)比Monte Carlo模擬結(jié)果,等效線性化的結(jié)果精度較差,加權(quán)殘值法的結(jié)果雖表現(xiàn)出了系統(tǒng)的非線性特征但精度尚未令人滿(mǎn)意,迭代加權(quán)殘值法得到結(jié)果與Monte Carlo模擬的結(jié)果吻合得較好.對(duì)于較強(qiáng)隨機(jī)激勵(lì)情形,基于漸近迭代加權(quán)殘值法具有較高的效率,且所得結(jié)果也具有較好的精度.本文所獲得的閉合解,不僅對(duì)于土木工程領(lǐng)域具有重要的實(shí)際應(yīng)用價(jià)值,還可作為一個(gè)標(biāo)準(zhǔn),用來(lái)檢驗(yàn)其他非線性系統(tǒng)隨機(jī)響應(yīng)預(yù)測(cè)方法的精度.
1萬(wàn)征,姚仰平,孟達(dá).復(fù)雜加載下混凝土的彈塑性本構(gòu)模型.力學(xué)學(xué)報(bào),2016,48(5):1159-1171(Wan Zheng,Yao Yangping,MengDa.An elastoplastic constitutive model of concrete of complicated load.Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1159-1171(in Chinese))
2李龍彪.纖維增強(qiáng)陶瓷基復(fù)合材料疲勞遲滯回線模型研究.力學(xué)學(xué)報(bào),2014,46(5):710-729(Li Longbiao.Investigation on fatigue hysteresis loops models of fibre-reinforce ceramic-matrix composites.Chinese Journal of Theoretical and Applied Mechanics,2014,46(5):710-729(in Chinese))
3郭洪寶,賈普榮,王波等.基于遲滯行為的2D-SiC/SiC復(fù)合材料組份力學(xué)性能分析.力學(xué)學(xué)報(bào),2015,47(2):260-269(Guo Hongbao,Jia Purong,Wang Bo et al.Study on constituent properties of a 2D-SiC/SiC composite by hysteresis measurements.Chinese Journal of Theoretical and Applied Mechanics,2015,47(2):260-269(in Chinese))
4萬(wàn)強(qiáng),陳常青,沈亞鵬.鐵電陶瓷PZT53復(fù)雜力電耦合行為的實(shí)驗(yàn)研究.力學(xué)學(xué)報(bào),2005,37(4):413-420(Wan Qiang,Chen Changqing,Shen Yapeng.An experimental investigation into the complex electromechanical behavior of PZT53.Chinese Journal of Theoretical and Applied Mechanics,2005,37(4):413-420(in Chinese))
5 Mayergoyz I.Mathematical models of hysteresis.IEEE Transactions on Magnetic,1986,22(5):603-608
6 Wen YK.Methods of random vibrationfor inelastic structures.Applied Mechanics Review,1989,42(2):39-52
7 Bouc R.Forced vibration of mechanical systems with hysteresis//Proceedings of the Fourth Conference on Non-Linear Oscillation,Prague,Czechoslovakia,1967
8 Caughey T.Random excitation of a system with bilinear hysteresis.ASME Journal of Applied Mechanics,1960,27(4):649-652
9 Suzuki Y,Minai R.Application of stochastic di ff erential equations to seismic reliability analysis of hysteretic structures.Probabilistic Engineering Mechanics,1988,3(1):43-52
10 Jennings PC.Periodic response of a general yielding structure.Journal of Engineering Mechanics-ASCE Division,1964,90(2):131-166
11 Bhatti M,Pister K.A dual criteria approach for optimal-design for earthquake-resistant structural systems.Earthquake Engineering Structure Design,1981,9(6):557-572
12 Beck JL,Jayakumar P.Class of Masing models for plastic hysteresis in structures//Proceedings of 14th ASCE Structures Congress,1996:1083-1090
13 Visintin A.Di ff erential Models of HysteresisⅢ.Springer Science&Business Media,2013
14 Mayergoyz I.Mathematical models of hysteresis.IEEE Transactions on Magnetic,1986,22(5):603-608
15 Iwan WD.A distributed-element model for hysteresis and its steadystate dynamic response.ASME Journal of Applied Mechanics,1966,33:893
16 Roberts JB.The response of an oscillator with bilinear hysteresis to stationary random excitation.ASME Journal of Applied Mechanics,1978,45(4):923-928
17 Roberts JB.Application of averaging methods to randomly excited hysteretic systems//Nonlinear Stochastic Dynamic Engineering Systems,Berlin,Springer,1988
18 Wen YK.Equivalent linearization for hysteretic systems under random excitation.ASME Journal of Applied Mechanics,1980,47(1):150-154
19 Zhu WQ,Lei Y.Stochastic averaging of energy envelope of bilinear hysteretic systems//Nonlinear Stochastic Dynamic Engineering Systems,Berlin:Springer,1988
20 LinYK,Cai GQ.Probabilistic Structural Dynamics:AdvancedTheory and Applications.New York:McGraw-Hill,1995
21 ZG Ying,WQ Zhu,Ni YQ,et al.Stochastic averaging of Duhem hysteretic systems.Journal of Sound and Vibration,2002,254(1):91-104
22 Mayergoyz ID,Korman CE.The Preisach model with stochastic input as a model for aftere ff ect.Journal of Applied Physics,1994,75(10):5478-5480
23 NiYQ,YingZG,KoJM.RandomresponseanalysisofPreisachhysteretic systems with symmetric weight distribution.ASME Journal of Applied Mechanics,2002,69(2):171-178
24 Spanos PD,Cacciola P,Muscolino G.Stochastic averaging of Preisach hysteretic systems.ASCE Journal of Engineering Mechanics,2004,130(11):1257-1267
25 Wang Y,Ying ZQ,Zhu WQ.Stochastic averaging of energy envelope of Preisach hysteretic systems.Journal of Sound and Vibration,2009,321(3-5):976-993
26 Jin XL,Wang Y,Huang ZL.Analysis and control for transient responses of seismic-excited hysteretic structures.Soil Dynamics and Earthquake Engineering,2015,73(6):58-65
27 Er GK.Exponential closure method for some randomly excited non-linear systems.International Journal of Nonlinear Mechanics,2000,35(1):69-78
28 Er GK.A consistent method for the solution to reduced FPK equation in statistical mechanics.Physica A,1999,262(1):118-128
29 Er GK.An improved closure method for analysis of nonlinear stochastic systems.Nonlinear Dynamics,1998,17(3):285-297
30 Di Paola M,Sof A.Approximate solution of the Fokker-Planck-Kolmogorov equation.Probabilistic Engineering Mechanics,2002,17(4):369-384
31 Chen LC,Sun JQ.The closed-form solution of the reduced Fokker-Planck-Kolmogorov equation for nonlinear systems.Communications in Nonlinear Science&Numerical Simulation,2016,41(12):1-10
32 Chen LC,Sun JQ,The closed-form steady-state probability density function of van der pol oscillator under random excitations.Journal of Applied Nonlinear Dynamics,2016,5(4):495-502
THE CLOSED-FORM SOLUTION OF STEADY STATE RESPONSE OF HYSTERETIC SYSTEM UNDER STOCHASTIC EXCITATION1)
Liu Jun?Chen Lincong?,2)Sun Jian-Qiao??(College of civil Engineering,Huaqiao University,Xiamen 361021,F(xiàn)ujian,China)?(School of Engineering University of California Merced,CA 95343,USA)
The hysteretic system is one of the typical strongly nonlinear systems.Hysteretic force depends not only on the instantaneous deformation but also on the past history of deformation.In the last few decades,random vibration of hysteretic system has been studied extensively,but no closed-form solution of random response of hysteretic systems is available so far.In this paper,the newly developed nonlinear random vibration scheme called iterative method of weighted residuals is explored to obtain the closed-form solution of steady-state probability density function(PDF)of the Bouc-Wen hysteretic system under Gaussian white noise excitation.First,a Gaussian PDF is obtained with equivalent linearization technique,which is used as a weighting function.Then,the method of weighted residuals is utilized to determine the non-Gaussian PDF of exponential polynomial type.Finally,an iterative procedure is introduced to improvethe accuracy of the solutions obtained from the method of weighted residuals.As an illustrative example,the steadystate stochastic response of the steel fibe reinforced ceramsite concrete column under random excitation is studied,in which the hysteretic parameters associated with Bouc-Wen hysteretic model is identifie from the pseudo-static test by using the method of least square.Compared to the Monte Carlo results,the accuracy of results obtained from equivalent linearization method is poor.The results obtained from weight residue method can show the nonlinearity of Bouc-Wen systems,but its accuracy is still unsatisfactory.The iterative method of weight residuals can lead to results with higher accuracy.In the case of stronger random excitation,the progressive iterative method of weighted residuals has high efficiency.The obtained solutions agree well with the Monte Carlo simulation data.The proposed closed-form solution of PDF of Bouc-Wen hysteretic system not only is significan to the civil engineering,but also can be a benchmark to examine the accuracy of solutions obtained by other methods.
hysteretic system,steady-state response,closed-form solution,iterative method of weight residuals,steel fibe reinforced ceramsite concrete structure
O324
:A
10.6052/0459-1879-17-003
2017–01–11 收稿,2017–04–11 錄用,2017–04–11 網(wǎng)絡(luò)版發(fā)表.
1)國(guó)家自然科學(xué)基金(11172197,11332008,11572215,11672111,51608211)、福建省自然科學(xué)基金(2013J05080)、福建省高校杰出青年科研人才培育計(jì)劃和華僑大學(xué)優(yōu)秀青年科技創(chuàng)新人才(ZQN-YX307)資助項(xiàng)目.
2)陳林聰,副教授,主要研究方向:非線性隨機(jī)振動(dòng)與控制.E-mail:lincongchen@hqu.edu.cn
劉俊,陳林聰,孫建橋.隨機(jī)激勵(lì)下滯遲系統(tǒng)的穩(wěn)態(tài)響應(yīng)閉合解.力學(xué)學(xué)報(bào),2017,49(3):685-692
Liu Jun,Chen Lincong,Sun Jian-Qiao.The closed-form solution of steady state response of hysteretic system under stochastic excita-tion.Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):685-692