俞 晟
蘇州市職業(yè)大學(xué)環(huán)境與檢測研究室, 江蘇 蘇州 215104
重金屬離子對不同非水溶性有機(jī)物含量土壤膠體上十溴聯(lián)苯醚遷移行為的影響
俞 晟
蘇州市職業(yè)大學(xué)環(huán)境與檢測研究室, 江蘇 蘇州 215104
為了研究復(fù)雜土壤環(huán)境中非水溶性有機(jī)物和重金屬離子對BDE- 209(十溴聯(lián)苯醚)的時(shí)空遷移過程和變換規(guī)律,在旋轉(zhuǎn)混勻儀〔轉(zhuǎn)速為(30±1.0)rmin、溫度為(25.0±0.5)℃〕內(nèi)避光試驗(yàn)條件下,分析V水∶m土為5、pH為6.8±0.1條件下,森林土壤和農(nóng)田土壤中非水溶性有機(jī)物含量(分別為2.2%和4.7%)和重金屬離子(Fe3+、Cu2+、Zn2+)含量對土壤中BDE- 209環(huán)境遷移行為的影響.結(jié)果表明:重金屬離子在森林土和農(nóng)田土土壤膠體上的平衡時(shí)間和平衡含量分別為40、32 h和(49.4±1.2)(81.7±1.9)mgg.重金屬離子對森林土(重金屬負(fù)荷為0~60 mgg)和農(nóng)田土(重金屬負(fù)荷為0~80 mgg)土壤膠體混凝沉降強(qiáng)弱作用均依次為Fe3+最強(qiáng),其次為Cu2+、Zn2+;而當(dāng)森林土重金屬負(fù)荷為60~100 mgg、農(nóng)田土重金屬負(fù)荷為80~100 mgg時(shí),森林土和農(nóng)田土土壤膠體質(zhì)量濃度分別穩(wěn)定在(49.3±1.3)和(50.4±1.1)mgL,致使上清液中ρ(BDE- 209)由(388.5±13.2)ngL分別降至(24.7±21.7)和(25.4±18.8)ngL.此外,重金屬離子未實(shí)現(xiàn)BDE- 209由土壤膠體向重金屬膠體的再分配過程〔上清液中ρ(BDE- 209)與土壤膠體質(zhì)量濃度比值保持在(493.1±6.8)ngg〕,僅通過改變土壤膠體環(huán)境行為來影響B(tài)DE- 209遷移過程,進(jìn)而導(dǎo)致土壤環(huán)境中BDE- 209時(shí)空遷移過程與土壤膠體遷移行為一致.
土壤膠體; 非水溶性有機(jī)物; 重金屬離子; 十溴聯(lián)苯醚
PBDEs(多溴聯(lián)苯醚)是一類重要的溴代阻燃劑,占溴代阻燃劑總用量的60%,雖然歐美等國家和地區(qū)早已禁用一部分PBDEs產(chǎn)品(如十溴聯(lián)苯醚BDE- 209),而轉(zhuǎn)向使用PBDEs替代品,但是PBDEs作為當(dāng)今主要的溴代阻燃劑,仍被廣泛用于紡織、家具、建材、交通工具和電子產(chǎn)品等大量商品中,世界對PBDEs的需求量仍在持續(xù)增長[1- 3].PBDEs因具有較強(qiáng)的疏水性、持久性、生物富集性、生物難降解性和潛在“致癌、致畸、致突變”作用,而被認(rèn)為是普遍存在的環(huán)境污染物之一,已引起人們廣泛關(guān)注,成為當(dāng)前一大熱點(diǎn),并已被《斯德哥爾摩公約》列為持久性環(huán)境污染物(POPs)[4- 7].由于PBDEs溶解度小、辛醇水分配系數(shù)(lgKOW≥5.0)和有機(jī)物吸著系數(shù)(lgKOC≥4.5)較高,因此極易被環(huán)境土壤或水體沉積物吸附和富集,故土壤是PBDEs在環(huán)境中常見的匯[1,3,8].
土壤膠體(包括懸浮有機(jī)物和無機(jī)物,在土壤中最為活躍,是水土流失的主要組成部分,粒徑≤1 μm)的存在為疏水性有機(jī)污染物PBDEs提供了一個(gè)可在土壤含水層中進(jìn)行平衡吸附和遷移的有效路徑,使得疏水有機(jī)污染物的傳輸在土壤膠體易化傳輸條件下得到增強(qiáng)[9- 10].由于土壤的復(fù)雜性[3,8,10- 12],PBDEs進(jìn)入土壤后的遷移行為受到吸附、揮發(fā)、膠體傳輸?shù)榷喾N環(huán)境行為作用,這些作用相互關(guān)聯(lián)、相互影響,進(jìn)而導(dǎo)致PBDEs在土壤中遷移過程和行為的闡述不夠明晰[10,13- 14].土壤有機(jī)物因其數(shù)量巨大且廣泛存在,對地球土壤圈的影響巨大,涉及污染物循環(huán)、遷移積累等方面[4- 5,7,10],即疏水分配及極性極化相互作用可直接影響疏水性有機(jī)污染物PBDEs在土壤各組分、不同相間的變化,從而改變其在土壤中的遷移行為[10,13- 14].重金屬離子(Fe3+、Cu2+、Zn2+)大部分來源于工農(nóng)業(yè)生產(chǎn)過程中廢水、廢氣和廢渣等排放,對土壤的污染是一個(gè)不可逆過程[15],但卻能有效降低膠體表面ζ電位,促進(jìn)顆粒絮凝[10,15].此外,此類重金屬離子易成為電子受體,與富電子物質(zhì)(如PBDEs)可形成電子供受體關(guān)系,因而可影響疏水有機(jī)污染物PBDEs在土壤中的遷移過程[16- 17].
國內(nèi)外對土壤PBDEs污染已有大量研究,但對其在環(huán)境特別是土壤環(huán)境中的時(shí)空遷移研究尚未完全明確[3,8,10],此外由于現(xiàn)有土壤環(huán)境中十溴聯(lián)苯醚BDE- 209(lgKOC>10,溶解度S水<0.1 μgL)含量已遠(yuǎn)高于其他PBDEs化合物[1- 2,5,7],故而有必要探索BDE- 209在土壤環(huán)境中的時(shí)空遷移規(guī)律.同時(shí),種植區(qū)和林區(qū)(如長江三角洲地區(qū))常因節(jié)氣變換而進(jìn)行補(bǔ)充施肥(常為有機(jī)肥),以及因季節(jié)性降雨量不同(平均水土比為2~7)以及地表水和地下水相互補(bǔ)充交換作用,而導(dǎo)致土壤中非水溶性有機(jī)物含量和重金屬離子含量有著較顯著的空間和時(shí)間性差異變化[17- 18],對土壤膠體上十溴聯(lián)苯醚環(huán)境遷移行為的影響研究提出了實(shí)際需求.鑒于此,該研究以BDE- 209為對象,分析水土比為5的條件下,森林土和農(nóng)田土中非水溶性有機(jī)物含量和重金屬離子(Fe3+、Cu2+、Zn2+)含量對土壤中BDE- 209環(huán)境遷移行為過程的影響,探究土壤環(huán)境中BDE- 209時(shí)空變化過程和規(guī)律,以保障土壤環(huán)境安全.
1.1 藥品與試劑
BDE- 209(TCI,純度98%)和正己烷(Fisher,99.7%)選購自百靈威(上海)科技有限公司.試驗(yàn)用甲醇(TEDIA)和水均為HPLC級,F(xiàn)eCl3、CuCl2、ZnCl2均為AR級(其中Cl-為土壤中常見簡單陰離子).
土壤樣品采自蘇州上方山風(fēng)景區(qū)植被覆蓋良好的土壤(120°36′N、31°15′E,下稱森林土壤),以及蘇州東太湖農(nóng)業(yè)灌溉種植土壤(120°27′N,31°05′E,下稱農(nóng)田土壤),取表層以下10~20 cm土層,含水率分別為18.3%±1.6%和23.7%±0.7%,剔除根莖和土壤動(dòng)物等,經(jīng)純水淋洗(m∶V=1∶30,去除水溶性有機(jī)物)后于25 ℃避光風(fēng)干至含水率為10.6%±0.3%,研磨和篩分(≤1 μm),測得森林土壤中非水溶性有機(jī)物含量為2.2%±0.3%、pH為6.8±0.1,農(nóng)田土壤中非水溶性有機(jī)物含量為4.7%±0.6%、pH為6.8±0.2,篩分土樣于PTFE袋中避光-20 ℃保藏.土壤樣品本底參數(shù)見表1.
1.2 試驗(yàn)儀器
島津LC- 20AT型高效液相色譜儀(配UV檢測器),Supelco C18反向柱(Ace 5 C18,150 mm×4.6 mm,5 μm particles,Supelco,Bellefonte,PA,USA),熱電iCAP RQ型電感耦合等離子體質(zhì)譜儀,旋轉(zhuǎn)混勻儀,pH儀,旋轉(zhuǎn)蒸發(fā)儀,1 μm塑料篩,高速離心機(jī),分液漏斗,燒杯,烘箱等.
表1 土壤樣品本底參數(shù)
注:1)AS為澳大利亞標(biāo)準(zhǔn).2)非水溶性有機(jī)物主要由C、H、O、N等元素組成,各元素含量:w(C)為58.5%±1.3%、w(H)為7.6%±0.8%、w(O)為29.9%±2.5%、w(N)為2.2%±0.9%,w(其他元素)為1.8%±0.6%.3)重金屬離子含量均以干物質(zhì)計(jì).
1.3 試驗(yàn)過程
BDE- 209含量和遷移試驗(yàn):將受BDE- 209污染的森林土壤和農(nóng)田土壤樣品各50 g分別置于一系列500 mL螺口管中,分別對應(yīng)加入Fe3+、Cu2+、Zn2+重金屬溶液各250.0 mL,根據(jù)膠體特性,使其土壤顆粒重金屬負(fù)荷(以干物質(zhì)計(jì))分別為0(對照)、20、40、60、80和100 mgg.調(diào)節(jié)溶液pH至6.8±0.1.各試驗(yàn)組螺口管螺旋密封,置于旋轉(zhuǎn)混勻儀中〔轉(zhuǎn)速為(30.0±1.0)rmin,溫度為(25.0±0.5)℃〕避光試驗(yàn),檢測溶液中土壤膠體、重金屬離子以及ρ(BDE- 209).
土壤膠體及重金屬離子含量檢測:將添加重金屬離子的受BDE- 209污染的土樣膠體溶液靜置24 h后取上清液(pH=6.8,記體積V)進(jìn)行二等分(記體積V1和V2,V1=V2=V2).將V1部分離心(5 000 g、30 min)后得到的固體經(jīng)純水漂洗3次后干燥稱量(記質(zhì)量Ms),V1離心后的液體和V2中Fe3+、Cu2+、Zn2+重金屬經(jīng)取樣- 消解后用熱電iCAP RQ型電感耦合等離子體質(zhì)譜儀(Thermo Scientific,USA)檢測ρ(Fe3+)、ρ(Cu2+)、ρ(Zn2+).因在pH為6.8的條件下Fe3+、Cu2+、Zn2+均形成氫氧化物,故而將V1離心后的液體中各重金屬離子折算成重金屬氫氧化物質(zhì)量,并求和得到總質(zhì)量MOH1,將V2中各重金屬離子折算成重金屬氫氧化物質(zhì)量,并求和得到總質(zhì)量MOH2.按式(1)計(jì)算上清液中土壤膠體質(zhì)量濃度(Ccolloid).
(1)
ρ(BDE- 209)檢測:上清液中BDE- 209用正己烷萃取3次(二者體積比為1∶1).萃取液分別經(jīng)分離、純化、脫水、濃縮至1 mL后,以島津LC- 20AT高效液相色譜儀(SHIMADZU,Japan)測定ρ(BDE- 209).檢測條件,V(甲醇)∶V(水)為95∶5,流速為1.0 mLmin,反向柱Supelco C18柱溫為30 ℃,進(jìn)樣體積為50 μL,檢測波長為226 nm[8].
1.4 數(shù)據(jù)分析
樣品至少檢測兩次,當(dāng)兩次測定值的差值與其平均值之比不大于20%時(shí)即滿足色譜分析要求,并對數(shù)據(jù)進(jìn)行記錄.所記錄數(shù)據(jù)用Microsoft Excel進(jìn)行計(jì)算,用單邊分析法(ANOVA,SPSS v11.5 for Windows)對數(shù)據(jù)進(jìn)行相關(guān)分析,同組數(shù)據(jù)間的置信區(qū)間為P<0.05.所有計(jì)算和分析得到數(shù)據(jù)均用Origin v7.5 Professional軟件制圖.
2.1 重金屬離子在土壤膠體上的吸附平衡時(shí)間和平衡濃度
土壤膠體(粒徑≤1 μm)因比表面積巨大(200~300 m2g)、帶有大量負(fù)電荷和高度親水特性(土壤有機(jī)物作用的效果)等因素[5,8,10],可使其具有相當(dāng)大的反應(yīng)活性、吸附性和離子交換性[15,18- 19],故而成為土壤中最為活躍的組分[20- 23].在土壤pH為6.8條件下,有機(jī)物解離攜帶大量負(fù)電荷,可通過吸附和靜電作用影響土壤中金屬離子含量[24- 26],因而土壤中非水溶性有機(jī)物(特別是不溶性腐殖酸等)含量直接影響土壤性質(zhì).
由圖1可見,土壤膠體中重金屬含量與土壤非水溶性有機(jī)物含量呈正相關(guān),主要是因?yàn)殡S著非水溶性有機(jī)物含量的增加,土壤膠體中—COOH、—OH和—NH2等功能團(tuán)的數(shù)量也進(jìn)一步隨之增加,因而高含量非水溶性有機(jī)物土壤膠體所帶負(fù)電荷的數(shù)量較大,靜電作用力也隨之增加,所以保存陽離子的能力也強(qiáng)于低含量非水溶性有機(jī)物土壤膠體[4,10,13,26].與此同時(shí),非水溶性有機(jī)物含量越高,意味著保水量越高,因而需要更多水分來促使土壤膠體形成可自由運(yùn)動(dòng)的溶液[10,18,20].故而,農(nóng)田土土壤膠體上重金屬平衡時(shí)重金屬含量高于森林土土壤膠體.在森林土中Fe3+、Cu2+、Zn2+在土壤膠體上平衡時(shí)的含量分別為(49.4±1.0)(49.5±1.3)(49.3±1.2)mgg〔見圖1(a)〕,而在農(nóng)田土中三者在土壤膠體上平衡時(shí)的含量分別為(81.7±3.1)(81.9±1.9)(81.6±3.4)mgg〔見圖1(b)〕.對比圖1(a)(b)可知,雖然土壤膠體對重金屬具有選擇吸附差異性[15],但由于試驗(yàn)采用水土比為5,試驗(yàn)水量超出土壤最大保水量[13,26],導(dǎo)致試驗(yàn)管中形成膠體溶液,并且膠體溶液隨旋轉(zhuǎn)混勻儀的運(yùn)動(dòng)而做直線往返運(yùn)動(dòng),重金屬離子顯現(xiàn)出較強(qiáng)的遷移能力,表現(xiàn)為相同含量非水溶性有機(jī)物土壤膠體,在重金屬負(fù)荷大于平衡含量條件下(對于森林土,重金屬負(fù)荷量>49.4 mgg;對于農(nóng)田土,重金屬負(fù)荷量>81.7 mgg),各重金屬平衡含量和平衡時(shí)間趨近一致,即在森林土中Fe3+、Cu2+、Zn2+在土壤膠體上平衡40 h后的平衡含量趨近一致,為(49.4±1.2)mgg〔見圖1(a)〕,而農(nóng)田土中Fe3+、Cu2+、Zn2+在土壤膠體上平衡32 h后的平衡含量趨近一致,為(81.7±1.9)mgg〔見圖1(b)〕.對于不同含量非水溶性有機(jī)物土壤膠體,各重金屬在土壤膠體上的行為僅存于平衡含量和平衡時(shí)間的差異,而吸附平衡效應(yīng)仍然趨同.
圖1 重金屬離子在土壤膠體上的平衡時(shí)間與平衡濃度Fig.1 Balance times and balance contents of the heavy metal ions on the soil colloids
2.2 重金屬離子對土壤膠體質(zhì)量濃度的影響
土壤膠體通常因外表面電離等作用而存在大量—COO-、—O-等官能團(tuán),因而呈現(xiàn)負(fù)電特性,而Fe3+、Cu2+、Zn2+因帶有正電,可進(jìn)行電中和,致使土壤膠體雙電層得到壓縮,進(jìn)而降低負(fù)電土壤膠體粒子的ζ電位、減少溶液中膠體顆粒濃度,并且這種混凝沉降效果會(huì)隨著重金屬離子濃度的增加而增強(qiáng)[10,12,15- 16].可見,重金屬離子可直接影響水體中土壤膠體質(zhì)量濃度,進(jìn)而可能改變土壤中BDE- 209的遷移過程.
圖2 重金屬離子負(fù)荷對土壤膠體質(zhì)量濃度的影響Fig.2 Effects of the heavy metal ion loads on the concentrations of the soil colloids
2.3 非水溶性有機(jī)物-重金屬離子聯(lián)合作用對BDE-209遷移的影響
土壤中非水溶性有機(jī)物不僅提高了土壤中有機(jī)質(zhì)含量,同時(shí)因其具有巨大比表面積、比表面能和電離等效應(yīng),可以直接吸附疏水性有機(jī)物(如BDE-209),以及螯合正電荷重金屬離子(如Fe3+、Cu2+、Zn2+等)[5,9,11,16].土壤溶液中的重金屬離子除了可以有效壓縮土壤膠體ζ電位而促使膠體絮凝沉淀,還可形成大量重金屬膠體而懸浮于溶液中,這些具有空軌道的膠體粒子通過與富電物質(zhì)的電子供受體關(guān)系,影響土壤中富電物質(zhì)的遷移轉(zhuǎn)化情況[10,12,27].因此,需要討論富電疏水性有機(jī)物BDE- 209在非水溶性有機(jī)物和重金屬離子聯(lián)合作用情況下于土壤環(huán)境介質(zhì)中的行為過程,進(jìn)而描述非水溶性有機(jī)物和重金屬離子對其在土壤環(huán)境中的遷移規(guī)律.
理論上,F(xiàn)e3+(3d54s0)、Cu2+(3d94s0)、Zn2+(3d104s0)等過渡重金屬的離子外層軌道處于全空狀態(tài),易獲得電子而成為電子受體[10,12,26].在水力作用和機(jī)械摩擦作用下,當(dāng)存在可提供電子的富電子化合物,形成因電子供受體關(guān)系和原子分子軌道重疊(弱配位)化學(xué)吸附和伴生物理吸附(如范德華力、氫鍵等),這些作用力的存在,可與土壤膠體對富電子化合物進(jìn)行競爭吸附和分配[12,26].同時(shí)膠體平衡含量過量部分重金屬可存在于溶液中,并且該試驗(yàn)在pH為6.8的條件下進(jìn)行,上清液中主要包括重金屬氫氧化物膠體(自由膠體和吸附膠體)[12,27- 29].因此,雖該試驗(yàn)滿足電子供受體關(guān)系和原子分子軌道重疊(弱配位)化學(xué)吸附關(guān)系,但由于土壤是一個(gè)復(fù)雜體系,加之以土壤膠體為有機(jī)-無機(jī)復(fù)合的膠體,其物理化學(xué)吸附分配過程更為復(fù)雜[28,30].由于非水溶性有機(jī)物的存在,提高了土壤膠體有機(jī)碳含量,強(qiáng)化了土壤顆粒對疏水有機(jī)物BDE-209的吸附作用,因此BDE-209在膠體主要為疏水分配,并且由于BDE-209的lgKOC>10,可知溶液中BDE-209主要以吸附態(tài)存在于膠體中[30].故而該試驗(yàn)上清液中ρ(BDE- 209)變化趨勢與土壤膠體質(zhì)量濃度變化趨勢一致,并且上清液中ρ(BDE- 209)與土壤膠體質(zhì)量濃度比值保持在(493.1±6.8)ngg,表明BDE- 209主要吸附于土壤膠體中〔見圖3(a)(b)〕,而重金屬離子的存在未實(shí)現(xiàn)BDE- 209由土壤膠體向重金屬膠體再分配過程,僅通過改變?nèi)芤褐型寥滥z體質(zhì)量濃度來影響B(tài)DE- 209在土壤中的濃度和遷移行為.
圖3 重金屬離子負(fù)荷對上清液中BDE- 209遷移濃度的影響Fig.3 Effects of the heavy metal ion loads on the concentrations of BDE- 209 transports in the supernatants
a) 該試驗(yàn)條件下,重金屬離子(Fe3+、Cu2+、Zn2+)在森林土和農(nóng)田土土壤膠體上平衡時(shí)間分別為40 h和32 h,并且重金屬離子在森林土和農(nóng)田土土壤膠體上平衡含量分別為(49.4±1.2)和(81.7±1.9)mgg.
b) 該試驗(yàn)條件下,重金屬離子對森林土(重金屬負(fù)荷為0~60 mgg)和農(nóng)田土(重金屬負(fù)荷為0~80 mgg)土壤膠體混凝沉降強(qiáng)弱作用均依次為Fe3+最強(qiáng),其次為Cu2+、Zn2+(Cu2+、Zn2+混凝沉降效果無顯著差異),并且森林土(重金屬負(fù)荷為60~100 mgg)和農(nóng)田土(重金屬負(fù)荷為80~100 mgg)土壤膠體質(zhì)量濃度分別穩(wěn)定在(49.3±1.3)和(50.4±1.1)mgL.
d) 試驗(yàn)條件下上清液中ρ(BDE- 209)變化趨勢與土壤膠體質(zhì)量濃度變化趨同,并且上清液中ρ(BDE- 209)與土壤膠體質(zhì)量濃度比值保持在(493.1±6.8)ngg,即重金屬膠體離子未實(shí)現(xiàn)BDE- 209由土壤膠體向重金屬膠體的再分配過程,而僅通過改變土壤膠體質(zhì)量濃度來影響溶液中吸附態(tài)ρ(BDE- 209)和遷移行為.
[1] 曾甯,姚建,唐陣武,等.典型廢舊塑料處置地土壤中多溴聯(lián)苯醚污染特征[J].環(huán)境科學(xué)研究,2013,26(4):432- 438. ZENG Ning,YAO Jian,TANG Zhenwu,etal.Pollution characteristics of polybrominated diphenyl ethers in soils from waste plastic recycling region in China[J].Research of Environmental Sciences,2013,26(4):432- 438.
[2] CAO Zhiguo,YANG Yang,YU Gang,etal.Pay attention to the fate of an emerging hazardous waste:PBDE-contaminated indoor dust[J].Environmental Science and Pollution Research,2013,20(3):1895- 1897.
[3] MURALI R,MURTHY C N,SENGUPTA R A.Adsorption studies of toxic metals and dyes on soil colloids and their transport in natural porous media[J].International Journal of Environmental Science and Technology,2015,12(11):3563- 3574.
[4] 馮承蓮,許宜平,何悅,等.十溴聯(lián)苯醚(BDE209)在虹鱒體內(nèi)的羥基代謝產(chǎn)物及其對甲狀腺激素水平影響的初步研究[J].生態(tài)毒理學(xué)報(bào),2010,5(3):327- 333. FENG Chenglian,XU Yiping,HE Yue,etal.Preliminary research on hydroxylated metabolites of decabromodiphenyl ether and their effects on thyroid hormone in rainbow trout(Oncorhynchusmykiss)[J].Asian Journal of Ecotoxicology,2010,5(3):327- 333.
[5] LINARES V,BELLéS M,DOMINGO J L.Human exposure to PBDE and critical evaluation of health hazards[J].Archives of Toxicology,2015,89(3):335- 356.
[6] WANG H M,YU Y J,HAN M,etal.Estimated PBDE and PBB congeners in soil from an electronics waste disposal site[J].Bulletin of Environmental Contamination and Toxicology,2009,83(6):789- 793.
[7] GORGY T,LI L Y,GRACE J R,etal.An exploratory investigation on the mobility of polybrominated diphenyl ethers(PBDEs)in biosolid-amended soil[J].Water,Air,& Soil Pollution,2012,223(5):2297- 2309.
[8] 俞晟,肖琳,朱東強(qiáng),等.超聲提取- 高效液相色譜檢測土壤中十溴聯(lián)苯醚[J].環(huán)境化學(xué),2009,29(1):121- 125. YU Sheng,XIAO Lin,ZHU Dongxiang,etal.Determination of decabrominated diphenyl ether in soil by ultrasonic extraction and high performance liquid chromatography[J].Environmental Chemistry,2009,29(1):121- 125.
[10] EVCI Y M,ESEN F,TASDEMIR Y.Monitoring of long-term outdoor concentrations of PAHs with passive air samplers and comparison with meteorological data[J].Archives of Environmental Contamination and Toxicology,2016,71(2):246- 256.
[11] YU Sheng,LI Bangyu,CHEN Yihu.Influences of humic acid and fulvic acid on horizontal leaching behavior of anthracene in soil barriers[J].Environmental Science and Pollution Research,2015,22(24):20114- 20120.
[12] ARAB A,POURAFSHARY P,AYATOLLAHI S H,etal.Remediation of colloid-facilitated contaminant transport in saturated porous media treated by nanoparticles[J].International Journal of Environmental Science and Technology,2014,11(1):207- 216.
[13] KIM S H,CORAPCIOGLU M Y.The role of biofilm growth in bacteria-facilitated contaminant transport in porous media[J].Transport in Porous Media,1997,26(2):161- 181.
[14] LIN Qi,XU Xin,BAO Qibei,etal.Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in historically contaminated soils:coupling colloid fractionation with high-energy synchrotron analysis[J].Journal of Soils and Sediments,2016,16(2):349- 359.
[15] MA L Q,DONG Yan,ZHOU Qixing.Relation of relative colloid stability ratio and colloid release in two lead-contaminated soils[J].Water,Air,& Soil Pollution,2005,160(1):343- 355.
[16] 張小凱,何麗芝,陸扣萍,等.生物質(zhì)炭修復(fù)重金屬及有機(jī)物污染土壤的研究進(jìn)展[J].土壤,2013,45(6):970- 977. ZHANG Xiaokai,HE Lizhi,LU Kouping,etal.Use of biochar for remediation of soils contaminated with heavy metals and organic pollutants:a review[J].Soils,2013,45(6):970- 977.
[17] HUANG Jun,YU Gang,YANG Xi,etal.Predicting physico-chemical properties of polychlorinated diphenyl ethers(PCDEs):potential persistent organic pollutants(POPs)[J].Journal of Environmental Science,2004,16(2):204- 207.
[18] MALKOVSKY V I,PEK A A.Effect of elevated velocity of particles in groundwater flow and its role in colloid-facilitated transport of radionuclides in underground medium[J].Transport in Porous Media,2009,78(2):277- 294.
[19] 褚慧,宗良綱,汪張懿,等.不同種植模式下菜地土壤腐殖質(zhì)組分特性的動(dòng)態(tài)變化[J].土壤學(xué)報(bào),2013,50(5):931- 939. CHU Hui,ZONG Lianggang,WANG Zhangyi,etal.Dynamic changes in humus composition in vegetable soils different in cultivation model[J].Acta Pedologica Sinica,2013,50(5):931- 939.
[20] ZHANG Wei,TANG Xiangyu,WEISBROD N,etal.A review of colloid transport in fractured rocks[J].Journal of Mountain Science,2012,9(6):770- 787.
[21] WANG Qing,CHENG Tao,WU Yang.Distinct roles of illite colloid and humic acid in mediating arsenate transport in water-saturated sand columns[J].Water,Air,& Soil Pollution,2015,226(5):129- 143.
[22] 馮緒勝,劉洪國,郝京城,等.膠體化學(xué)[M].北京:化學(xué)工業(yè)出版社,2005:1- 6.
[23] GONCHARUK V V.Colloid chemistry material science[J].Powder Metallurgy and Metal Ceramics,1993,32(7):563- 565.
[24] HOFMANN T,WENDELBORN A.Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDDFs)to the groundwater at Ma Da Area,Vietnam[J].Environmental Science and Pollution Research-International,2007,14(4):223- 224.
[25] ZHOU Dongmei,WANG Dengjun,CANG Long,etal.Transport and re-entrainment of soil colloids in saturated packed column:effects of pH and ionic strength[J].Journal of Soils and Sediments,2011,11(3):491- 503.
[26] 俞晟,鄒鵬,肖琳,等.4種金屬離子對高嶺土膠體上蒽分布的影響[J].中國環(huán)境科學(xué),2009,29(12):1306- 1311. YU Sheng,ZOU Peng,XIAO Lin,etal.Effect of adding four metal ions on distribution of anthracene on kaolin colloid[J].China Environmental Science,2009,29(12):1306- 1311.
[27] PETTERSSON O.Heavy-metal ion uptake by plants from nutrient solutions with metal ion,plant species and growth period variations[J].Plant and Soil,1976,45(2):445- 459.
[28] 牛美青,張偉軍,王東升,等.不同混凝劑對污泥脫水性能的影響研究[J].環(huán)境科學(xué)學(xué)報(bào),2012,32(9):2126- 2133. NIU Meiqing,ZHANG Weijun,WANG Dongsheng,etal.Study on effect of chemical conditioning using different coagulants on sludge dewatering performance[J].Acta Scientiae Circumstantiae,2012,32(9):2126- 2133.
[29] YU Sheng,ZOU Peng,ZHU Wei,etal.Effects of humic acid and Tween-80 on behavior of decabromodiphenyl ether in soil columns[J].Environmental Earth Sciences,2013,69(5):1523- 1528.
[30] YU Sheng,ZOU Peng,ZHU Wei,etal.Effects of humic acids and microorganisms on decabromodiphenyl ether,4,4′-dibromodiphenyl ether and anthracene transportation in soil[J].Science China: Chemistry,2010,53(4):950- 968.
Effects of Heavy Metal Ions on Transport of Deca- Brominated Diphenyl Ether by Soil Colloids with Insoluble Organic Matter
YU Sheng
Lab of Environment and Analysis, Suzhou Vocational University, Suzhou 215104, China
To illustrate the transport behaviors of deca-brominated diphenyl ether(BDE- 209)in soils with different contents of insoluble organic matter,the heavy metal ions Fe3+,Cu2+and Zn2+with loads of 0-100 mgg were investigated.The verities of the forest soil colloids(≤1 μm,insoluble organic matters of 2.2%)and the farmland soil colloids(≤1 μm,insoluble organic matters of 4.7%)with BDE- 209 were carried out to check their transport behaviors with rotary mixers under the conditions ofr=(30.0±1.0)rmin,T=(25.0±0.5)℃,ratio value ofVwaterandmsoil=5 and pH=6.8±0.1.The balance times and the equilibrium contents of the heavy metal ions(Fe3+,Cu2+and Zn2+)were 40 h and(49.4±1.2)mgg for the forest soil colloids and 32 h and(81.7±1.9)mgg for the farmland soil colloids,respectively.For the forest soil colloids(loads of 0-60 mgg)and farmland soil colloids(loads of 0-80 mgg),the flocculation effects of Fe3+on the soil colloids were best compared with those of Cu2+and Zn2+.For the forest soil colloids with the loads of 60-100 mgg and the farmland soil colloids with the loads of 80-100 mgg,the concentrations of the soil colloids were maintained at (49.3±1.3)mgL and(50.4±1.1)mgL,respectively.Simultaneously,the BDE- 209 concentrations in the supernatants were obviously decreased from(388.5±13.2)ngL to(24.7±21.7)ngL for the forest soil colloids and to(25.4±18.8)mgL for the farmland soil colloids.Moreover,the heavy metal ions did not directly change the BDE- 209 transport behaviors by calculating the BDE- 209 contents((493.1±6.8)ngg)in those soil colloids.The heavy metal ions affected the BDE- 209 transport behaviors in the soil environment mainly by changing the behaviors of soil colloids to move the contaminated soil colloids,freely passing through the porous soil matrix to potentially pollute and threaten other clean and safe districts.
soil colloids; insoluble organic matters; heavy metal ions; deca-brominated diphenyl ether
2016- 08- 16
2016- 12- 14
江蘇省高等學(xué)校大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201411054003Y);蘇州市科技局〔產(chǎn)業(yè)前瞻性應(yīng)用研究(工業(yè))指導(dǎo)性計(jì)劃〕;蘇州市職業(yè)大學(xué)校級課題(SVU2015YY02)
俞晟(1981-),男,江蘇蘇州人,講師,博士,主要從事土壤中有機(jī)物與重金屬污染遷移與轉(zhuǎn)化規(guī)律及污染控制研究,yus@jssvc.edu.cn.
X131.3
1001- 6929(2017)04- 0579- 07
A
10.13198j.issn.1001- 6929.2017.01.62
俞晟.重金屬離子對不同非水溶性有機(jī)物含量土壤膠體上十溴聯(lián)苯醚遷移行為的影響[J].環(huán)境科學(xué)研究,2017,30(4):579-585.
YU Sheng.Effects of heavy metal ions on transport of deca- brominated diphenyl ether by soil colloids with insoluble organic matter[J].Research of Environmental Sciences,2017,30(4):579-585.