亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類(3+1)維KdV方程的有理解及其怪波

        2017-06-05 15:01:01汪春江王云肖
        關(guān)鍵詞:實值波高情形

        汪春江,舒 級,李 倩,王云肖,楊 袁

        (四川師范大學(xué) 數(shù)學(xué)與軟件科學(xué)學(xué)院,四川 成都 610066)

        一類(3+1)維KdV方程的有理解及其怪波

        汪春江,舒 級*,李 倩,王云肖,楊 袁

        (四川師范大學(xué) 數(shù)學(xué)與軟件科學(xué)學(xué)院,四川 成都 610066)

        討論一類經(jīng)典的(3+1)維KdV方程,該方程在流體動力學(xué)、等離子物理、氣體動力學(xué)等方面有廣泛應(yīng)用.通過一個簡單的符號計算方法得到方程的有理解,并討論了在某些條件下的怪波解.

        KdV方程; 精確解; 符號計算方法; 有理解; 怪波

        一直以來,非線性現(xiàn)象都是基礎(chǔ)數(shù)學(xué)和應(yīng)用數(shù)學(xué)研究的主題,非線性演化方程的精確解研究在數(shù)學(xué)物理上有著重大作用,常系數(shù)方程[1-3]、變系數(shù)方程[4-5]、隨機方程[6-7]的精確解已經(jīng)被廣泛研究,并產(chǎn)生了很多關(guān)于精確解的方法,如逆散映射法[8-9]、Backlünd變換[10-11]、達(dá)布變換[12]、齊次平衡法[13]、(G′/G)-展開法[14]等.

        近年來,怪波已成為國內(nèi)外研究的焦點.從怪波解的形式上看,通常是有理分式.在海洋學(xué)和其他學(xué)科領(lǐng)域,科學(xué)家們都發(fā)現(xiàn)了怪波現(xiàn)象[15-17],例如,Bose-Einstein凝聚物怪波事件[18-19],在等離子體的空間和表面的異常波[20-21],尤其是在光學(xué)領(lǐng)域[22-23],當(dāng)光脈沖在光子晶體纖維中傳輸高能量時,怪波就會存在.對于非線性Schr?dinger方程[24-25]的怪波與駐波、多怪波和高階怪波[26-28]、明暗怪波解[29-30]已廣泛被討論.怪波不僅出現(xiàn)在深水中,淺水中也發(fā)現(xiàn)了怪波[31].從直觀上看,怪波具有超常的波高,因此大多數(shù)學(xué)者和研究人員只能從波高角度對它進(jìn)行定義,即認(rèn)為波高大于有效波高2倍(或2.2倍)的單波可以稱為怪波.在淺水中,怪波的產(chǎn)生取決于調(diào)制不穩(wěn)定性:當(dāng)波高kH<1.363 m[32],非線性聚焦過程停止.以水為介質(zhì)的波不同于一般的閾值,淺水波高為kH<1/3 m[33].

        在本文中,考慮(3+1)維KdV方程

        (1)

        其中u是關(guān)于x、y、z、t的函數(shù),x、y、z、t是獨立變量.它是物理學(xué)家和數(shù)學(xué)家感興趣的方程之一.KdV方程的復(fù)合解[35]、變系數(shù)KdV方程的精確解[36]、高階KdV方程的精確解[37-39]、新的KdV-mKdV方程的孤波[40]、廣義的Hirota Satsuma耦合方程和偶合的MKdV方程[41-42]的孤立波解已經(jīng)被研究.

        本文的目的是通過一個簡單的符號計算方法[43],構(gòu)建出(3+1)維KdV的怪波和有理解.

        1 一個簡單的符號計算方法

        一個簡單的符號計算方法對于求解非線性偏微分方程是有效的.下面給出求解(3+1)維偏微分方程的主要步驟.

        步驟 1 利用截斷展開法[44-46],作代換

        (2)

        其中,α是一個常數(shù),j1,j2,j3,j4≥1(j1,j2,j3,j4∈0,1,2,…).通過上述變換將一個(3+1)維的偏微分方程

        (3)

        轉(zhuǎn)化為一個雙線性方程

        (4)

        其中F是f,ft,fx,fy,fz,fxx,fxy,fxz,…的多項式.

        步驟 2 假設(shè)f是一個關(guān)于x、y、z、t的2N階多項式,給定

        (5)

        其中,系數(shù)ai,j,k,l(0≤i,j,k,l≤2N)是常數(shù),滿足

        (6)

        如果j1≥1.

        步驟 3 把(5)式代入(4)式,并令關(guān)于xiyjzktl(0≤i+j+k+l≤2N)的系數(shù)為0,得到一系列的多項式方程.

        步驟 4 利用Maple軟件,可以算出系數(shù)aijkl,i,j,k,l∈(0,1,2,…).

        步驟 5 把滿足條件(6)的系數(shù)aijkl(i,j,k,l∈{0,1,2,…})代入(2)式之后得到非線性偏微分方程(3)的解.

        2 有理解

        下面將應(yīng)用上述方法來求解(3+1)維KdV方程的解.根據(jù)截斷展開法,用變換

        (7)

        將(3+1)維KdV方程變?yōu)?/p>

        令f成為上述方程的一個解

        (8)

        為了構(gòu)建方程(1)的有理解,假定f是一個2階關(guān)于x、y、z、t的多項式

        (9)

        其中系數(shù)aijkl(0≤i,j,k,l≤2)是常數(shù),滿足

        (10)

        為了簡單起見,假定方程(9),a2000=a0200=a0020=a0000=1,a0002=2,代入到方程(8)中,并令關(guān)于xiyjzktl(0≤i+j+k+l≤2)的系數(shù)為0,得到15個多項式方程:

        為了后面描述的方便,令a0011=b,a1100=c,a1001=d,a0110=e,a0101=f,a1010=g,a0001=h,a0010=j,a0100=k,a1000=l,解方程組,得到如下解.

        情形 1

        f=-ge,

        情形 2

        f=-ge,

        情形 3

        f=-ge,

        情形 4

        f=-ge,

        情形 5

        情形 6

        情形 7

        情形 8

        情形 9

        情形 10

        情形 11

        情形 12

        情形 13

        情形1~13代入(7)式得到(3+1)維KdV方程的解,情形1~4有2個自由變量a1100、a0010.在這些情形中可以得到實值型的怪波解.情形5~12有一個自由變量a0010.在這些情況中得到復(fù)值型的有理解.然而,在情形13中,有一個自由變量a0010.在這個情形中,可以得到實值型的有理解.

        1) 從情形1中,挑選出系數(shù):

        可以得到(3+1)維KdV方程的實值型怪波解

        其中

        (12)

        2) 從情形5中,挑選出系數(shù):

        可以得到(3+1)維KdV方程的復(fù)值型有理解

        (13)

        其中

        (14)

        3) 從情形13中,挑選出系數(shù):

        可以得到(3+1)維KdV方程的實值型有理解

        其中

        (16)

        3 結(jié)束語

        本文運用符號計算方法得到了(3+1)維KdV方程的有理解和怪波解,這些怪波和有理解是非奇異的.這些解對理解怪波的產(chǎn)生機制有一定幫助.下一步將研究如何用簡單的符號計算方法構(gòu)造非線性演化方程的高階怪波解.

        [1] JEFFREY A.Exact solutions tp the KdV-Burgers’ equation[J].Wave Motion,1991,14:369-375.

        [2] KHALFALLAH M.New exact traveling wave solution of the (3+1) dimensional Kadomtsev-Petviashvili(KP) equation[J].Commun Nonlinear Sci Numer Simulat,2009,14:1169-1175.

        [3] MALLORY K,VAN GORDER R A,VAJRAVELU K.Several classes of exact solutions to the (1+1) Born-Infeld equation[J].Commun Nonlinear Sci Numer Simulat,2014,19:1669-1674.

        [4] ABDEL LATIF M S.Some exact solutions of KdV equation with variable coeffcients[J].Commun Nonlinear Sic Numer Simulat,2011,16:1783-1786.

        [5] LI J B.Exact traveling wave solution and dynamical behavior for the (n+1)-dimensional multiple sine-Gordon equation[J].Science in China,2007,A50:153-164.

        [6] KIM H S.Exact solutions of Wick-Type stochastic equations with variable coefficients[J].Reports on Mathematical Physics,2011,67:415-429.

        [7] XIE Y.Exact solutions for stochastic KdV equations[J].Phys Lett,2003,A310:161-167.

        [8] HEREMAN W,NUSEIR A.Symbolic methods to construct exact solutions of nonlinear partial differential equations[J].Math Comput Simul,1997,43:13-27.

        [9] SACKS P,SHIN J.Computational methods for some inverse scattering problems[J].Appl Math Comput,2009,207:111-123.

        [10] MA W X,ABDELJABBAR A.A bilinear Backlund transformation of a (3+1)-dimensional generalized KP equation[J].Applied Mathematics Letters,2012,25:1500-1504.

        [11] QUINTINO A.Spectral deformation and Backlund transformation of constrained Willmore surfaces[J].Differential Geometry and its Applications,2011,29:S261-S270.

        [12] BAGROV V G,SAMSONOV B F.Darboux transformation of the Schr?dinger equation[J].Physics of Particles and Nuclei,1997,28:374-397.

        [13] ESLAMI M,FATHIVAJARGAH B.Exact solutions of modified Zakharov-Kuznetsov equation by the homogeneous balance method[J].Ain Shams Engineering J,2014,5:221-225.

        [14] WANG M,LI X,ZHANG J.The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics[J].Phys Lett,2008,A372:417-423.

        [15] DYSTHE K,KROGSTAD H E.Oceanic rogue waves[J].Annu Rev Fluid Mech,2008,40:287-310.

        [16] KIM H S.Exact solutions of Wick-type stochastic equation with variable coefficients[J].Reports on Mathematical Physics,2011,67:415-429.

        [17] PELINOVSKY K E,SLUNYAEV A.Rogue Waves in the Ocean: Observation,Theories and Modeling[M].New York:Springer,2009.

        [18] LIA J Z,LIU H Y,WANG Q.Enhanced multilevel linear sampling methods for inverse scattering problems[J].J Comput Phys,2014,257:554-571.

        [19] SACKS P,SHIN J.Computatioal methods for some inverse scattering problems[J].Appl Math Comput,2009,207:111-123.

        [20] RUDERMAN M S.Freak waves in laboratory and space plasmas[J].Eur Phys J:Special Topics,2010,185:57-66.

        [21] MOSLEM W M,SHUKLA P K,ELIASSON B.Surface plasma rogue waves[J].Eur Phys Lett,2011,96:25002.

        [22] SOLLI D R,ROPERS C,KOONATH P,et al.Optical rogue waves[J].Nature,2007,450:1054-1058.

        [23] KIBLER B,FATOME J,FINOT C.The Peregrine soliton in nonlinear fibre optics[J].Nature Physics,2010,6:790-795.

        [24] SHU J,ZHANG J.Sharp criterion of global existence for a class of nonlinear Schr?dinger equation with critical exponent[J].Appl Math Comput,2006,182:1482-1487.

        [25] HE J S,CHARALAMPADIS E G,KEVREKIDIS P G.Rogue waves in nonlinear Schr?dinger models with variable coefficients: application to Bose-Einstein condensates[J].Phys Lett,2014,A378:557-583.

        [26] YU F J.Multi-rogue waves for a higher-order nonlinear Schrodinger equation in optical fibers[J].Appl Math Comput,2013,220:176-184.

        [27] DAI C Q,HUANG W H.Multi-rogue wave and multi-breather solutions in PT-symmetric coupled waveguides[J].Applied Mathematics Letters,2014,32:35-40.

        [28] LI L J,WU Z W,WANG L H,et al.High-order rogue waves for the Hirota equatoin[J].Ann Phys,2013,343:198-211.

        [29] YU F J,YAN Z Y.New rogue waves and dark-bright soliton solutions for a coupled nonlinear Schr?dinger equation with variable coefficients[J].Appl Math Comput,2014,233:351-358.

        [30] MA W X.Complexiton solutions to the Korteweg-de Vries equation[J].Phys Lett,2002,A301:35-44.

        [31] SOOMERE T.Rogue waves in shallow water[J].Eur Phys J:Special Topics,2010,185:81-96.

        [32] PETERSON P,SOOMERE T,ENGELBRECHT J.Soliton interaction as apossible model for extreme waves in shallow water[J].Nonlinear Processes in Geophysics,2003,10:503-510.

        [33] RUDERMAN M S.Freak waves in laboratory and space plasmas[J].Eur Phys J:Special Topics,2010,185:57-66.

        [34] BOUNTIS T C.Singularities and Dynamical Systems[M].New York:North-Holland,1985.

        [35] MA H C,DENG A P,WANG Y.Exact solution of a KdV equation with variable coefficients[J].Appl Math Comput,2011,61:2278-2280.

        [36] TRIKI H,WAZWAZ A-M.Traveling wave solutions for 5th-order KdV type equations with time-dependent coefficients[J].Commun Nonlinear Sic Numer Simulat,2014,19:404-408.

        [37] OSBORNE A R,ONORATO M,SERIO M.The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains[J].Physics Letters,2000,A275:386-393.

        [38] NOBUHIT M.Statistical properties of freak waves observed in the sea of Japan[C]//Proc International of Shore and Polar Engineering Conference,2000,3:109-115.

        [39] DAVIDL K.Simulation of extreme waves in a background random sea[C]//Proc International of Shore and Polar Engineering Conference,2000,3:31-37.

        [40] TAKASHI Y.Characteristics of giant freak waves observed in the sea of Japan[C]//Proc International 5-Symposium on Ocean Wave Measurement and Analysis,1997,1:316-328.

        [41] HAVER S.A possible freak wave event measured at the draupner,jacket January 1 1995[C]//Actes de colloques-IFREMER,2004:1-8.

        [42] OSBORNE A R,ONORATO M,SERIO M.The nonlinear dynamics of rogue waves and holes in deep water gravity wave trains[J].Physics Letters,2000,A275:386-393.

        [43] OSBORNE A R.The random and deterministic dynamics of “rogue waves” in unidirectional deep-water wave trains[J].Marine Structures,2001,14:275-293.

        [44] SLUNYAEV A,KHARIF C,PELINOVSKY E.Nonlinear wave focusing on water of finite depth[J].Physica D,2002,173:77-96.

        [45] DYSTHE K,KROGSTAD H E,MULLER P.Oceanic rogue waves[J].Annu Rev Fluid Mech,2008,40:287-310.

        [46] FAN E G.Solitons for a generalized Hirota-Satsuma coupled KdV equatioan and a coupled MKdV equation[J].Phys Lett,2001,A282:18-22.

        2010 MSC:35Q55

        (編輯 周 俊)

        Rogue Waves and Rational Solutions for a Class of (3+1)-dimensional KdV Equation

        WANG Chunjiang,SHU Ji,LI Qian,WANG Yunxiao,YANG Yuan

        (CollegeofMathematicsandSoftwareScience,SichuanNormalUniversity,Chengdu610066,Sichuan)

        This paper discusses a classical (3+1)-dimensional KdV equation,which has broad applications in hydrodynamics,plasma physics,gas dynamics.We obtain rational solutions of this equation by a simple symbolic computation approach.Under some conditions,we find that some of rational solutions are rogue waves.

        KdV equation; exact solution; symbolic computation approach; rational solution; rogue wave

        2016-03-30

        四川省科技廳應(yīng)用基礎(chǔ)計劃項目(2016JY0204)和四川省教育廳自然科學(xué)重點基金(14ZA0031)

        O175.27

        A

        1001-8395(2017)02-0157-06

        10.3969/j.issn.1001-8395.2017.02.003

        *通信作者簡介:舒 級(1976—),男,教授,主要從事隨機動力系統(tǒng)和偏微分方程的研究,E-mail:shuji2008@hotmail.com

        猜你喜歡
        實值波高情形
        基于FHDI-GNWM 數(shù)據(jù)的全球超越概率波高宏觀分布特征分析
        多粒度實值形式概念分析
        基于漂流浮標(biāo)的南大洋衛(wèi)星高度計有效波高研究
        海洋通報(2021年3期)2021-08-14 02:20:46
        非平整港池的多向不規(guī)則波試驗研究
        避免房地產(chǎn)繼承糾紛的十二種情形
        四種情形拖欠勞動報酬構(gòu)成“拒不支付”犯罪
        公民與法治(2020年4期)2020-05-30 12:31:34
        實值多變量維數(shù)約簡:綜述
        出借車輛,五種情形下須擔(dān)責(zé)
        公民與法治(2016年9期)2016-05-17 04:12:18
        雙正交周期插值小波函數(shù)的實值對稱性
        飽和秋色
        女報seaside(2014年10期)2014-04-29 21:02:51
        欧洲一卡2卡三卡4卡免费网站| 一区二区中文字幕在线观看污污 | 精品人妻人人做人人爽| 日韩av在线毛片| 一本色道久久88综合亚精品| 懂色av一区二区三区尤物| 久久久精品人妻无码专区不卡| 欧美日韩综合网在线观看| 日本中文字幕一区二区在线观看| 日韩有码中文字幕在线观看 | 中文字幕无码无码专区| 北岛玲精品一区二区三区| 9久9久女女热精品视频免费观看| 97超碰中文字幕久久| 久久久久人妻精品一区二区三区| 日本爽快片18禁免费看| 国产91对白在线观看| 午夜视频一区二区在线观看| 少妇高潮太爽了在线视频| 国产无套护士在线观看| 欧美在线观看www| 久久精品国产亚洲av久按摩| 日本高清视频xxxxx| 国产成人精品自在线无码| 白白色福利视频在线观看| 99久久无色码中文字幕人妻蜜柚| 日日碰狠狠丁香久燥| 无码流畅无码福利午夜| 成人一区二区人妻少妇| 日韩吃奶摸下aa片免费观看| 99久久超碰中文字幕伊人| 国产一区二区熟女精品免费| 狠狠噜狠狠狠狠丁香五月| 五月天综合在线| 大红酸枝极品老料颜色| 少妇无码太爽了在线播放| 天天做天天躁天天躁| 日韩精品视频免费福利在线观看 | 日韩国产精品无码一区二区三区| 夜夜高潮夜夜爽夜夜爱爱| 成人无码无遮挡很H在线播放|