亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Bicyclic Graphs with Extremal Multiplicative Degree-Kirchhoff Index

        2017-06-28 16:23:32,,,
        關(guān)鍵詞:基爾霍夫圖論中南

        , , ,

        (College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)

        Bicyclic Graphs with Extremal Multiplicative Degree-Kirchhoff Index

        ZhuZhongxun,HongYunchao*,LuoAmu,WangWeifeng

        (College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)

        distance;multiplicativedegree-Kirchhoffindex;bicyclicgraphs

        LetG=(V(G),E(G))beaconnectedsimplegraph.ThedistancedG(x,y)isdefinedasthelengthofashortestpathbetweenverticesxandyinG.SupposethatG1andG2aretwodisjointconnectedgraphswithu1∈V(G1)andu2∈V(G2),let(G1,u1)⊕(G2,u2)bethegraphcreatedbycoalescenceofverticesu1andu2.AgraphGiscalledbicyclicgraphif|E(G)|=|V(G)|+1[1,2].

        Fig.圖1 圖

        Fig.圖2 圖和

        The following lemmas that will be used in the proof of our main results.

        Lemma 1[4]Letube a cut vertex of a connected graphG,xandybe two vertices in different components ofG-u,thenrG(x,y)=rG(x,u)+rG(u,y).

        Lemma 2[7,8]LetPn,CnandSnbe the path,the cycle and the star onnvertices,respectively. Then

        R*(Sn)=(n-1)(2n-3).

        Lemma 3[7,8]LetG1andG2be connected graphs with disjoint vertex sets,withm1andm2edges,respectively. Letu1∈V(G1) andu2∈V(G2). Constructing the graphGby identifying the verticesu1andu2,and denote the so obtained vertex byu. Then

        1 Some Transformations

        Inthissection,wewillgivesometransformationswhichwilldecreaseorincreaseR*(G).

        Transformation1Letu1u2beacut-edgeofbicyclicgraphG,Cp,CqbetheconnectedcomponentsofG-u1u2,whereu1∈V(Cp),u2∈V(Cq) .

        ConstructingthegraphG*fromGbydeletingu1u2andidentifyingtheverticesu1,u2,denotethesoobtainedvertexbyu,addinganpendentedgeuv.

        Lemma4LetG,G*bethegraphsdescribedinTransformation1,thenR*(G)>R*(G*).

        ProofLet|V(Cp)|=p,|V(Cq)|=q,and|E(Cp)|=p,|E(Cq)|=q.LetH=G[V(G)(V(Cq)-u2)],H*=G[V(G*)(V(Cq)-u)].

        ByLemma3,wehave:

        Letβnbe the class of connected graphs onnvertices. By Transformation 1 and Lemma 4,we have the following result.

        Corollary 1 LetG0be a graph with the smallest multiplicative degree-Kirchhoff index inβn,then all cut-edges are pendent edges.

        Transformation 2 LetGbe a bicyclic graph withV(G)={u,v,v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichvis a vertex of degrees+1 such thatvv1,vv2,…,vvsare pendent edges incident withv,anduis the neighbor ofvdistinct fromvithat is on the cycleCq. The other cycleCponly has one common vertexwwithCq. We form a graphG′=σ(G,v) by deleting the edgesvv1,vv2,…,vvsand adding new edgesuv1,uv2,…,uvs. We say thatG′ is aσ-transform of the graphG.

        Lemma 5 LetGandG′ be the graphs defined in Transformation 2. ThenR*(G)>R*(G′).

        Proof LetT=G[{v,v1,v2,…,vs}],H=G[V(G)V(T)],then

        dG(u)dG(v)rG(u,v).

        dG′(u)dG′(v)rG′(u,v).

        Lemma 6 LetG0be a bicyclic graphGwithV(G)={v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichuis a vertex of degrees+2 in the cycleCqof the bicyclic graphG0,anduv1,uv2,…,uvsare pendent edges incident withu,and the other cycleCponly has one common vertexwwithCq. Let graphG1delete the edgesuv1,uv2,…,uvs,and add new edgeswv1,wv2,…,wvs. ThenR*(G0)>R*(G1).

        Proof LetG=G0[V(Cp)∪V(Cq)],H0=G[V(G0)(V(G)-u)],andH1=G[V(G1)(V(G)-w)],thenH0?H1?K1,s. By Lemma 3,we have:

        R*(G1)=R*(G)+R*(K1,s)+

        Hence we get:

        Then we haveR*(G0)>R*(G1).

        Transformation 3 LetGbe a bicyclic graph withV(G)={u,v,v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichvis a vertex of degrees+1 such thatvv1,vv2,…,vvsare pendent edges incident withv,anduis the neighbor ofvdistinct fromvithat is on the cycleCq. The other cycleCponly has one common vertexwwithCq. We form a graphG″=π(G,v) by deleting the edgesvv1,vv2,…,vvsand connectingviand all the isolated vertices into a pathvv1v2…vs.

        We say thatG″ is aπ-transform of the graphG.

        Lemma 7 LetGandG″ be the graphs defined in Transformation 3. ThenR*(G)

        Proof LetT=G[{v,v1,v2,…,vs}],H=G[V(G)V(T)],R*(G) is defined in Lemma5,then

        dG″(u)dG″(v)rG″(u,v).

        Hence we have:

        Lemma 8 LetG0be a bicyclic graph with the vertex setV(Cp)∪V(Cq)∪V(Ps+1), in whichV(Cp)∩V(Ps+1)={v} andV(Cq)∩V(Ps+1)={w}. Forwa∈E(Ps+1), andu∈V(Cq), letG1=(G0-{aw})∪{ua},thenR*(G0)>R*(G1).

        Proof LetH,H0andH1be the graphs as shown in Fig.3,then we have

        G0=(H,vs-1)⊕(H0,a),

        G1=(H,vs-1)⊕(H1,w).

        By Lemma 3,we have:

        R*(G0)=R*(H)+R*(H0)+2(q+1)·

        R*(G1)=R*(H)+R*(H1)+2(q+1)·

        HenceR*(G0)-R*(G1)=4(p+s-1)[q-rCq(w,u)]≥0. Ifq=rCq(w,u),thenwanducoincidence,G0andG1is isomorphic. SinceG0andG1is not isomorphic,therefore we getR*(G0)-R*(G1)>0. This completes the proof.

        Fig.3 Graphs H,H0 and H1圖3 圖H,H0和H1

        2 Main results

        In this section,we will characterizen-vertex bicyclic graphs with exactly two cycles having the minimum and maximum multiplicative degree-Kirchhoff index.

        (1) In Fig.1,Tvi,TujandTwkare all stars with their centers atvi,ujandwkfor eachi,jandk.

        Without loss of generality,suppose that treeTviis not a star. LetG1be constructed fromG0by deleting all the edges ofTviand connecting all the isolated vertices tovi. By Lemma 5,we haveR*(G0)>R*(G1),which contradicts the choice ofG0. Hence (1) holds.

        (2) The length of the path connects the two cycles inG0is zero.

        Suppose that there exist the length of path isk(k≥1) inG0. Assume thatv1=w0,u1=wk. Lete=wiwi+1be an edge of path. LetG2be the graph obtained fromG0by first contractingeand then attaching a pendent edgewiatowi. Assume thatG01andG02are two components ofG0-eandG21andG22are copies ofG01andG02inG2,respectively. See Fig.4.

        Fig.4 Graphs G0 and G2圖4 圖G0和G2

        By Lemma 4 and Corollary 1,we haveR*(G0)>R*(G2). This contradicts the hypothesis. Hence (2) holds.

        (3) In Fig.1,ifp+q≤n,then onlyTv1(Tv1=Tu1) is nontrivial.

        Without loss of generality,suppose to the contrary that treeTui(i≠1) is nontrivial. By Lemma 6,we getR*(G0)>R*(G1), which contradicts the choice ofG0. Hence (3) holds .

        According to (1)-(3),we get Theorem 1 .

        (1) In Fig.1,Tvi,TujandTwkare all paths with their centers atvi,ujandwkfor eachi,jandk.

        Without loss of generality,suppose that treeTviis not a path. LetG1be constructed fromG0by deleting all the edges ofTviand connecting all the isolated vertices into a path. By Lemma 7,we haveR*(G1)>R*(G0),which contradicts the choice ofG0. Hence (1) holds.

        (2) Assume thatTw0=Tv1andTwm=Tu1,thenTwiis trivial 0≤i≤m).

        If not,without loss of generality,suppose that there is nontrivialTwj. By (1),we know thatTwjis a path withwjas its end vertex and assume thatuis the other end vertex. LetG2=G0-wjwj+1+uwj+1(ifj=m,G2=G0-wj-1wj+uwj-1). Assume thatG01andG02are two components ofG0-wjwj+1andG21andG22are two components ofG2-uwj+1. See Fig.5.

        In the following,we proveR*(G2)>R*(G0).

        LetH0=G02+wjwj+1,H2=G22+uwj+1,rG(wj,u)=s, then by Lemma 3,we get:

        Ifs=0,thenG0andG2isisomorphic.SinceG0andG2isnon-isomorphic.ThereforeweobtainR*(G2)>R*(G0).

        Thiscontradictsthehypothesis.Hence(2)holds.

        (3)InFig.1,ifp+q≤n,thenTviandTujaretrivialforeachiandj.

        Fig.5 Graphs G0 and G2 圖5 圖G0和G2

        Without loss of generality,suppose to the contrary that treeTvi(i≠1) is nontrivial. By Lemma 8,we getR*(G0)>R*(G1), which contradicts the choice ofG0. Hence (3) holds.

        According to (1)-(3),we get Theorem 2.

        3 Bicyclic graphs with extremal multiplicative degree-Kirchhoff index

        Proof Letu1,u2,wbe three successive vertices lying on theCpof the bicyclic graphG1. The other cycleCqonly has one common vertexwwithCp. Andwv1,wv2,…,wvsare pendent edges incident withw.

        Let the graphG2is obtained by deleting the edgesu1u2and adding the edgewu2. ThenR*(G2)<

        R*(G1).

        LetH1=G[V(G1)(V(Cq)-w)],H2=G[V(G2)(V(Cq)-w)],then

        ProofLetu1,w,u2bethreesuccessiveverticeslyingontheCpofthebicyclicgraphG3.ThecycleCpandCqarelinkedwithtwoendverticesvandwofPs+1.LetthegraphG4isobtainedbydeletingtheedgewu2andaddingtheedgeu1u2.ThenR*(G4)>R*(G3).

        LetH3=G[V(G3)(V(Cp)-w)],H4=

        G[V(G4)(V(H3)-w)].Then

        Similarly,bydirectcalculation,wehave:

        [1]BondyJA,MurtyUSR.Graphtheorywithapplications[M].NewYork:Macmillan,1976: 16-93.

        [2] Liu J B,Zhang S Q,Pan X F,et al. Bicyclic graphs with extremal degree resistance distance [EB/OL].(2016-01-03)[2016-12-28].http://www.arXiv:1606.01281v1.com/2016/01/03/bicyclic-graphs-with-extremal-degree-resistance-distance/.

        [3] Bonchev D,Balaban A T,Liu X,et al. Molecular cyclicity and centricity of polyclic graphs I cyclicity based on resistance distances or reciprocal distances [J]. Int J Quantum Chem,1994,50: 1-20.

        [4] Klein D J,Randic M. Resistance distance [J]. J Math Chem,1993,12: 81-95.

        [5] Gutman I,Feng L. Degree resistance distance of unicyclic graphs [J]. Trans Comb 1,2012,1: 27-40.

        [6] Chen H Y,Zhang F J. Resistance distance and the normalized Laplacian spectrum [J]. Discr Appl Math,2007,155: 654-661.

        [7] Palacios J L,Renom J M. Another look at the degree-Kirchhoff index [J]. Int J Quantum Chem,2011,111:3453-3455.

        [8] Palacios J L. Upper and lower bounds for the additive degree-Kirchhoff index [J]. Match Commun Math Comput Chem,2013,70:651-655.

        2016-11-17 *通訊作者 洪運(yùn)朝,研究方向:圖論;E-mail:331963706@qq.com

        朱忠熏(1973-),男,副教授,博士,研究方向:圖論;E-mail:zzxun73@mail.scuec.edu.cn

        國(guó)家自然科學(xué)基金資助項(xiàng)目(61070197);中南民族大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(CZQ10007)

        O

        A

        1672-4321(2017)02-0148-07

        具有乘積度-基爾霍夫指標(biāo)極值的雙圈圖

        朱忠熏,洪運(yùn)朝*,羅阿木,王維峰

        (中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢430074)

        距離;乘積度-基爾霍夫指標(biāo);雙圈圖

        猜你喜歡
        基爾霍夫圖論中南
        圖的電阻距離和基爾霍夫指標(biāo)綜述
        正則圖的Q-圖的(度)基爾霍夫指標(biāo)
        基于FSM和圖論的繼電電路仿真算法研究
        基爾霍夫定律與初中電學(xué)知識(shí)的聯(lián)系與應(yīng)用
        活力(2019年15期)2019-09-25 07:22:40
        如何做好基爾霍夫定律的教學(xué)設(shè)計(jì)
        構(gòu)造圖論模型解競(jìng)賽題
        《中南醫(yī)學(xué)科學(xué)雜志》稿約
        中南醫(yī)學(xué)科學(xué)雜志
        點(diǎn)亮兵書(shū)——《籌海圖編》《海防圖論》
        孫子研究(2016年4期)2016-10-20 02:38:06
        圖論在變電站風(fēng)險(xiǎn)評(píng)估中的應(yīng)用
        制服丝袜一区二区三区| 日本老年人精品久久中文字幕| 久久精品国产亚洲av调教| 亚洲av老熟女一区二区三区 | 国产欧美日韩视频一区二区三区| 亚洲av永久青草无码精品| 亚洲啪啪色婷婷一区二区| 免费无码又爽又刺激网站直播| 成人综合网亚洲伊人| 亚洲中文久久久久无码| 日本免费播放一区二区| 久久亚洲精品情侣| 成人免费网站视频www| 91精品在线免费| 中文字幕亚洲一二三区| 午夜男女很黄的视频| 日韩一欧美内射在线观看| 亚洲精品天堂在线观看| 午夜av天堂精品一区| 无码人妻精品一区二区蜜桃网站| 午夜大片又黄又爽大片app| 精选二区在线观看视频| 亚洲精品一品区二品区三区| 国产成人亚洲精品| 无码不卡免费一级毛片视频| 中文字幕视频一区二区 | 无国产精品白浆免费视| 国产网红一区二区三区| 综合亚洲伊人午夜网| 美丽的熟妇中文字幕| 99在线国产视频| 美女视频在线观看网址大全| 久久精品国产成人| 国产午夜亚洲精品理论片不卡| av成人资源在线观看| 女人的精水喷出来视频| 又硬又粗又大一区二区三区视频| 蜜桃视频中文在线观看| 自拍偷拍 视频一区二区| 欧美成人午夜精品久久久| 亚洲日本在线va中文字幕|