亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Bicyclic Graphs with Extremal Multiplicative Degree-Kirchhoff Index

        2017-06-28 16:23:32,,,
        關(guān)鍵詞:基爾霍夫圖論中南

        , , ,

        (College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)

        Bicyclic Graphs with Extremal Multiplicative Degree-Kirchhoff Index

        ZhuZhongxun,HongYunchao*,LuoAmu,WangWeifeng

        (College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)

        distance;multiplicativedegree-Kirchhoffindex;bicyclicgraphs

        LetG=(V(G),E(G))beaconnectedsimplegraph.ThedistancedG(x,y)isdefinedasthelengthofashortestpathbetweenverticesxandyinG.SupposethatG1andG2aretwodisjointconnectedgraphswithu1∈V(G1)andu2∈V(G2),let(G1,u1)⊕(G2,u2)bethegraphcreatedbycoalescenceofverticesu1andu2.AgraphGiscalledbicyclicgraphif|E(G)|=|V(G)|+1[1,2].

        Fig.圖1 圖

        Fig.圖2 圖和

        The following lemmas that will be used in the proof of our main results.

        Lemma 1[4]Letube a cut vertex of a connected graphG,xandybe two vertices in different components ofG-u,thenrG(x,y)=rG(x,u)+rG(u,y).

        Lemma 2[7,8]LetPn,CnandSnbe the path,the cycle and the star onnvertices,respectively. Then

        R*(Sn)=(n-1)(2n-3).

        Lemma 3[7,8]LetG1andG2be connected graphs with disjoint vertex sets,withm1andm2edges,respectively. Letu1∈V(G1) andu2∈V(G2). Constructing the graphGby identifying the verticesu1andu2,and denote the so obtained vertex byu. Then

        1 Some Transformations

        Inthissection,wewillgivesometransformationswhichwilldecreaseorincreaseR*(G).

        Transformation1Letu1u2beacut-edgeofbicyclicgraphG,Cp,CqbetheconnectedcomponentsofG-u1u2,whereu1∈V(Cp),u2∈V(Cq) .

        ConstructingthegraphG*fromGbydeletingu1u2andidentifyingtheverticesu1,u2,denotethesoobtainedvertexbyu,addinganpendentedgeuv.

        Lemma4LetG,G*bethegraphsdescribedinTransformation1,thenR*(G)>R*(G*).

        ProofLet|V(Cp)|=p,|V(Cq)|=q,and|E(Cp)|=p,|E(Cq)|=q.LetH=G[V(G)(V(Cq)-u2)],H*=G[V(G*)(V(Cq)-u)].

        ByLemma3,wehave:

        Letβnbe the class of connected graphs onnvertices. By Transformation 1 and Lemma 4,we have the following result.

        Corollary 1 LetG0be a graph with the smallest multiplicative degree-Kirchhoff index inβn,then all cut-edges are pendent edges.

        Transformation 2 LetGbe a bicyclic graph withV(G)={u,v,v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichvis a vertex of degrees+1 such thatvv1,vv2,…,vvsare pendent edges incident withv,anduis the neighbor ofvdistinct fromvithat is on the cycleCq. The other cycleCponly has one common vertexwwithCq. We form a graphG′=σ(G,v) by deleting the edgesvv1,vv2,…,vvsand adding new edgesuv1,uv2,…,uvs. We say thatG′ is aσ-transform of the graphG.

        Lemma 5 LetGandG′ be the graphs defined in Transformation 2. ThenR*(G)>R*(G′).

        Proof LetT=G[{v,v1,v2,…,vs}],H=G[V(G)V(T)],then

        dG(u)dG(v)rG(u,v).

        dG′(u)dG′(v)rG′(u,v).

        Lemma 6 LetG0be a bicyclic graphGwithV(G)={v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichuis a vertex of degrees+2 in the cycleCqof the bicyclic graphG0,anduv1,uv2,…,uvsare pendent edges incident withu,and the other cycleCponly has one common vertexwwithCq. Let graphG1delete the edgesuv1,uv2,…,uvs,and add new edgeswv1,wv2,…,wvs. ThenR*(G0)>R*(G1).

        Proof LetG=G0[V(Cp)∪V(Cq)],H0=G[V(G0)(V(G)-u)],andH1=G[V(G1)(V(G)-w)],thenH0?H1?K1,s. By Lemma 3,we have:

        R*(G1)=R*(G)+R*(K1,s)+

        Hence we get:

        Then we haveR*(G0)>R*(G1).

        Transformation 3 LetGbe a bicyclic graph withV(G)={u,v,v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichvis a vertex of degrees+1 such thatvv1,vv2,…,vvsare pendent edges incident withv,anduis the neighbor ofvdistinct fromvithat is on the cycleCq. The other cycleCponly has one common vertexwwithCq. We form a graphG″=π(G,v) by deleting the edgesvv1,vv2,…,vvsand connectingviand all the isolated vertices into a pathvv1v2…vs.

        We say thatG″ is aπ-transform of the graphG.

        Lemma 7 LetGandG″ be the graphs defined in Transformation 3. ThenR*(G)

        Proof LetT=G[{v,v1,v2,…,vs}],H=G[V(G)V(T)],R*(G) is defined in Lemma5,then

        dG″(u)dG″(v)rG″(u,v).

        Hence we have:

        Lemma 8 LetG0be a bicyclic graph with the vertex setV(Cp)∪V(Cq)∪V(Ps+1), in whichV(Cp)∩V(Ps+1)={v} andV(Cq)∩V(Ps+1)={w}. Forwa∈E(Ps+1), andu∈V(Cq), letG1=(G0-{aw})∪{ua},thenR*(G0)>R*(G1).

        Proof LetH,H0andH1be the graphs as shown in Fig.3,then we have

        G0=(H,vs-1)⊕(H0,a),

        G1=(H,vs-1)⊕(H1,w).

        By Lemma 3,we have:

        R*(G0)=R*(H)+R*(H0)+2(q+1)·

        R*(G1)=R*(H)+R*(H1)+2(q+1)·

        HenceR*(G0)-R*(G1)=4(p+s-1)[q-rCq(w,u)]≥0. Ifq=rCq(w,u),thenwanducoincidence,G0andG1is isomorphic. SinceG0andG1is not isomorphic,therefore we getR*(G0)-R*(G1)>0. This completes the proof.

        Fig.3 Graphs H,H0 and H1圖3 圖H,H0和H1

        2 Main results

        In this section,we will characterizen-vertex bicyclic graphs with exactly two cycles having the minimum and maximum multiplicative degree-Kirchhoff index.

        (1) In Fig.1,Tvi,TujandTwkare all stars with their centers atvi,ujandwkfor eachi,jandk.

        Without loss of generality,suppose that treeTviis not a star. LetG1be constructed fromG0by deleting all the edges ofTviand connecting all the isolated vertices tovi. By Lemma 5,we haveR*(G0)>R*(G1),which contradicts the choice ofG0. Hence (1) holds.

        (2) The length of the path connects the two cycles inG0is zero.

        Suppose that there exist the length of path isk(k≥1) inG0. Assume thatv1=w0,u1=wk. Lete=wiwi+1be an edge of path. LetG2be the graph obtained fromG0by first contractingeand then attaching a pendent edgewiatowi. Assume thatG01andG02are two components ofG0-eandG21andG22are copies ofG01andG02inG2,respectively. See Fig.4.

        Fig.4 Graphs G0 and G2圖4 圖G0和G2

        By Lemma 4 and Corollary 1,we haveR*(G0)>R*(G2). This contradicts the hypothesis. Hence (2) holds.

        (3) In Fig.1,ifp+q≤n,then onlyTv1(Tv1=Tu1) is nontrivial.

        Without loss of generality,suppose to the contrary that treeTui(i≠1) is nontrivial. By Lemma 6,we getR*(G0)>R*(G1), which contradicts the choice ofG0. Hence (3) holds .

        According to (1)-(3),we get Theorem 1 .

        (1) In Fig.1,Tvi,TujandTwkare all paths with their centers atvi,ujandwkfor eachi,jandk.

        Without loss of generality,suppose that treeTviis not a path. LetG1be constructed fromG0by deleting all the edges ofTviand connecting all the isolated vertices into a path. By Lemma 7,we haveR*(G1)>R*(G0),which contradicts the choice ofG0. Hence (1) holds.

        (2) Assume thatTw0=Tv1andTwm=Tu1,thenTwiis trivial 0≤i≤m).

        If not,without loss of generality,suppose that there is nontrivialTwj. By (1),we know thatTwjis a path withwjas its end vertex and assume thatuis the other end vertex. LetG2=G0-wjwj+1+uwj+1(ifj=m,G2=G0-wj-1wj+uwj-1). Assume thatG01andG02are two components ofG0-wjwj+1andG21andG22are two components ofG2-uwj+1. See Fig.5.

        In the following,we proveR*(G2)>R*(G0).

        LetH0=G02+wjwj+1,H2=G22+uwj+1,rG(wj,u)=s, then by Lemma 3,we get:

        Ifs=0,thenG0andG2isisomorphic.SinceG0andG2isnon-isomorphic.ThereforeweobtainR*(G2)>R*(G0).

        Thiscontradictsthehypothesis.Hence(2)holds.

        (3)InFig.1,ifp+q≤n,thenTviandTujaretrivialforeachiandj.

        Fig.5 Graphs G0 and G2 圖5 圖G0和G2

        Without loss of generality,suppose to the contrary that treeTvi(i≠1) is nontrivial. By Lemma 8,we getR*(G0)>R*(G1), which contradicts the choice ofG0. Hence (3) holds.

        According to (1)-(3),we get Theorem 2.

        3 Bicyclic graphs with extremal multiplicative degree-Kirchhoff index

        Proof Letu1,u2,wbe three successive vertices lying on theCpof the bicyclic graphG1. The other cycleCqonly has one common vertexwwithCp. Andwv1,wv2,…,wvsare pendent edges incident withw.

        Let the graphG2is obtained by deleting the edgesu1u2and adding the edgewu2. ThenR*(G2)<

        R*(G1).

        LetH1=G[V(G1)(V(Cq)-w)],H2=G[V(G2)(V(Cq)-w)],then

        ProofLetu1,w,u2bethreesuccessiveverticeslyingontheCpofthebicyclicgraphG3.ThecycleCpandCqarelinkedwithtwoendverticesvandwofPs+1.LetthegraphG4isobtainedbydeletingtheedgewu2andaddingtheedgeu1u2.ThenR*(G4)>R*(G3).

        LetH3=G[V(G3)(V(Cp)-w)],H4=

        G[V(G4)(V(H3)-w)].Then

        Similarly,bydirectcalculation,wehave:

        [1]BondyJA,MurtyUSR.Graphtheorywithapplications[M].NewYork:Macmillan,1976: 16-93.

        [2] Liu J B,Zhang S Q,Pan X F,et al. Bicyclic graphs with extremal degree resistance distance [EB/OL].(2016-01-03)[2016-12-28].http://www.arXiv:1606.01281v1.com/2016/01/03/bicyclic-graphs-with-extremal-degree-resistance-distance/.

        [3] Bonchev D,Balaban A T,Liu X,et al. Molecular cyclicity and centricity of polyclic graphs I cyclicity based on resistance distances or reciprocal distances [J]. Int J Quantum Chem,1994,50: 1-20.

        [4] Klein D J,Randic M. Resistance distance [J]. J Math Chem,1993,12: 81-95.

        [5] Gutman I,Feng L. Degree resistance distance of unicyclic graphs [J]. Trans Comb 1,2012,1: 27-40.

        [6] Chen H Y,Zhang F J. Resistance distance and the normalized Laplacian spectrum [J]. Discr Appl Math,2007,155: 654-661.

        [7] Palacios J L,Renom J M. Another look at the degree-Kirchhoff index [J]. Int J Quantum Chem,2011,111:3453-3455.

        [8] Palacios J L. Upper and lower bounds for the additive degree-Kirchhoff index [J]. Match Commun Math Comput Chem,2013,70:651-655.

        2016-11-17 *通訊作者 洪運(yùn)朝,研究方向:圖論;E-mail:331963706@qq.com

        朱忠熏(1973-),男,副教授,博士,研究方向:圖論;E-mail:zzxun73@mail.scuec.edu.cn

        國(guó)家自然科學(xué)基金資助項(xiàng)目(61070197);中南民族大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(CZQ10007)

        O

        A

        1672-4321(2017)02-0148-07

        具有乘積度-基爾霍夫指標(biāo)極值的雙圈圖

        朱忠熏,洪運(yùn)朝*,羅阿木,王維峰

        (中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢430074)

        距離;乘積度-基爾霍夫指標(biāo);雙圈圖

        猜你喜歡
        基爾霍夫圖論中南
        圖的電阻距離和基爾霍夫指標(biāo)綜述
        正則圖的Q-圖的(度)基爾霍夫指標(biāo)
        基于FSM和圖論的繼電電路仿真算法研究
        基爾霍夫定律與初中電學(xué)知識(shí)的聯(lián)系與應(yīng)用
        活力(2019年15期)2019-09-25 07:22:40
        如何做好基爾霍夫定律的教學(xué)設(shè)計(jì)
        構(gòu)造圖論模型解競(jìng)賽題
        《中南醫(yī)學(xué)科學(xué)雜志》稿約
        中南醫(yī)學(xué)科學(xué)雜志
        點(diǎn)亮兵書(shū)——《籌海圖編》《海防圖論》
        孫子研究(2016年4期)2016-10-20 02:38:06
        圖論在變電站風(fēng)險(xiǎn)評(píng)估中的應(yīng)用
        亚洲av网一区天堂福利| 4hu四虎永久在线观看| 美女视频黄的全免费的| 色诱视频在线观看| 又大又粗又爽18禁免费看| 无码欧亚熟妇人妻AV在线外遇| 久久dvd| 亚洲女同一区二区三区| 亚洲欧洲国产码专区在线观看 | 亚洲欧洲巨乳清纯| 色婷婷久久免费网站| 亚洲精品一区二区三区在线观| 国产情侣真实露脸在线| 成人性生交片无码免费看| 蜜桃一区二区三区在线看| 国产av麻豆精品第一页| 亚洲av永久无码天堂网| 国产精自产拍久久久久久蜜| 日韩精人妻无码一区二区三区| 国产精品自拍盗摄自拍| 色欲综合一区二区三区| 7878成人国产在线观看| 亚洲人av毛片一区二区| 日本人妻伦理在线播放| 国产 字幕 制服 中文 在线| 337p日本欧洲亚洲大胆色噜噜| 中文字幕大乳少妇| 精品专区一区二区三区| 免费国产自拍在线观看| 少妇性l交大片| 国产精品亚洲国产| 国产av剧情久久精品久久| 国产精品久久久国产盗摄| 试看男女炮交视频一区二区三区| 久久精品国语对白黄色| 国产精品美女一区二区视频| 国产亚洲av手机在线观看| 日本高清一区二区三区视频| 国产偷国产偷亚洲高清视频| 国产亚洲人成a在线v网站| 99热这里只有精品久久6|