劉銘剛, 閆怡飛, 謝 巍, 王建軍, 韓生超, 楊秀娟, 閆相禎
(1.中國石油大學儲運與建筑工程學院,山東青島 266580; 2.中國石油大學油氣CAE技術研究中心,山東青島 266580;3.中國石油大學機電工程學院,山東青島 266580; 4.華北油田采油工程研究院,河北任丘 062552;5.中國石油集團石油管工程技術研究院,陜西西安 710077)
基于自相似模型的氣井管柱中流體的近壁壓力試驗研究
劉銘剛1,2, 閆怡飛2,3, 謝 巍4, 王建軍5, 韓生超1,2, 楊秀娟1,2, 閆相禎1,2
(1.中國石油大學儲運與建筑工程學院,山東青島 266580; 2.中國石油大學油氣CAE技術研究中心,山東青島 266580;3.中國石油大學機電工程學院,山東青島 266580; 4.華北油田采油工程研究院,河北任丘 062552;5.中國石油集團石油管工程技術研究院,陜西西安 710077)
氣井管柱內流體運動狀態(tài)和近壁壓力分布的確定對井筒安全和完整性評價有重要意義。從相似性原理出發(fā)設計氣井管柱流體力學試驗,通過尺寸比尺和流速控制實現(xiàn)模型與原型的幾何相似和雷諾數(shù)自相似,采用試驗和數(shù)值計算對氣井造斜彎曲段管柱近壁壓力進行對比研究,利用相對誤差分析驗證試驗的可行性。結果表明:氣井管柱室內流體試驗滿足雷諾數(shù)自相似下的幾何相似條件;當取運動黏度為試驗不變量時,管柱近壁壓力的試驗模擬結果與數(shù)值計算結果相比偏小,當試驗壓差為0~20 MPa時,近壁壓力最大相對誤差為4.12%,且壓差越大,相對誤差越小;隨著生產(chǎn)壓差(pp=5~20 MPa)和油管內徑(D=76.00~157.08 mm)的增大,管柱整體近壁壓力和沿程壓力降增大;造斜彎曲段流入端的局部壓程比隨油管內徑增大而增大,流出端規(guī)律相反。滿足幾何相似和雷諾自相似條件的管柱流體試驗是氣井管柱近壁壓力研究的有效手段。
管柱; 流體試驗; 近壁壓力; 相似理論; 儲氣庫
現(xiàn)階段對氣井管柱內流體運動狀態(tài)和沿程近壁壓力的研究方法主要為試驗井檢測和數(shù)值計算。試驗井設計施工難度高、成本巨大,且可模擬工況單一,難以作為技術創(chuàng)新和科學研究的有效手段;數(shù)值計算方法模型成熟、工況設計簡單,且結果提取和分析相對簡單,是目前廣大學者和科研機構在油氣井井筒流體狀態(tài)研究方面的主要研究手段,然而運存資源占用大、網(wǎng)格質量要求高、計算效率低等缺點使其很難用于大井深或完整管柱段內的流體狀態(tài)建模和計算[1-10]。有學者擬設計類似低流速輸運管道小尺寸流體力學試驗的氣井管柱室內試驗,對天然氣在注采過程中的狀態(tài)進行研究,但都受制于無法完全滿足相似性試驗設計原理中的流體動力學相似而止步。目前國內外學者對室內小尺寸流體試驗及相應數(shù)值試驗的設計主要是針對低流速管流開展的,如Stack、Zhang等[11-16]對管道的彎管段流體沖蝕問題開展了研究,Elling等[17]設計了氣體在粗糙管路中的流動狀態(tài)對比試驗,研究了管壁摩阻對管路沿程壓力分布的影響規(guī)律,Ferng等[18-19]對輸氣薄壁管道的沖蝕問題進行數(shù)值模擬,Mazumder等[20-22]為確定管道沖蝕位置進行了試驗研究;Kays等[23-26]對流體流經(jīng)變徑管路和突變截面時的運動狀態(tài)進行了理論和數(shù)值計算。在氣井管柱方面,比較代表性的有Savidge等[27]推導了理想氣體音速流動時的運動狀態(tài)方程并與低速流進行比較,Zhu等[28-30]利用計算流體力學(CFD)方法對氣體鉆井中沖蝕問題進行了探索,練章華、王嘉淮等[31-32]分別對高壓氣井和地下儲氣庫井管柱氣體沖蝕問題進行了初步研究,但都由于缺少參考試驗無法對理論計算結果進行驗證。針對這些研究現(xiàn)狀,筆者設計滿足幾何相似和雷諾自相似條件的氣井管柱流體試驗,測量管柱沿程近壁壓力,研究注采壓差和油管內徑對管柱沿程近壁壓力的影響規(guī)律,并與數(shù)值計算結果對比,通過相對誤差分析驗證試驗方案的可行性。
1.1 相似性原理和模型參數(shù)
地下儲氣庫井注入工況下,天然氣經(jīng)壓縮機壓縮后注入井底,采出工況時天然氣自井底流向帶壓井口,可認為天然氣在油管柱內以壓縮狀態(tài)做單相運動。要使試驗模型(用下標m表示)與原型(用下標p表示)具有相同的流動規(guī)律,利用模型預測原型流場狀態(tài),模型與原型須滿足流動相似條件,即兩個流動在對應時刻對應點上同名物理量具有各自的比例關系。具體地,流動相似就是要求模型與原型之間滿足幾何相似、運動相似和黏度相似條件。考慮采氣工況下天然氣在管柱內的流動為可壓縮的等熵流動(天然氣等熵指數(shù)n=1.27~1.30),有
p/ρn=K.
(1)
式中,K為常數(shù)。
定義雷諾數(shù)Re為決定性相似準數(shù),則根據(jù)雷諾數(shù)相等得到相似條件:
Re=ρpUpLp/μp=ρmUmLm/μm.
(2)
根據(jù)流動相似準則,模型與原型的比尺須滿足的關系為
λU=λν/λL.
(3)
其中
式中,p為天然氣壓力,Pa;ρ為天然氣密度,kg·m-3;L為管路長度,m;D為管路內徑,m;λL、λU和λν分別為幾何比尺、速度比尺和黏度比尺。
表1為試驗管路規(guī)格與實際油管規(guī)格對照。由表1可以得到原型與模型的幾何比尺(以管柱規(guī)格Φ114.3 mm×7.37 mm為例,下同)為
λL=Lp/Lm=1200.0/40.0=28,
(4)
λL=Dp/Dm=99.56/3.556=28.
(5)
天然氣與試驗氣體(空氣)物理參數(shù)對照如表2所示。試驗中忽略兩種氣體黏度差異性,則原型與模型的黏度比尺滿足
λν=νp/νm=1.
(6)
由式(3)可知滿足流動相似條件下的原型與模型的速度比尺為
λU=1/λL=28.
(7)
根據(jù)流體力學理論,當流體運動進入自?;癄顟B(tài)時,流體紊亂程度及速度剖面幾乎不再變化,稱為流體的雷諾數(shù)自相似現(xiàn)象。由文獻[34-35]可知,生產(chǎn)過程中的高產(chǎn)氣井和地下儲氣庫井管柱內天然氣處于完全紊流粗糙管區(qū),此時氣體滿足雷諾數(shù)自相似條件,運動相似條件被放松。試驗中取模型速度參數(shù)與原型一致,即
Um=Up.
(8)
至此,滿足相似條件的氣井管柱流體試驗模型得以建立。根據(jù)上述相似模型,當實際油管內徑99.56 mm、目標井段油管長度取1 200 m時,試驗模型參數(shù)為:油管內徑3.556 mm,油管長度40.0 m,入口氣體流速120 m·s-1,空氣運動黏度15.8 mm2·s-1。
表1 試驗管路規(guī)格與實際油管規(guī)格對照Table 1 Specifications comparison of test tubing and actual tubing
表2 試驗氣體物理參數(shù)Table 2 Physical and mechanical parameters of natural gas
1.2 試驗流程設計
根據(jù)相似模型設計試驗,對沿程近壁壓力進行測量,試驗裝置和數(shù)據(jù)采集單元分別如圖1、 2所示。
圖1 試驗裝置結構框圖和現(xiàn)場照片F(xiàn)ig.1 Diagram and picture of experimental apparatus unit structure
圖2 試驗數(shù)據(jù)采集單元結構Fig.2 Experimental data collection unit structure
試驗管路由空壓機、增壓泵、氣體儲氣罐、高壓管路、壓力表等構成。由空壓機提供流量,用增壓泵將氣體增壓到所需壓力,儲氣罐穩(wěn)定流量,根據(jù)試驗需要設置4組不同直徑的管路,用含接箍短管模擬變截面管柱段,設置切換閥門控制管路狀態(tài),注入壓力和流出壓力由壓力傳感器和差壓傳感器測量。
試驗裝置及數(shù)據(jù)采集原理及系統(tǒng)界面如圖2所示。4路壓力信號和2路流量計信號由模擬量輸入模塊7017采集,經(jīng)7520轉換成RS232協(xié)議與計算機連接。溫度信號由7033采集。球閥由7024輸出電壓控制。應變片數(shù)據(jù)由應變儀采集。流體泵狀態(tài)由變頻器與計算機連接進行控制。管路內氣體流速由PIV粒子圖像測速儀測定并轉化為數(shù)字信號進行輸出。
1.3 工況設置和試驗結果
以某儲氣庫試驗井S-4井身結構為基礎,根據(jù)實際井身數(shù)據(jù)設計試驗管路。試驗井為定向井,井身參數(shù)如表3所示。
表3 試驗井S-4井身參數(shù)Table 3 Well parameters of test well S-4
試驗井底壓力為20 MPa。設置以下試驗工況:管柱規(guī)格分別取Φ88.9 mm×6.45 mm、Φ114.3 mm×7.37 mm、Φ139.7 mm×9.17 mm和Φ177.8 mm×10.36 mm,注氣量分別取20×104m3·d-1(對應壓差5 MPa)、30×104m3·d-1(對應壓差10 MPa)、40×104m3·d-1(對應壓差15 MPa)和50×104m3·d-1(對應壓差20 MPa)。試驗工況如表4所示。測量造斜彎曲段(對應井深1 200~2 400 m井段)油管柱近壁壓力沿程分布,結果如表5所示。
表4 試驗工況設置Table 4 Test conditions
表5 造斜彎曲段油管近壁壓力Table 5 Near-wall pressure of whipstocking segment
2.1 數(shù)值模型
為了對物理試驗進行修正,基于ANSYS CFX/CFD模塊對表4中井身參數(shù)進行數(shù)值建模和計算?;贑FX/CFD的數(shù)值計算方法作為目前高速管流研究的有效手段,其在氣井管柱沿程流體壓力計算的精度和可靠性已經(jīng)驗證[25-26]。管柱幾何模型和單元劃分如圖3所示。模型以入口端面為源面,采用六面體網(wǎng)格進行單元劃分,彎曲管柱段采用楔形網(wǎng)格過渡和加密。設置管柱流入、流出端為壓力邊界,壓縮機出口(流入端)壓力恒定,參考環(huán)境溫度(56.25 ℃)。假定油管壁面無滑移,選用Segregated Solver算法求解。
2.2 模型理論
引入Renormalization-group(RNG)k-ε渦黏湍流模型[28-30],該模型的連續(xù)方程和運動方程分別為
(9)
(10)
式中,xi,j,w對應空間坐標系中的i,j,w方向;Ui,j,w為流體在i,j,w方向上的瞬時速度分量;SM為體積力;ρ為相對密度;μeff為有效動力黏度,數(shù)值上等于分子(動力)黏度μ與湍流黏度μt之和;p為靜壓。
對實際可壓縮流體修正為
(11)
式中,p0為流體不可壓縮時的靜壓。
圖3 數(shù)值模型及網(wǎng)格劃分Fig.3 Meshes of tubing and packer model
(12)
由傳遞方程[31-32]
Gw+Gb-YM-ρε,
(13)
(14)
可得到湍動能k和湍動能耗散率ε,至此方程(8)、(9)封閉。
其中
2.3 計算結果
日注氣量為40×104m3,井斜角為23.6°(最大狗腿度為9°/30 m),采用Φ114.3 mm×7.37 mm油管時,試驗井油管柱內天然氣近壁壓力的截面分布如圖4所示。從圖4可以看出:(1)管柱近壁壓力沿程分布受井身結構影響很大。高速天然氣流入造斜段時,管柱外壁壓力增大,內壁壓力減小;(2)天然氣流出造斜段時,壓力分布隨狗腿度減小逐漸趨于均勻。
3.1 注采壓差
管柱規(guī)格和井身結構確定時(井斜角23.6°,油管Φ114.3 mm×7.37 mm),地下儲氣庫井筒天然氣狀態(tài)受注氣壓差影響。圖5、 6分別為地下儲氣庫井筒底部壓力恒定(20 MPa),注氣壓差分別為5、10、15和20 MPa時,造斜彎曲段油管柱內沿程近壁壓力的物理試驗和數(shù)值試驗結果。
從圖5可以看出,隨著試驗壓差的增大,注氣過程中沿井身整體近壁壓力降Δp(管柱沿程上兩點間的近壁靜壓之差)增大,整體壓程比Ψ(管柱沿程上兩點間的近壁靜壓之差與兩點距離的絕對值之比)相應增大。從圖6可以看出,試驗壓差從5 MPa提高到20 MPa的過程中,流入端彎曲外側兩測點的平均壓降變化率為36.7%,彎曲內側兩測點的平均壓降變化率為35.0%,相應局部壓程比變化率為325%和257%;流出端彎曲外側兩測點的平均壓降變化率為8.80%,彎曲內側兩測點的平均壓降變化率為6.73%,相應局部壓程比變化率為425%和322%;說明造斜彎曲段流入、流出端的局部壓程比隨壓差增大而增大,其中彎曲外側近壁壓力相比彎曲內側對應位置增幅更大,因此造斜彎曲段局部最大壓降最有可能發(fā)生在流入端彎曲外側或流出端彎曲內側。
圖4 油管內壓力截面分布云圖Fig.4 Distribution of pressure cross section in tubing
圖5 造斜彎曲段油管柱內沿程近壁靜壓隨壓差變化規(guī)律Fig.5 Near wall static pressure variation with pressure in tubing of whipstocking
圖6 造斜彎曲段流入、流出端局部壓程比隨壓差變化規(guī)律Fig.6 Pressure-distance rate variation with pressure in tubing of whipstocking
3.2 油管內徑
油管規(guī)格由內徑和壁厚確定。研究井斜角和日注氣量一定(井斜角為23.6°、注氣量40×104m3·d-1)時地下儲氣庫油管柱近壁壓力變化規(guī)律。圖7、 8分別為油管規(guī)格取Φ88.9 mm×6.45 mm、Φ114.3 mm×7.37 mm、Φ139.7 mm×9.17 mm、Φ177.8 mm×10.36 mm時,造斜彎曲段管柱沿程近壁壓力物理試驗和數(shù)值試驗結果。
從圖7可以看出,隨著油管內徑的增大,注氣過程中沿井身整體近壁壓力和壓力降增大。從圖8可以看出,油管內徑增大時,流入端彎曲外側兩測點的平均壓降變化率為-11.1%,彎曲內側兩測點的平均壓降變化率為-11.0%,相應局部壓程比變化率為-42.9%和-22.5%;流出端彎曲外側兩測點的平均壓降變化率為-4.77%,彎曲內側兩測點的平均壓降變化率為-5.10%,相應局部壓程比變化率為12.2%和25.0%;說明造斜彎曲段流入端局部壓程比隨管徑增大而減小,流出端規(guī)律相反。
圖7 造斜彎曲段油管柱內沿程近壁靜壓隨油管內徑變化規(guī)律Fig.7 Near wall static pressure variation with inner diameter in tubing of whipstocking
圖8 造斜彎曲段流入、流出端局部壓程比隨油管內徑變化規(guī)律Fig.8 Pressure-distance rate variation with inner diameter in tubing of whipstocking
3.3 試驗結果分析
從圖6、8可以看出,氣井管柱內流體室內小尺寸試驗的近壁壓力分布及變化規(guī)律與數(shù)值試驗計算結果相比數(shù)值偏小,但誤差范圍穩(wěn)定,說明當簡化流體黏度和速度比尺時,滿足幾何相似的小尺寸試驗可以較好地描述管柱沿程近壁流體壓力分布和參數(shù)變化規(guī)律。表6列出了沿井身管柱測點1、2處近壁壓力的試驗結果和數(shù)值結果對比,其他測點可類似處理。
從表6可以看出,對比數(shù)值結果,試驗測得近壁壓力最大誤差為4.12%,在容許范圍內。注氣壓差從5 MPa增大到20 MPa過程中,測點1和測點2彎曲外側靜壓的試驗誤差從4.11%減小到2.91%,內側靜壓的試驗誤差從4.12%減小到2.95%,說明壓差增大,可以降低試驗誤差;從表6中還可以看出,油管內徑對試驗誤差影響很小,可忽略。
表6 管柱近壁壓力的試驗結果和數(shù)值結果對比Table 6 Near-wall pressure comparison of test and numerical results
現(xiàn)場儲氣庫S-4井油管總長為4 805 m,井身結構如表3所示。日注氣量40×104m3,平均狗腿度為9°/30 m,油管規(guī)格為Φ114.3 mm×7.37 mm,初始井底流壓為20 MPa,壓縮機出口壓力為35 MPa(恒定),氣體密度為0.59 kg·m-3,動力黏度為16.07 μPa·s,運動黏度為22.07 mm2·s-1,比定壓熱容為2.23 kJ·kg-1·K-1,比定容熱容為1.70 kJ·kg-1·K-1。當壓力修正系數(shù)取1.287時,井下壓力探測器反饋的油管近壁壓力沿井身分布與本文中試驗測得結果對比見圖9。由此可以看出,本文試驗結果與現(xiàn)場實測結果吻合度較好,說明氣井管柱流體試驗作為井下壓力檢測的輔助技術,其結果可為氣井管柱設計、生產(chǎn)效果預估提供一定參考。
圖9 油管近壁壓力分布試驗結果與現(xiàn)場測量結果對比Fig.9 Comparison of experimental results and field measurements of near-wall pressure distributions
(1) 氣體處于完全紊流粗糙管區(qū)時滿足雷諾數(shù)自相似條件,氣井管柱流體試驗通過尺寸比尺實現(xiàn)幾何相似,通過流速控制實現(xiàn)雷諾數(shù)自相似。
(2) 近壁壓力的試驗結果與數(shù)值結果相比結果偏小,但相對誤差在容許范圍內,且隨著壓差增大,試驗誤差減小。
[1] 丁國生,李春,王皆明,等.中國地下儲氣庫現(xiàn)狀及技術發(fā)展方向[J].天然氣工業(yè),2015,35(11):107-112. DING Guosheng, LI Chun, WANG Jieming,et al. The status quo and technical development direction of underground gas storages in China[J]. Natural Gas Industry, 2015,35(11):107-112.
[2] 丁國生.中國地下儲氣庫的需求與挑戰(zhàn)[J].天然氣工業(yè),2011,31(12):90-93. DING Guosheng. Demand and challenges for underground gas storages in China [J]. Natural Gas Industry, 2011,31(12):90-93.
[3] 肖學蘭.地下儲氣庫建設技術研究現(xiàn)狀及建議[J].天然氣工業(yè),2012,32(2):79-82. XIAO Xuelan. Research and proposals on underground gas storage construction technologies [J]. Natural Gas Industry, 2012,32(2):79-82.
[4] 袁光杰,楊長來,王斌,等.國內地下儲氣庫鉆完井技術現(xiàn)狀分析[J].天然氣工業(yè),2013,33(2):61-64. YUAN Guangjie, YANG Changlai, WANG Bin,et al. Drilling and completion technologies for the underground gas storage (UGS) in China: a state-of-the-art appraisal [J]. Natural Gas Industry, 2013,33(2):61-64.
[5] 劉坤,何娜,張毅,等.相國寺儲氣庫注采氣井的安全風險及對策建議[J].天然氣工業(yè),2013,33(9):131-135. LIU Kun, HE Na, ZHANG Yi,et al. Safety risk analysis of gas injection and recovery wells in the Xiangguosi gas storage and countermeasures [J]. Natural Gas Industry, 2013,33(9):131-135.
[6] 練章華,韓建增,董事爾.基于數(shù)值模擬的復雜地層套管破壞機理研究[J].天然氣工業(yè),2002,22(1):48-51. LIAN Zhanghua, HAN Jianzeng, DONG Shier. Research on the casing failure mechanism of complex formation by numerical simulation [J]. Natural Gas Industry, 2002, 22(1):48-51.
[7] 林勇.儲氣庫注采井鉆完井方案設計[D].西安:西安石油大學,2013. LIN Yong. Plan design of well drilling and completion for injection and production wells of underground gas storages [D]. Xian: Xian Shiyou University, 2013.
[8] 王霞. 儲氣庫井生產(chǎn)動態(tài)分析方法及應用[D]. 西安: 西安石油大學, 2015. WANG Xia. Well production dynamic analysis method and application of gas storage [D].Xian: Xian Shiyou University, 2015.
[9] PATANKAR S V. Numerical heat transfer and fluid flow [M]. Fremont:Hemisphere Publishing Corporation, 1980.
[10] WILCOX D C. Turbulence modeling for CFD [M]. La Canada: DCW Industries, 2006.
[11] STACK M M, ABDELRAHMAN S M. A CFD model of particle concentration effects on erosion-corrosion of Fe in aqueous conditions[J]. Wear, 2011,273:38-42.
[12] ZHANG H, TAN Y Q, YANG D M, et al. Numerical investigation of the location of maximum erosive wear damage in elbow: effect of slurry velocity, bend orientation and angle of elbow [J]. Powder Technology, 2012,217:467-476.
[13] TAN Y Q, ZHANG H, YANG D M,et al. Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall [J]. Tribol Int, 2012,46:137-144.
[14] LI R, YAMAGUCHI A, NINOKATA H. Computational fluid dynamics study of liquid droplet impingement erosion in the inner wall of a bend pipe [J]. J Power Energy Syst, 2010,4:327-336.
[15] SUZUKI M, INABA K, YAMAMOTO M. Numerical simulation of sand erosion in a square-section 90-degree bend [J]. J Fluid Sci Technol, 2008,3:868-880.[16] ZENG L, ZHANG G A, GUO X P. Erosion-corrosion at different location of X65 carbon steel elbow [J]. Corros Sci, 2014,85:318-330.[17] SLETFJERDING, ELLING, GUDMUNDSSON,et al. Friction factor directly from roughness measurements [J]. Journal of Energy Resources Technology, Transactions of the ASME, 2003,125(2):126-130.
[18] FERNG Y M. Predicting local distributions of erosion—corrosion wear sites for the piping in the nuclear power plant using CFD models [J]. Ann Nucl Energy, 2008,35:304-313.
[19] FERNG Y M, LIN B H. Predicting the wall thinning engendered by erosion-corrosion using CFD methodology [J]. Nucl Eng Des, 2010,240:2836-2841.
[20] MAZUMDER Q H, SHIRAZI S A, MCLAURY B. Experimental investigation of the location of maximum erosive wear damage in elbows [J]. ASME J Press Vessel Technol, 2008,130:11303-1-8.
[21] MAZUMDER Q H, SHIRAZI S A, MCLAURY B. Prediction of solid particle erosive wear of elbows in multiphase annular flow-model development and experimental validations[J]. J Energy Resour Technol, 2008,130:023001-1-10.
[22] DENG T, PATEL M, HUTCHINGS I, et al. Effect of bend orientation on life and puncture point location due to solid particle erosion of a high concentrated flow in pneumatic conveyors [J]. Wear, 2005,258:426-433.
[23] KAYS W M. Loss coefficient for abrupt changes in flow cross section with low Reynolds flow in single and multi-tube systems [J]. Transactions of the ASME Journal of Fluids Engineering, 1950,72:1067-1074.
[24] ASTARITA G, GREGO G. Excess pressure drop in laminar flow through sudden contraction[J]. Fundamentals, 1968,7(1):27-31.[25] HABIB M A, BADR H M, MANSOUR R, et al. Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratios [J]. International Journal for Numerical Methods in Fluids, 2004,46:19-35.[26] BADR H M, HABIB M A, MANSOUR R,et al. Numerical investigation of erosion threshold velocity in a pipe with sudden contraction [J]. Computers and Fluids, 2005,34:21-42.
[27] JAESCHKE M, SCHLEY P. Ideal-gas thermodynamic properties for natural-gas applications[J]. International Journal of Thermophysics, 1995,16(6):1381-1392.
[28] ZHU H J, LIN Y H, ZENG D Z,et al. Numerical analysis of flow erosion on drill pipe in gas drilling [J]. Eng Fail Anal, 2012,22:83-91.
[29] ZHU H J, WANG J, CHEN X Y,et al. Numerical analysis of the effects of fluctuations of discharge capacity on transient flow field in gas well relief line [J]. J Loss Prev Process Indust, 2014,31:105-112.
[30] ZHU H J, PAN Q, ZHANG W L,et al. CFD simulations of flow erosion and flow-induced deformation of needle valve: effects of operation, structure and fluid parameters [J]. Nucl Eng Des, 2014,273:396-411.
[31] 練章華,魏臣興,宋周成,等.高壓高產(chǎn)氣井屈曲管柱沖蝕損傷機理研究[J].石油鉆采工藝,2012,34(1):6-9. LIAN Zhanghua, WEI Chenxing, SONG Zhoucheng,et al. Erosion damage mechanism of buckled tubing in high pressure and high production gas wells [J]. Oil Drilling & Production Technology, 2012,34(1):6-9.
[32] 王嘉淮,羅天雨,呂毓剛,等.呼圖壁地下儲氣庫氣井沖蝕產(chǎn)量模型及其應用[J].天然氣工業(yè),2012,32(2):57-59,117. WANG Jiahuai, LUO Tianyu, Lü Yugang, et al. Research and application of model of gas well erosion output of the Hutubi underground gas storage [J]. Natural Gas Industry, 2012,32(2):57-59,117.
[33] 韓治成.Laval噴管高速氣流變工況外流場測量方法的研究[D].鞍山:遼寧科技大學,2013. HAN Zhicheng. Measurement method research on high speed flow external flow field of Laval nozzle under variable working conditions [D]. Anshan: University of Science and Technology Liaoning, 2013.
[34] ROHDIN P, MOSHFEGH B. Numerical predictions of indoor climate in large industrial premises: a comparison between differentk-εmodels supported by field measurements[J]. Build Environ, 2007,42:3872-3882.
[35] KIMURA I, HOSODA T. A non-lineark-εmodel with reliability for prediction of flows around bluff bodies[J]. Int J Numer Methods Fluids, 2003,8:813-837.
(編輯 沈玉英)
Experimental study on near-wall-pressure in gas well tubing based on self-similar theory
LIU Minggang1,2, YAN Yifei2,3, XIE Wei4, WANG Jianjun5, HAN Shengchao1,2, YANG Xiujuan1,2,YAN Xiangzhen1,2
(1.CollegeofPipelineandCivilEngineeringinChinaUniversityofPetroleum,Qingdao266580,China; 2.OilandGasCAETechnologyResearchCenterinChinaUniversityofPetroleum,Qingdao266580,China; 3.CollegeofElectromechanicalEngineeringinChinaUniversityofPetroleum,Qingdao266580,China; 4.PetroleumProductionEngineeringResearchInstituteofHuabeiOilfieldCompany,Renqiu062552,China; 5.CNPCTubularGoodsResearchInstitute,Xian710077,China)
The flowing state and pressure distribution near the wall of the wellbore plays an important role in the safety and integrity assessment of gas wells. An indoor small-scale testing experiment is designed to study the flowing state in the column based on the similarity principle. The geometrical similarity between the model and the prototype, and the Reynolds number self-similarity are both realized by the size scale and velocity control. The comparative analysis in use of experimental and numerical methods is performed to study the near-wall-pressure in the bending area of the tube, and the feasibility of the experiment is verified by the relative error analysis. The result shows that, the experiment satisfies the geometry similar conditions and self-similarity of Reynolds number. The experimental results of the near-wall-pressure is smaller than the numerical simulation result when the kinematics viscosity is taken as an invariable. The maximum experimental error is 4.12% when the working pressure is less than 20 MPa and the experimental error decreases with the increase of the working pressure. With the increase of the production pressure (pp=5 ~ 20 MPa) and the tubing diameter (D=76.00 ~ 157.08 mm), the near-wall-pressure and pressure-fall of the tubing also increase. The pressure-distance rate of the inflow end in the bending segment increases with the increase of the deviation angle and tubing diameter, while that of the outflow end is on the contrary. Conclusions can be drawn that the fluid in tubing experiment satisfying the geometric similarity and Reynold self-similarity is an efficient way to investigate the near-wall-pressure.
tubing; fluid experiment; near-wall-pressure; similarity theory; underground gas storage
2016-05-22
國家自然科學基金項目(51274231,51374228,U1262208);中央高?;究蒲袠I(yè)務費專項 (15CX06067A);國家油氣重大專項 (2016ZX05017-003-01);中石油“十三五”基礎課題 (2016A-3905)
劉銘剛(1990-),男,博士研究生,研究方向為油氣工程力學、機械強度及可靠性。E-mail:liuminggang0303@126.com。
閆怡飛(1984-),男,博士,研究方向為油氣安全工程。E-mail:yanyf163@163.com。
1673-5005(2017)02-0147-09
10.3969/j.issn.1673-5005.2017.02.018
TE 38
A
劉銘剛,閆怡飛,謝巍,等. 基于自相似模型的氣井管柱中流體的近壁壓力試驗研究[J]. 中國石油大學學報(自然科學版), 2017,41(2):147-155.
LIU Minggang, YAN Yifei, XIE Wei, et al. Experimental study on near-wall-pressure in gas well tubing based on self-similar theory[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017,41(2):147-155.