周 廷 闞前華 康國政 邱 博
(西南交通大學(xué)力學(xué)與工程學(xué)院,成都610031)
超彈性鎳鈦形狀記憶合金單軸相變棘輪行為的宏觀唯象本構(gòu)模型1)
周 廷2)闞前華 康國政3)邱 博
(西南交通大學(xué)力學(xué)與工程學(xué)院,成都610031)
超彈性鎳鈦形狀記憶合金因其良好的力學(xué)性能以及獨(dú)特的超彈性和形狀記憶效應(yīng)已廣泛應(yīng)用于土木工程、航空航天和生物醫(yī)療等多個(gè)領(lǐng)域,在實(shí)際服役環(huán)境中超彈性鎳鈦合金元件不可避免地會(huì)承受不同應(yīng)力水平的循環(huán)載荷作用,亟待建立描述相變棘輪行為(即峰值應(yīng)變和谷值應(yīng)變隨著正相變和逆相變循環(huán)的進(jìn)行不斷累積)的循環(huán)本構(gòu)模型.為此,基于已有的超彈性鎳鈦形狀記憶合金在不同峰值應(yīng)力下的單軸相變棘輪行為實(shí)驗(yàn)研究結(jié)果,在廣義黏塑性框架下,對Graesser等提出的通過背應(yīng)力非線性演化方程反映超彈性鎳鈦形狀記憶合金超彈性行為的一維宏觀唯像本構(gòu)模型進(jìn)行了拓展,考慮了正相變和逆相變過程中特征變量的差異及其隨循環(huán)的演化,以非彈性應(yīng)變的累積量為內(nèi)變量引入了正相變開始應(yīng)力、逆相變開始應(yīng)力、相變應(yīng)變和殘余應(yīng)變的演化方程,同時(shí)通過峰值應(yīng)力與正相變完成應(yīng)力的比值來確定演化方程中的相關(guān)系數(shù),建立了描述超彈性鎳鈦合金單軸相變棘輪行為的本構(gòu)模型.將模擬結(jié)果與對應(yīng)的實(shí)驗(yàn)結(jié)果進(jìn)行對比發(fā)現(xiàn),建立的宏觀唯像本構(gòu)模型能夠合理地描述超彈性鎳鈦形狀記憶合金的單軸相變棘輪行為及其峰值應(yīng)力依賴性,模型的預(yù)測結(jié)果和實(shí)驗(yàn)結(jié)果吻合得很好.
鎳鈦合金,相變棘輪行為,廣義黏塑性,本構(gòu)模型
自從鎳鈦形狀記憶合金 (SMA)問世以來,因其良好的力學(xué)特性以及獨(dú)有的超彈性和形狀記憶效應(yīng),一直受到了人們的廣泛重視[13].該合金在加卸載過程中會(huì)發(fā)生奧氏體與馬氏體的相互轉(zhuǎn)化,從而體現(xiàn)出超彈性特性.由于其具有很高的能量輸出能力,可作為減震智能元件并已廣泛應(yīng)用于土木工程結(jié)構(gòu)中[46].在實(shí)際應(yīng)用過程中,鎳鈦形狀記憶合金材料不可避免地會(huì)受到循環(huán)載荷的作用,該合金的耗散能力隨著循環(huán)周次的增加而急劇降低,從而導(dǎo)致其功能性失效.為此,諸多學(xué)者進(jìn)行了超彈性鎳鈦形狀記憶合金材料循環(huán)變形實(shí)驗(yàn),研究其在循環(huán)載荷作用下的變形特征和超彈性劣化機(jī)理.Miyazaki等[7],Lagoudas和Bo[8],Sehitoglu等[9]對超彈性鎳鈦形狀記憶合金進(jìn)行的拉伸與卸載循環(huán)變形實(shí)驗(yàn)研究表明:隨著循環(huán)周次的增加,相變開始應(yīng)力和耗散能逐漸降低,相變硬化模量和殘余應(yīng)變逐漸增加,且最終趨于飽和.此后,進(jìn)一步相關(guān)實(shí)驗(yàn)研究工作揭示了超彈性退化對溫度[1012]、加載應(yīng)力水平[1314]、加載路徑[1517]、加載速率[1819]和原子比[2021]等因素的依賴性.Kang等[13]將鎳鈦形狀記憶合金循環(huán)變形過程中的超彈性退化和相關(guān)應(yīng)變值的循環(huán)累積現(xiàn)象定義為相變棘輪行為,并討論了超彈性鎳鈦形狀記憶合金相變棘輪行為的外加應(yīng)力依賴性.
由于不同的材料體現(xiàn)出不同力學(xué)響應(yīng),需要建立不同本構(gòu)模型進(jìn)行描述[2225].對于鎳鈦形狀記憶合金材料,從不同尺度可建立細(xì)觀力學(xué)模型[2627]和宏觀唯象模型[2829].其中,Graesser等[30]在Ozdemir模型[31]的基礎(chǔ)上提出的鎳鈦形狀記憶合金一維唯象本構(gòu)模型因其形式簡單且參數(shù)便于確定的優(yōu)點(diǎn),在鎳鈦形狀記憶合金的結(jié)構(gòu)分析中獲得廣泛應(yīng)用.針對該模型無法描述鎳鈦形狀記憶合金變形行為的率相關(guān)性、超彈性的相變約束行為和循環(huán)變形行為等,后續(xù)學(xué)者分別對其進(jìn)行了必要的改進(jìn)[3234].
然而,由于鎳鈦形狀記憶合金器件在實(shí)際服役環(huán)境中承受的應(yīng)力通常是非均勻的分布,應(yīng)力水平變化很大,會(huì)涉及到不同峰值應(yīng)力的循環(huán)載荷作用.已有的實(shí)驗(yàn)研究[1314]也表明,不同峰值應(yīng)力的循環(huán)載荷作用下鎳鈦形狀記憶合金的力學(xué)響應(yīng)有很大差別.Kan和Kang[35]在廣義塑性框架上建立了可以描述超彈性鎳鈦形狀記憶合金單軸相變棘輪行為的宏觀唯象本構(gòu)模型,但該模型不能合理地描述外加峰值應(yīng)力大于相變完成應(yīng)力時(shí)的循環(huán)變形行為.
為此,本文基于Graesser模型[30],通過引入新的與相變棘輪行為相關(guān)的演化方程及其對應(yīng)力水平的依賴關(guān)系方程,建立了超彈性鎳鈦形狀記憶合金單軸宏觀唯象循環(huán)本構(gòu)模型,可合理描述該合金在寬應(yīng)力范圍內(nèi)的循環(huán)變形行為,包括超彈性退化效應(yīng).
本文的主要內(nèi)容是在已有實(shí)驗(yàn)結(jié)果基礎(chǔ)上建立相應(yīng)的本構(gòu)模型,但是為了內(nèi)容的完整性以及對所建立的本構(gòu)模型進(jìn)行合理性評價(jià),本節(jié)將對 Song等[14]的實(shí)驗(yàn)結(jié)果進(jìn)行簡單的總結(jié),突出超彈性鎳鈦形狀記憶合金單軸相變棘輪行為對加載峰值應(yīng)力水平的依賴性.為了更清楚地對相變棘輪行為變量演化進(jìn)行描述,定義了如下參量:相變開始應(yīng)力、逆相變開始應(yīng)力、最大相變應(yīng)變?chǔ)臠、殘余應(yīng)變?chǔ)舝以及耗散能Wd,如圖1所示.
圖1 相變棘輪行為的特征變量示意圖Fig.1 Illustration of characteristic variables of transformation ratcheting
Song等[14]對超彈性鎳鈦合金微管進(jìn)行了不同峰值應(yīng)力水平的循環(huán)拉伸與卸載實(shí)驗(yàn),結(jié)果如圖2和圖3所示.需要指出的是,為了便于和理論預(yù)測結(jié)果進(jìn)行直接比較,圖2中同時(shí)給出了本構(gòu)模型的預(yù)測結(jié)果.由圖2可見,超彈性鎳鈦形狀記憶合金在不同峰值應(yīng)力的循環(huán)拉伸與卸載作用下的相變棘輪行為體現(xiàn)出明顯的峰值應(yīng)力水平相關(guān)性.此外,峰值應(yīng)力的大小會(huì)影響峰值應(yīng)變是否達(dá)到最大相變應(yīng)變.例如,如圖2(a)所示,當(dāng)峰值應(yīng)力為500MPa時(shí),在循環(huán)第1周并沒有完全相變,但隨著循環(huán)周次的增加,相變開始應(yīng)力逐漸降低,到第5周時(shí)則發(fā)生了完全相變.
圖2 不同峰值應(yīng)力下的實(shí)驗(yàn)和模擬應(yīng)力--應(yīng)變曲線Fig.2 Experimental and simulated stress-strain curves with di ff erent peak stresses
同時(shí),應(yīng)力峰值的不同還會(huì)導(dǎo)致相變開始應(yīng)力、逆相變開始應(yīng)力、殘余應(yīng)變和最大相變應(yīng)變均隨循環(huán)周次的增加發(fā)生不同程度的演化,如圖3所示.
圖3 特征量循環(huán)演化曲線Fig.3 Evolution curves of characteristic variables
由圖3可知,峰值應(yīng)力越大,殘余應(yīng)變越大,但相變開始應(yīng)力、逆相變開始應(yīng)力和最大相變應(yīng)變卻越?。怀嘧冮_始應(yīng)力和最大相變應(yīng)變的初始值與應(yīng)力峰值無關(guān)外,其余均與峰值應(yīng)力相關(guān);相變開始應(yīng)力、逆相變開始應(yīng)力、殘余應(yīng)變和最大相變應(yīng)變均隨循環(huán)周次的增加呈近似呈指數(shù)形式演化,除殘余應(yīng)變隨循環(huán)周次的增加而增加外,其余特征量均隨之減小,它們最終均趨于飽和.
2.1 Graesser模型
Graesser等[30]在Ozdemir模型[31]基礎(chǔ)上提出了描述鎳鈦形狀記憶合金超彈性行為的一維唯象本構(gòu)模型,通過背應(yīng)力的變化來描述該合金的超彈性現(xiàn)象.具體的本構(gòu)方程為
其中,σ和ε分別為應(yīng)力和應(yīng)變;E為彈性模量;Y為各向同性變形抗力,表征相變開始的臨界應(yīng)力;n是控制相變開始應(yīng)力附近應(yīng)力--應(yīng)變曲線尖銳程度的材料參數(shù),只能取正奇數(shù);β為背應(yīng)力;h為控制應(yīng)力--應(yīng)變曲線中相變段斜率的常數(shù);εtr為相變應(yīng)變.fT,b,c為材料常數(shù).erf(·)為誤差函數(shù),可保證卸載后逆相變完成時(shí)殘余應(yīng)變?yōu)榱?,而參?shù)b決定了逆相變完成后卸載段的形狀;H(·)為Heaviside函數(shù),用于控制卸載過程中逆相變的發(fā)生.Graesser等[30]提出的本構(gòu)方程描述的超彈性鎳鈦形狀記憶合金的應(yīng)力--應(yīng)變曲線如圖4所示.
圖4 Graesser模型描述的鎳鈦合金單軸應(yīng)力--應(yīng)變曲線Fig.4 Stress-strain curves of NiTi shape memory alloy described by Graesser’s model
由圖4可見,Graesser模型存在以下幾點(diǎn)不足:(1)該模型沒有相變約束條件,即無論在多大的外載作用下,相變都不會(huì)結(jié)束,也就無法反映馬氏體相變完成后的彈性變形階段,這顯然不符合超彈性NiTi形狀記憶合金實(shí)際的的變形響應(yīng);(2)卸載時(shí)沒有發(fā)生與試驗(yàn)一致的逆相變過程.這是由于該模型中表征相變應(yīng)力的各向同性變形抗力Y的值并沒有在加載和卸載中有所區(qū)分;(3)不能描述如圖2和圖3所示實(shí)驗(yàn)結(jié)果中所揭示的循環(huán)變形行為.
2.2 改進(jìn)模型
如引言中所述,盡管文獻(xiàn)[32-34]對Graesser本構(gòu)方程進(jìn)行了改進(jìn),但這些本構(gòu)模型都主要針對應(yīng)變控制循環(huán)加卸載的情況,無法合理預(yù)測如圖2和圖3所示的應(yīng)力控制循環(huán)變形過程中單軸相變棘輪行為及其峰值應(yīng)力水平相關(guān)性.在楊強(qiáng)軍等[34]提出的循環(huán)相變模型基礎(chǔ)上,筆者通過引入一些新的演化方程,對Graesser本構(gòu)模型進(jìn)行拓展,使之能夠合理地描述超彈性鎳鈦形狀記憶合金的單軸相變棘輪行為.具體方程如下:
加載段(奧氏體向馬氏體轉(zhuǎn)變)
卸載段(馬氏體向奧氏體轉(zhuǎn)變)
其中,Ea為奧氏體彈性模量,Em為馬氏體彈性模量,為相變開始應(yīng)力,為共同控制逆相變開始應(yīng)力,fm和k為控制馬氏體非線性彈性變形曲線的常數(shù),εp為卸載過程中的殘余應(yīng)變.
由方程(3)~方程(7)可知,改進(jìn)模型的應(yīng)力與應(yīng)變關(guān)系依然延續(xù)Graesser模型,總的應(yīng)變增量包括彈性應(yīng)變增量和非彈性應(yīng)變增量,在本構(gòu)方程的背應(yīng)力中引入非彈性應(yīng)變,包括相變應(yīng)變、塑性應(yīng)變和殘余應(yīng)變.與楊強(qiáng)軍等[34]的模型相比,相變完成時(shí)的應(yīng)變除了單軸下馬氏體相變的最大相變應(yīng)變?chǔ)臠外,還包括前一個(gè)循環(huán)周次的谷值應(yīng)變?chǔ)舦a和彈性應(yīng)變?chǔ)舉;除考慮殘余應(yīng)變的循環(huán)累積作用外,在背應(yīng)力中引入當(dāng)前循環(huán)周次非彈性應(yīng)變代替非彈性應(yīng)變,定義為當(dāng)前循環(huán)周次的非彈性應(yīng)變減去前一循環(huán)周次的谷值應(yīng)變?chǔ)舦a.
ha和hm分別為正相變和逆相變的硬化參數(shù),定義為
圖3所示的實(shí)驗(yàn)結(jié)果表明,超彈性鎳鈦形狀記憶合金在循環(huán)變形過程中的相變開始應(yīng)力、逆相變開始應(yīng)力和最大相變應(yīng)變隨循環(huán)周次呈指數(shù)演化.因此,引入如下演化方程進(jìn)行描述
其中,CL,Ca,Cm為非線性演化系數(shù),含有下標(biāo)0的量表示相應(yīng)參數(shù)的初始值,含有下標(biāo)“sat”的量表示相應(yīng)參數(shù)循環(huán)穩(wěn)定后的飽和值.
殘余應(yīng)變隨循環(huán)周次的增加呈現(xiàn)指數(shù)衰減且強(qiáng)烈依賴于加載峰值應(yīng)力水平.因此,在不考慮馬氏體塑性變形的情況[14],引入如下殘余應(yīng)變的演化方程
其中,εmax為殘余應(yīng)變的穩(wěn)定值,σp為加載的峰值應(yīng)力,和σ為相變開始應(yīng)力和相變結(jié)束應(yīng)力,M np為殘余應(yīng)變的應(yīng)力相關(guān)系數(shù),bp為控制殘余應(yīng)變的飽和速率
Kan和Kang[35]的模型中將相變棘輪行為的應(yīng)力相關(guān)性體現(xiàn)在相變誘發(fā)塑性應(yīng)變和殘余馬氏體分?jǐn)?shù)上,當(dāng)峰值應(yīng)力大于相變完成應(yīng)力時(shí),應(yīng)力影響系數(shù)保持不變.因此,無法反映峰值應(yīng)力大于相變完成應(yīng)力后的加載應(yīng)力水平相關(guān)性,且沒有考慮圖2和圖3中所示的相變開始應(yīng)力和最大相變應(yīng)變的飽和值以及逆相變應(yīng)力的初始值和飽和值均與峰值應(yīng)力水平有關(guān)的實(shí)驗(yàn)現(xiàn)象.為此,本文以峰值應(yīng)力與相變完成應(yīng)力的比值表示其變形程度,并令它們滿足如下的方程
其中,h1至h12為對應(yīng)參數(shù)的應(yīng)力相關(guān)系數(shù),m為峰值應(yīng)力與相變結(jié)束應(yīng)力的比值.
2.3 參數(shù)確定
本構(gòu)模型中的材料參數(shù)的確定可以采用如下方法:
圖5 參數(shù)確定示意圖Fig.5 The schematic diagram of parameters determination
(3)演化系數(shù)CL,Ca,Cm可通過對實(shí)驗(yàn)獲得的最大相變應(yīng)變、向前相變開始應(yīng)力和逆相變開始應(yīng)力隨循環(huán)周次變化的演化曲線進(jìn)行非線性擬合得到;εmax,bp,np取自文獻(xiàn)[14].
(4)需要指出的是,以上參數(shù)是通過峰值應(yīng)力為800MPa的實(shí)驗(yàn)結(jié)果得到的.針對式(14)~式(17)中的應(yīng)力相關(guān)參數(shù)h1~h12,則需要根據(jù)不同峰值應(yīng)力下的相關(guān)變量的初值和飽和值,通過式(14)~式(17)的擬合而得,如圖6所示.
為了驗(yàn)證模型的合理性,在按2.3節(jié)中的方法確定了如表1所示的材料參數(shù)后,利用提出的模型對超彈性鎳鈦形狀記憶合金在不同峰值應(yīng)力下的相變棘輪行為進(jìn)行了模擬,模擬結(jié)果如圖2所示.
圖6 應(yīng)力相關(guān)系數(shù)的確定Fig.6 The determination of stress-related coefficients
表1 鎳鈦形狀記憶合金微管的材料參數(shù)Table 1 Material parameters used in the proposed model for NiTi shape memory micro-tube
由圖2可見:提出模型預(yù)測的循環(huán)應(yīng)力--應(yīng)變曲線與實(shí)驗(yàn)結(jié)果吻合較好,并且合理地反映了超彈性鎳鈦形狀記憶合金在不同峰值應(yīng)力下的單軸相變棘輪行為.另外,通過相變開始應(yīng)力和逆相變開始應(yīng)力、最大相變應(yīng)變和殘余應(yīng)變新的演化方程的引入,合理地描述了它們隨循環(huán)周次增加而逐漸演化且在一定的循環(huán)周次后達(dá)到飽和狀態(tài)的實(shí)驗(yàn)現(xiàn)象.
另外,改進(jìn)模型的模擬結(jié)果也合理地反映了在超彈性鎳鈦形狀記憶合金循環(huán)變形過程中體現(xiàn)出的超彈性退化現(xiàn)象,對實(shí)驗(yàn)中得到的峰值應(yīng)變和殘余應(yīng)變隨循環(huán)周次增加,而耗散能隨循環(huán)周次增加顯著下降的演化規(guī)律進(jìn)行了很好的理論預(yù)測,如圖7所示.當(dāng)然,從圖2和圖7給出的理論預(yù)測結(jié)果和實(shí)驗(yàn)結(jié)果的直接對比可以看出,兩者的變化規(guī)律吻合較好,但在具體數(shù)值上,模型預(yù)測結(jié)果和實(shí)驗(yàn)結(jié)果之間還有一些差別,特別是針對耗散能的預(yù)測.
圖7 殘余應(yīng)變、峰值應(yīng)變和耗散能隨循環(huán)演化的實(shí)驗(yàn)和模擬對比Fig.7 The comparison of the evolution of residual strain,peak strain and dissipation energy with circulation between experiment and simulation
為了進(jìn)一步體現(xiàn)改進(jìn)模型的合理性,首先將該模型對一個(gè)加卸載循環(huán)下的模擬結(jié)果與Graesser模型模擬結(jié)果進(jìn)行了對比,結(jié)果如圖4所示.由圖4可知,改進(jìn)模型由于施加了相變約束,建立了加/卸載過程獨(dú)立的馬氏體演化方程,可以很好地描述馬氏體正相變和逆相變過程,以及馬氏體相變完成后的彈性變形.
進(jìn)一步將改進(jìn)模型和楊等模型對相變棘輪行為的模擬進(jìn)行對比 (不考慮式 (13)~式 (18),改進(jìn)模型即可退化到楊等模型).圖8給出了楊等模型模擬的不同應(yīng)力幅值下的循環(huán)應(yīng)力--應(yīng)變響應(yīng)曲線.對比圖2和圖8可以看出,當(dāng)應(yīng)力水平處于相變剛結(jié)束時(shí),改進(jìn)模型和楊等模型均可準(zhǔn)確地預(yù)測相變棘輪行為;當(dāng)應(yīng)力水平提高到800MPa時(shí),楊等[34]提出的模型由于沒有引入加載應(yīng)力水平相關(guān)的演化方程,無法準(zhǔn)確模擬峰值應(yīng)變和殘余應(yīng)變的循環(huán)累積.
圖8 楊等模型[34]描述的不同應(yīng)力幅值下的鎳鈦合金單軸應(yīng)力--應(yīng)變曲線Fig.8 Stress-strain curves under di ff erent stress amplitude of NiTi shape memory alloy described by Yang’s model[34]
需要指出的是,所改進(jìn)的循環(huán)本構(gòu)模型盡管可準(zhǔn)確預(yù)測相變棘輪行為,但所引入的方程均為宏觀唯象描述,未考慮相變棘輪行為的微觀變形機(jī)理,還需要在當(dāng)前發(fā)展的模型基礎(chǔ)上開展進(jìn)一步研究,更加充分地揭示鎳鈦形狀記憶合金的循環(huán)變形機(jī)理,建立基于微觀變形機(jī)理的本構(gòu)模型,更加準(zhǔn)確地預(yù)測相變棘輪行為,促進(jìn)該合金在工程中的應(yīng)用.
根據(jù)不同峰值應(yīng)力水平下超彈性鎳鈦形狀記憶合金單軸相變棘輪行為的實(shí)驗(yàn)結(jié)果,通過引入一些新的參量演化方程(即相變開始應(yīng)力、逆相變開始應(yīng)力、殘余應(yīng)變和最大相變應(yīng)變演化方程)對Graesser模型進(jìn)行了改進(jìn),提出了一個(gè)新的、可以合理反映超彈性鎳鈦形狀記憶合金單軸相變棘輪行為的加載峰值應(yīng)力水平依賴性的一維宏觀唯象循環(huán)本構(gòu)模型.通過提出模型的預(yù)測結(jié)果和相應(yīng)實(shí)驗(yàn)結(jié)果的對比表明,提出的本構(gòu)模型能夠?qū)Τ瑥椥枣団佇螤钣洃浐辖鸬膯屋S相變棘輪行為及其超彈性性能的循環(huán)劣化現(xiàn)象進(jìn)行合理的預(yù)測.
1 Buehler WJ,Gilfrich JV,Wiley RC.E ff ects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi.Journal of Applied Physics,1963,34(5):1475-1477
2 Duerig TW,Pelton A,St¨ockel D.An overview of nitinol medical applications.Materials Science and Engineering:A,1999,273-275(99):149-160
3 Morgan NB.Medical shape memory alloy applications—the market and its products.Materials Science and Engineering:A,2004,378(1):16-23
4錢輝,李宏男,宋鋼兵.形狀記憶合金阻尼器消能減震體系的控制研究.振動(dòng)與沖擊,2008,27(8):42-47(Qian Hui,Li Hongnan,Song Gangbing.Energy dissipation system of structures with shape memory alloy damper.Journal of Vibration and Shock,2008,27(8):42-47(in Chinese))
5 Shin M,Andrawes B.Experimental investigation of actively confine concrete using shape memory alloys.Engineering Structures,2010,32(3):656-664
6邵紅紅,彭玉婷,姜秀英等.醫(yī)用鎳鈦合金表面多層薄膜的制備及摩擦磨損和耐腐蝕性能.功能材料,2014,45(4):14145-14149(Shao Honghong,Peng Yuting,Xiu ying,et al.Preparation of multilayers on the surface of medical NiTi alloy and properties of friction/wear and corrosion resistance.Journal of Functional Materials,2014,45(4):14145-14149(in Chinese))
7 Miyazaki S,Imai T,Igo Y,et al.E ff ect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys.Metallurgical transactions A,1986,17(1):115-120
8 Lagoudas DC,Bo Z.Thermomechanical modeling of polycrystalline SMAs under cyclic loading,Part II:Material characterization and experimental results for a stable transformation cycle.International Journal of Engineering Science,1999,37(9):1141-1173
9 Sehitoglu H,Anderson R,Karaman I,et al.Cyclic deformation behavior of single crystal NiTi.Materials Science and Engineering:A,2001,314(1):67-74
10 Lexcellent C,Bourbon G.Thermodynamical model of cyclic behaviour of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests.Mechanics of Materials,1996,24(1):59-73
11 Nemat-Nasser S,Guo WG.Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures.Mechanics of Materials,2006,38(5):463-474
12 Yu C,Kang G,Kan Q.A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy:One-dimensional model.Mechanics of Materials,2014,78(78):1-10
13 Kang GH,Kan QH,Qian LM,et al.Ratchetting deformation of super-elastic and shape-memory NiTi alloys.Mechanics of Materials,2009,41(2):139-153
14 Song D,Kang GZ,Kan QH,et al.The e ff ect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy.Smart Materials and Structures,2014,23(1):5008
15 Saleeb AF,Padula SA,Kumar A.A multi-axial,multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions.International Journal of Plasticity,2011,27(5):655-687
16 Wang X,Wang Y,Lu Z,et al.An experimental study of the superelastic behavior in NiTi shape memory alloys under biaxial proportional and non-proportional cyclic loadings.Mechanics of Materials,2010,42(3):365-373
17 Song D,Kang GZ,Kan QH,et al.Non-proportional multiaxial transformationratchettingofsuper-elasticNiTishapememoryalloy:Experimental observations.Mechanics of Materials,2014,70(1):94-105
18 Shaw JA,Kyriakides S.Thermomechanical aspects of NiTi.Journal of the Mechanics and Physics of Solids,1995,43(8):1243-1281
19 Morin C,Moumni Z,Zaki W.Thermomechanical coupling in shape memory alloys under cyclic loadings:Experimental analysis and constitutive modeling.International Journal of Plasticity,2011,27(12):1959-1980
20 Strnadel B,Ohashi S,Ohtsuka H,et al.Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys.Materials Science and Engineering:A,1995,202(1):148-156
21 Strnadel B,Ohashi S,Ohtsuka H,et al.E ff ect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys.Materials Science and Engineering:A,1995,203(1):187-196
22萬征,姚仰平,孟達(dá).復(fù)雜加載下混凝土的彈塑性本構(gòu)模型.力學(xué)學(xué)報(bào),2016,48(5):1159-1171(Wan Zheng,Yao Yangping,Meng Da.An elastoplastic constitutive model of concrete under complicated load.Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1159-1171(in Chinese))
23陳慶,朱合華,閆治國等.基于自洽法的電化學(xué)沉積修復(fù)飽和混凝土細(xì)觀描述.力學(xué)學(xué)報(bào),2015,47(2):367-371(Chen Qing,Zhu Hehua,Yan Zhiguo,et al.Micro-scale description of the saturatedconcrete repaired by electrochemical deposition method based on self-consistent method.Chinese Journal of Theoretical and Applied Mechanics,2015,47(2):367-371(in Chinese))
24談炳東,許進(jìn)升,賈云飛等.短纖維增強(qiáng)EPDM包覆薄膜超彈性本構(gòu)模型.力學(xué)學(xué)報(bào),2017,49(2):317-323(Tan Bingdong,Xu Jinsheng,Jia Yunfei,et al.Hyperelastic constitutive model for short fibe reinforced EPDM inhibitor film Chinese Journal of Theoretical and Applied Mechanics,2017,49(2):317-323(in Chinese))
25黃小雙,彭雄奇,張必超.簾線/橡膠復(fù)合材料各向異性黏–超彈性本構(gòu)模型.力學(xué)學(xué)報(bào),2016,48(1):140-145(Huang Xiaoshuang,Peng Xiongqi,Zhang Bichao.An anisotropic visco-hyperelastic constitutive model for cord-rubber composites.Chinese Journal of Theoretical and Applied Mechanics,2016,48(1):140-145(in Chinese))
26 Lagoudas DC,Entchev PB.Modeling of transformation-induced plasticity and its e ff ect on the behavior of porous shape memory alloys.Part I:constitutive model for fully dense SMAs.Mechanics of Materials,2004,36(9):865-892
27 Yu C,Kang GZ,Kan QH,et al.Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy:thermo-mechanical coupled and physical mechanism-based constitutive model.International Journal of Plasticity,2015,72:60-90
28 Manchiraju S,Anderson PM.Coupling between martensitic phase transformations and plasticity:a microstructure-based finit element model.International Journal of Plasticity,2010,26(10):1508-1526
29 Yu C,Kang GZ,Kan QH,et al.A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys.International Journal of Plasticity,2013,44(9):161-191
30 Graesser E,Cozzarelli F.A proposed three-dimensional constitutive model for shape memory alloys.Journal of Intelligent Material Systems and Structures,1994,5(5):78-89
31¨Ozdemir H.Nonlinear transient dynamic analysis of yielding structures.[PhD Thesis].University of Califormia Berkeley,1976
32 Ren WJ,Li HN,Song GB.A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys.Smart Materials and Structures,2007,16(1):191-197
33錢輝,李宏男,宋鋼兵等.基于塑性理論的形狀記憶合金本構(gòu)模型、試驗(yàn)和數(shù)值模擬.功能材料,2007,38(7):1114-1118(Qian Hui,Li Hongnan,Song Gangbing,et al.Constitutive model of shape memory alloy based on plastic theory:experiment and simulation.Journal of Functional Materials,2007,38(7):1114-1118(in Chinese))
34楊強(qiáng)軍,闞前華,康國政等.超彈性NiTi合金循環(huán)相變誘發(fā)塑性本構(gòu)模型.功能材料,2015,46(10):10018-10022(Yang Qiangjun,Kan Qianhua,Kang Guozheng,et al.Constitutive model on cyclic transformation included plasticity of super-elastic NiTi alloy.Journal of Functional Materials,2015,46(10):10018-10022(in Chinese))
35 Kan QH,Kang GZ.Constitutive model study on transformation ratcheting of superelastic NiTi alloy.International Journal of Plasticity,2010,26(3):441-464
A MACROSCOPIC PHENOMENOLOGICAL CONSTITUTIVE MODEL FOR THE UNIAXIAL TRANSFORMATION RATCHETING OF SUPER-ELASTIC NiTi SHAPE MEMORY ALLOY1)
Zhou Ting2)Kan Qianhua Kang Guozheng3)Qiu Bo
(School of Mechanics and Engineering,Southwest Jiaotong University,Chengdu 610031,China)
Super-elastic NiTi shape memory alloy(SMA)has been extensively used in many field such as civil engineering,aerospace and bio-medical field due to its good mechanical properties,including unique super-elasticity and shape memory e ff ect.In practical applications,the SMA-based devices are unavoidable subjected to cyclic loadings at di ff erent stress levels.However,it is necessary to establish a cyclic constitutive model to describe the transformation ratcheting behavior,i.e.,the peak strain and valley strain accumulate cyclically during forward transformation and reverse transformation.Based on the existing experimental results of the transformation ratchetting of the super-elastic NiTishape memory alloy obtained under the stress-controlled cyclic tension-unloading tests with di ff erent peak stresses,the one-dimensional macroscopic phenomenological constitutive model of super-elastic NiTi shape memory alloy proposed by Graesser,where super-elastic behavior is reflecte by the nonlinear evolution equation of back stress,was extended to describe the uniaxial transformation ratchetting within the framework of generalized visco-plasticity.In the extended model,the di ff erences of characteristic variables and their evolutions between the forward transformation and reverse transformation were considered,the evolution equations of the start stress of forward transformation,the start stress of reverse transformation,maximum transformation strain and residual strain were introduced by the internal variable of relative accumulated inelastic strain.In the meantime,the correlation coefficients in these evolution equations were determined by the ratio of the peak stress and the finis stress of forward transformation.The comparison of the experiments and simulations shows that the extended model can reasonably describe the dependence of uniaxial transformation ratchetting of super-elastic NiTi shape memory alloy on the peak stress,and the simulated results are in good agreement with the experimental ones.
NiTi alloy,transformation ratcheting,generalized visco-plasticity,constitutive model
O348.3
:A
10.6052/0459-1879-17-116
2017–04–05 收稿,2017–05–10 錄用,2017–05–13 網(wǎng)絡(luò)版發(fā)表.
1)國家自然科學(xué)基金資助項(xiàng)目(11532010,11202171).
2)周廷,在讀博士,主要研究方向:智能材料本構(gòu)關(guān)系研究.E-mail:zhouting16@foxmail.com
3)康國政,教授,主要研究方向:先進(jìn)材料本構(gòu)關(guān)系研究.E-mail:guozhengkang@126.com
周廷,闞前華,康國政,邱博.超彈性鎳鈦形狀記憶合金單軸相變棘輪行為的宏觀唯象本構(gòu)模型.力學(xué)學(xué)報(bào),2017,49(3):588-596
ZhouTing,KanQianhua,KangGuozheng,QiuBo.Amacroscopicphenomenologicalconstitutivemodelfortheuniaxialtransformation ratcheting of super-elastic NiTi shape memory alloy.Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):588-596