張文飛,汪 星,汪有科,張敬曉,惠 倩
(1. 中國(guó)科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心,楊凌 712100;2. 中國(guó)科學(xué)院大學(xué),北京 100049;3. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
黃土丘陵區(qū)深層干化土壤中節(jié)水型修剪棗樹生長(zhǎng)及耗水
張文飛1,2,汪 星1※,汪有科1,3,張敬曉3,惠 倩3
(1. 中國(guó)科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心,楊凌 712100;2. 中國(guó)科學(xué)院大學(xué),北京 100049;3. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
黃土丘陵區(qū)人工林地深層土壤干層是否影響后續(xù)植物的生長(zhǎng)是眾多學(xué)者關(guān)心的熱點(diǎn)。該文在砍伐23 a生旱作山地蘋果園地后休閑4 a又栽植棗樹,連續(xù)3 a觀測(cè)干化土壤中棗樹的生長(zhǎng)及土壤水分變化, 研究采用節(jié)水型修剪的再植棗林的生長(zhǎng)及耗水情況。結(jié)果表明,前期23 a生蘋果園地已使0~1 000 cm深土壤干化,休閑4 a后0~300 cm土層水分得到恢復(fù),300~500 cm范圍為中度偏重虧缺,500~700 cm為中度虧缺,700~1 000 cm為輕度虧缺;3齡棗樹時(shí)開始采取節(jié)水型修剪,0~300 cm土層有效水分被消耗34.97%,至4齡時(shí)0~300 cm范圍內(nèi)前期恢復(fù)的土壤水分已消耗殆盡;在此情況下采取節(jié)水型修剪的棗樹仍可保持良好生長(zhǎng),產(chǎn)量及其水分利用效率均高于相同水分條件下的常規(guī)修剪棗樹,產(chǎn)量可達(dá)正常水分條件下棗樹的1.39倍以上,產(chǎn)量水分利用效率可達(dá)1.52倍以上。研究結(jié)果證明節(jié)水型修剪是半干旱區(qū)深層干化土壤中棗樹克服雨量不足和土壤水分虧缺的一條有效途徑。
土壤;水分;果園;干層;棗樹;水分利用效率
張文飛,汪 星,汪有科,張敬曉,惠 倩. 黃土丘陵區(qū)深層干化土壤中節(jié)水型修剪棗樹生長(zhǎng)及耗水[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):140-148.doi:10.11975/j.issn.1002-6819.2017.07.018 http://www.tcsae.org
Zhang Wenfei, Wang Xing, Wang Youke, Zhang Jingxiao, Hui Qian. Growth and water consumption of jujube with water-saving pruning in deep dried soil of Loess Hilly Area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 140-148. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.018 http://www.tcsae.org
黃土區(qū)地下水埋藏深,降水是該地區(qū)土壤水分補(bǔ)給的主要來源。黃土區(qū)的林木普遍具有較深的根系,根系通過吸收深層土壤水分以維持季節(jié)性干旱的蒸騰耗水,進(jìn)而造成深層土壤水分的不斷消耗,形成“利用型”土壤干層[1-4]。由于黃土區(qū)降水入滲深度一般在200 cm以內(nèi)且無深層滲漏,因此干層一旦形成往往經(jīng)過若干年也很難恢復(fù),故稱之為永久性干層[3]。目前研究表明多年生人工林草植被耗水深度可達(dá)1 000 cm[5-15]。王志強(qiáng)等[16]在陜北綏德縣的研究表明7齡人工紫花苜蓿草地、23齡人工檸條灌木林和人工油松林的耗水深度分別達(dá)到 1 550、2 240、2 150 cm。曹裕等[17]研究也表明黃土高原超過15 a生的旱作蘋果園地耗水深度會(huì)達(dá)到甚至超過 1 180 cm。眾多學(xué)者擔(dān)心,永久性干層的形成,不僅會(huì)對(duì)現(xiàn)存植被生長(zhǎng)不利,而且會(huì)給后續(xù)植被的選擇和生存帶來很大影響[12,18-22]。在黃土高原大規(guī)模退耕還林還草的背景下,研究干化土壤上后續(xù)植被的種植及其生長(zhǎng)狀況甚為重要。目前關(guān)于該問題的研究較為薄弱,主要關(guān)注土壤水分的恢復(fù)及后續(xù)農(nóng)作物種植[23-26],鮮見對(duì)人工林生長(zhǎng)狀況的研究。王志強(qiáng)等[23]對(duì)陜北綏德地區(qū)林后坡耕地、放牧荒草地和保護(hù)草地的土壤水分恢復(fù)研究表明,林后坡耕地的土壤含水率大約需要40 a才能恢復(fù)到持續(xù)農(nóng)地土壤含水率的水平,保護(hù)草地則至少需要150 a,而林后放牧荒坡的土壤水分長(zhǎng)期不能恢復(fù)。梁一民等[24]對(duì)陜北吳旗人工沙打旺衰敗后土壤水分進(jìn)行的研究表明,3 m土層內(nèi)的水分在5 a內(nèi)得到補(bǔ)償,其中2 m以內(nèi)得到較好補(bǔ)償。謝軍紅等[25]從土壤水分恢復(fù)和土地生產(chǎn)力角度綜合分析得出玉米是黃土高原區(qū)多年生苜宿地土壤干層水分恢復(fù)的適宜后茬。王美艷等[26]提出黃土高原半干旱區(qū)適宜的糧草輪作模式為7 a苜蓿-13 a糧食作物。
棗樹作為一種耐旱經(jīng)濟(jì)樹種,在黃土丘陵區(qū)大量的種植和推廣,截至2010年其種植面積已達(dá)100 hm2[27],為推動(dòng)當(dāng)?shù)亟?jīng)濟(jì)發(fā)展起到了重要作用。目前對(duì)人工林砍伐或死亡后再植棗樹尤其是采用節(jié)水型修剪棗樹的生長(zhǎng)及耗水研究還較少。因此本文以半干旱黃土丘陵區(qū)蘋果林砍伐后采用節(jié)水型修剪的再植棗林為對(duì)象,研究其生長(zhǎng)及耗水情況,以期對(duì)干化土壤后續(xù)植被建造及深入研究人工林耗水形成的干層治理提供參考。
研究區(qū)位于陜西省米脂縣境內(nèi)遠(yuǎn)志山紅棗示范基地(37°12′N、109°28′E),為典型黃土高原丘陵溝壑區(qū);屬中溫帶半干旱性氣候,年平均氣溫 8.4 ℃,極端最高氣溫38.2 ℃,極端最低氣溫?25.5 ℃。2012-2015年降水量分別為 404.4、530.1、460.4、334.8 mm,年均降水量451.6 mm,降雨主要集中在夏季,其中7、8月份降雨量占全年降水量的 49%。土壤以黃土母質(zhì)發(fā)育的黃綿土為主,質(zhì)地為粉質(zhì)沙壤土,容重1.24 g/cm3,田間持水率22%。土層深厚,地下水埋深在50 m以下,對(duì)根系吸水影響可忽略。研究區(qū)1984-2007年間為旱作蘋果園地,2007年蘋果林伐后休閑,2011年栽植棗樹。
2.1 樣地設(shè)置
2011年4月完成造林后布設(shè)試驗(yàn)5個(gè)樣地:樣地I(試驗(yàn)區(qū))為土壤深層干化地,前期23 a生蘋果林伐后再植棗樹的節(jié)水型修剪觀測(cè)區(qū);樣地II(對(duì)照棗林1)是土壤深層干化地,前期23 a生蘋果林伐后再植棗樹的常規(guī)矮化修剪觀測(cè)區(qū);樣地 III(對(duì)照棗林 2)是土壤深層未干化地(退耕造林)再植棗林的常規(guī)矮化修剪觀測(cè)區(qū);樣地IV是距樣地I約200 m處的15 a生棗林地(前期退耕還林)土壤水分調(diào)查區(qū);樣地 V(農(nóng)地)為位于距樣地I約150 m處(屬于2戶,稱為農(nóng)地A和農(nóng)地B,農(nóng)地A種植豆子,農(nóng)地B種植糜子)的土壤水分調(diào)查區(qū)。樣地均為梯田,面積在520~740 m2之間,觀測(cè)點(diǎn)在梯田中央。各樣地基本情況見表1。
2.2 棗樹修剪標(biāo)準(zhǔn)
樣地Ⅰ、Ⅱ、Ⅲ棗樹栽植規(guī)格為高度(120±6)cm,地徑(12±2)cm,密度200 cm×300 cm,2013年開始進(jìn)入正常結(jié)果期,此時(shí)根據(jù)樣地設(shè)計(jì)分別進(jìn)行常規(guī)矮化修剪和節(jié)水型修剪,常規(guī)矮化修剪標(biāo)準(zhǔn)為高度200 cm、冠幅200 cm×200 cm,節(jié)水型修剪標(biāo)準(zhǔn)為高160 cm、冠幅160 cm×160 cm。本試驗(yàn)采用的節(jié)水型修剪[28-29]技術(shù)首先是以提高棗樹水分利用效率為目的,不是單純追求產(chǎn)量。在前期研究基礎(chǔ)上提出“以水定樹,以樹定產(chǎn)”的理念,即依據(jù)多年平均降雨量確定適合的樹體規(guī)格,再根據(jù)樹體規(guī)格大小確定適宜該樹體的目標(biāo)產(chǎn)量。實(shí)質(zhì)是依靠修剪降低蒸騰耗水量,通過蒸騰調(diào)控實(shí)現(xiàn)棗樹年耗水量和降雨量的相對(duì)平衡。在旱作棗林中,節(jié)水型修剪追求長(zhǎng)久的水分平衡,避免為追求近期產(chǎn)量而造成土壤水分嚴(yán)重虧缺或樹體蒸騰量過大減產(chǎn)。
2.3 土壤水分測(cè)定
土壤水分測(cè)定為人工取土烘干測(cè)定和中子儀定期測(cè)定,測(cè)定深度均為1 000 cm,測(cè)定間隔20 cm,測(cè)定時(shí)間見表1。樣地中部各設(shè)定3個(gè)取樣點(diǎn),測(cè)定前一周均無降雨及灌溉。人工利用洛陽(yáng)鏟在取樣點(diǎn)取樣,取樣后裝進(jìn)鋁盒并在105 ℃下烘干12 h,所測(cè)土壤含水率為質(zhì)量含水率。本文所用含水率為體積含水率,換算公式為體積含水率=質(zhì)量含水率×土壤容重,當(dāng)?shù)赝寥廊葜貫?1.24 g/cm3。土壤水分定期測(cè)定借助CNC503B型NP中子儀(北京渠道科學(xué)器材有限公司),測(cè)定周期為10 d,如遇降雨,則在雨停后及時(shí)測(cè)定。土壤機(jī)械組成用MS2000型激光粒度儀(Malvern Instruments, Malvern, England)測(cè)定。
表1 樣地基本情況介紹Table1 Introduction of sampling sites
2.4 棗樹生長(zhǎng)指標(biāo)測(cè)定
樣地棗林中各選擇 5棵代表平均生長(zhǎng)水平的棗樹,測(cè)定生長(zhǎng)指標(biāo)。棗吊平均長(zhǎng)度:在棗樹的東西南北 4個(gè)方向各選5個(gè)棗吊,用卷尺每隔7 d定點(diǎn)測(cè)量1次。單果質(zhì)量為棗樹果實(shí)成熟期末隨機(jī)選擇 30個(gè)果實(shí)的平均質(zhì)量。生物量包括修剪去除的全部枝條長(zhǎng)度、枝條直徑、棗吊長(zhǎng)度、棗吊直徑、單棵棗吊數(shù)目、葉片橫縱徑、單枝棗吊葉片數(shù)、果實(shí)橫徑、果實(shí)縱徑、單棵果實(shí)數(shù),然后用佘檀等[30]建立的模型計(jì)算生物量。
2.5 相關(guān)指標(biāo)計(jì)算
土壤干化狀況評(píng)價(jià)指標(biāo)參考陳海濱等[31-33]的劃分方法,以土壤生長(zhǎng)阻滯含水率(相當(dāng)于 60%田間持水率)為依據(jù),計(jì)算土壤水分虧缺度,并在此基礎(chǔ)上細(xì)化中度虧缺(表2),公式如下:
式中K為土壤水分虧缺度,%;θ為土壤體積含水率,%;θa為生長(zhǎng)阻滯體積含水率,%。K<0時(shí),表示土壤水分不虧缺。
土層儲(chǔ)水量:根據(jù)土壤體積含水率計(jì)算。土壤儲(chǔ)水量的公式為
式中W為土壤儲(chǔ)水量,mm;ω為體積含水率,%;h為土層深度,cm。
試驗(yàn)區(qū)棗樹耗水量利用農(nóng)田水量平衡法計(jì)算。試驗(yàn)區(qū)棗樹為雨養(yǎng),無灌水,不發(fā)生深層滲漏,無地下水補(bǔ)給,試驗(yàn)期間未發(fā)生地表徑流。因此,棗樹耗水量公式可簡(jiǎn)化為
式中ET為棗樹耗水量,mm;Pr為降雨量,mm;?W為計(jì)算時(shí)段初與計(jì)算時(shí)段末土壤儲(chǔ)水量之差,mm。
表2 黃土高原土壤干化水分狀況評(píng)價(jià)指標(biāo)Table2 Evaluation index of soil dried layer in loess plateau
可用有效水量指高于棗樹可用有效水下限的部分。可用有效水總量為
式中WTAW為可用有效水總量,mm;WPO為伐后土壤儲(chǔ)水量,mm;θd為可用有效水下限,%。筆者課題組前期研究[34-37]表明,正常水分狀況下4齡棗林耗水深度約400 cm,隨樹齡增加,棗樹根系生長(zhǎng)速度減緩,耗水深度增長(zhǎng)減緩,12齡時(shí)耗水深度約560 cm,至15齡時(shí)約600 cm。劉曉麗等[36]研究表明采取常規(guī)矮化修剪的9 a生和12 a生棗林 200~400 cm土層中水分已被耗盡,其深層土壤水分消耗量趨于穩(wěn)定。根據(jù)棗樹生長(zhǎng)實(shí)際情況,本文取15 a老棗林0~600 cm土層平均體積含水率6.15%為棗樹可用有效水下限。
剩余有效水量計(jì)算公式為
式中WRAW為土壤剩余有效水量,mm;WP為目前土壤儲(chǔ)水量,mm。
消耗可用有效水比例為
式中WPAWC為消耗可用有效水的比例,%。
生物量為棗樹地上各部分生物量之和,采用佘檀等[30]建立的模型計(jì)算,公式如下
式中B為棗樹生物量,g;B1為枝條生物量,g;D1為枝條直徑,mm;H1為枝條長(zhǎng)度,mm;B2為棗吊生物量,g;D2為棗吊直徑,mm;H2為棗吊長(zhǎng)度,mm;B3為葉片生物量,g;Z1為葉片橫徑,mm;T1為葉片縱徑,mm;B4為果實(shí)生物量,g;Z2為果實(shí)橫徑,mm;T2為果實(shí)縱徑,mm。
棗樹水分利用效率計(jì)算公式為式中WUEy為產(chǎn)量水分利用效率,kg/m3;WUEb為生物量水分利用效率,kg/m3;Y為棗樹產(chǎn)量,kg/hm2;B為棗樹生物量,單位換算為kg/hm2;ET為作物耗水量,單位換算為m3/hm2。
2.6 數(shù)據(jù)處理
用SPSS軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,利用Origin8.0繪圖軟件作圖。
3.1 前期土壤干化狀況
研究區(qū)前期是已經(jīng)生長(zhǎng)23 a的山地旱作蘋果園,2007年挖去全部蘋果樹后園地處于休閑狀態(tài),2011年4月21日—4月24日測(cè)定伐后土壤和對(duì)照農(nóng)地土壤水分(農(nóng)地A與農(nóng)地B的平均體積含水率)見圖1和表3所示。將利用式(1)計(jì)算所得土壤水分達(dá)重度虧缺時(shí)相應(yīng)體積含水率6.6%作為本文的干層指標(biāo)。由圖1及表3看出,在0~250 cm層次土壤水分與農(nóng)地基本一致,二者在此層內(nèi)土壤水分均值僅相差0.5%,這是蘋果林伐后土地休閑4 a恢復(fù)的層次;250~300 cm層次土壤含水率隨深度增加逐漸接近干層指標(biāo),該層次土壤水分由上向下逐漸遷移,屬于雨水入滲遷移改善層,故0~300 cm土層為短期可恢復(fù)層次。300~500 cm土壤含水率最接近干層指標(biāo)線即干化最為嚴(yán)重,加之雨水入滲難以達(dá)到,故稱為難恢復(fù)層;500~1 000 cm土壤水分雖較300~500 cm層次有所提升,但仍明顯低于農(nóng)地土壤含水率,即前期蘋果林消耗土壤水分深度已經(jīng)達(dá)到1 000 cm,超過300 cm的干層被稱為永久性干層[3]。300~1 000 cm土壤平均體積含水率為8.71%,儲(chǔ)水量為756.13 mm,農(nóng)地同層次土壤體積含水率平均為14.14%,土壤儲(chǔ)水量為1 206.62 mm,伐后果園儲(chǔ)水量較農(nóng)地減少37.33%,這可看作蘋果林23 a來逐漸消耗的土壤儲(chǔ)水量。23 a蘋果林耗水深度達(dá)1 000 cm,與曹裕等[17]對(duì)半濕潤(rùn)偏旱和半干旱黃土丘陵區(qū)多個(gè)旱作蘋果園地的研究結(jié)果一致。
圖1 伐后果園與農(nóng)地0~1 000 cm土壤含水率Fig.1 Soil moisture at 0-1 000 cm after orchard cutting and farmland
考慮到0~300 cm土層水分受降雨和地表植物的影響波動(dòng)較大,又是受降雨已經(jīng)有所恢復(fù)的層次,在此分析300 cm以下土壤干化程度,如表3所示。伐后果園土壤水分虧缺程度隨土層深度增加而減小,其中 300~500 cm為中度偏重虧缺;>500~700 cm為中度虧缺;>700~1 000 cm為輕度虧缺。300~500、>500~700、>700~1 000 cm 土壤儲(chǔ)水量分別為農(nóng)地同層次的46.93%、66.82%、71.51%。農(nóng)地在300~500 cm為不虧缺,>500~700 cm為輕度虧缺,>700~1 000 cm為不虧缺。一般認(rèn)為農(nóng)作物在旱作栽培中僅僅消耗當(dāng)年降雨,或者說消耗淺層土壤水分,不會(huì)形成永久性干層。農(nóng)地500~700 cm土層范圍出現(xiàn)的土壤水分輕度虧缺現(xiàn)象可能是土壤顆粒組成差異造成,未受作物耗水影響[16]。表3中,土壤水分虧缺程度與不同層次土壤水分差異出現(xiàn)不一致現(xiàn)象,說明傳統(tǒng)的土壤水分虧缺程度劃分較統(tǒng)計(jì)學(xué)分析粗放,如伐后果園土壤500~600、>600~700 cm同屬于中度虧缺,但 2層次土壤含水率之間存在顯著差異(P<0.05),農(nóng)地300~400、>400~500 cm按土壤水分虧缺程度劃分為無虧缺,但 2層次土壤含水率之間存在顯著差異(P<0.05)。
表3 伐后果園土壤與農(nóng)地300~1 000 cm剖面土壤水分虧缺度Table3 Soil water deficit at 300-1 000 cm profile of soil in orchard after cutting and farmland
為進(jìn)一步確定土壤顆粒與土壤水分的關(guān)系,參考王志強(qiáng)等[16,23]所用的方法將農(nóng)地A 300 cm以下土壤含水率與土壤顆粒組成數(shù)據(jù)進(jìn)行回歸分析,如表 4所示。土壤含水率與黏粒(<0.002 mm)、砂粒(>0.05 mm)含量均呈極顯著正相關(guān)關(guān)系(P<0.01),與粉粒(0.05~0.002 mm)含量呈極顯著負(fù)相關(guān)關(guān)系(P<0.01),與土層深度的相關(guān)性不顯著(P>0.05),說明深層土壤含水率均受砂粒、粉粒、黏粒的影響[16,23],含水率隨土層深度變化主要受土壤質(zhì)地的影響[16]。將顆粒組成與土壤含水率進(jìn)行回歸分析發(fā)現(xiàn),土壤含水率隨黏粒的增加呈對(duì)數(shù)曲線的形式增加,結(jié)果如圖2所示。
表4 農(nóng)地A土壤含水率與土層深度和顆粒組成的Pearson相關(guān)系數(shù)Table4 Pearson correlation coefficient of soil moisture, soil depth and particle composition for farmland A
將農(nóng)地B土壤剖面的黏粒含量數(shù)據(jù)代入圖2中關(guān)系式計(jì)算其土壤含水率,并與實(shí)測(cè)值進(jìn)行比較,如圖3a所示,農(nóng)地B土壤含水率實(shí)測(cè)值與計(jì)算值曲線基本重合(均方根誤差為0.28%),說明用對(duì)數(shù)方程可有效地描述土壤顆粒與深層土壤水分之間的關(guān)系。將蘋果林伐后土壤黏粒含量代入圖 2中關(guān)系式得計(jì)算值,與實(shí)測(cè)值比較可知(圖3b),伐后果園土壤實(shí)測(cè)與計(jì)算含水率之間存在明顯差別,300~1 000 cm土層含水率平均計(jì)算值為14.35 %,計(jì)算值比實(shí)測(cè)值(8.66%)高65.7%,表明蘋果樹可能已經(jīng)嚴(yán)重消耗了深層土壤水分。
圖2 農(nóng)地A黏粒與土壤含水率的關(guān)系Fig.2 Relationship between soil moisture and clay content in farmland A
圖3 農(nóng)地B及伐后蘋果園土壤含水率實(shí)測(cè)值與計(jì)算值比較Fig.3 Comparison of measured and calculated soil moisture in orchard after cutting and farmland B
3.2 再栽棗樹后的干化土壤水分變化
將試驗(yàn)區(qū)棗林2013-2015年土壤水分及2011年4 月21日測(cè)定的伐后果園土壤水分換算為棗林土壤有效水分作圖4及表5。
圖4 伐后果園土壤與試驗(yàn)區(qū)各齡棗林土壤有效水含量Fig.4 Available water content of orchard after cutting and Jujube of every age
由表5看出,0~1000 cm伐后果園土壤可用有效水總量為386.77 mm,0~300 cm土層土壤可用有效水總量為149.71 mm,棗樹生長(zhǎng)過程中剩余有效水量逐年遞減,分別為334.22、262.05、252.21 mm,消耗可用有效水為13.59%、21.59%、3.64%;由圖4和表5看出棗林生長(zhǎng)的幾年間主要消耗0~300 cm土層的水分,消耗可用有效水量為131.2 mm,3齡棗林消耗可用有效水為34.97%,4齡棗林消耗可用有效水為 83.04%,5齡時(shí)棗林由于缺乏有效水分只能消耗剩余有效水量的4.59%??梢姉椓衷?齡后即基本失去土壤水分的有效供給。
將試驗(yàn)區(qū)5齡棗林土壤水分與15齡老棗林土壤水分作圖5。
由此推斷,15齡老棗林0~600 cm土層的平均土壤含水率可作為棗樹生長(zhǎng)可利用水下限。15齡老棗林 0~600 cm土壤含水率低于干層指標(biāo)線,說明棗樹較蘋果樹吸水能力更強(qiáng)。從圖5可知,15齡老棗林0~600 cm范圍土壤體積含水率為6.15%,試驗(yàn)區(qū)5齡棗林同層次平均土壤體積含水率為6.88%,二者僅相差0.73%,差異極小。也就意味著試驗(yàn)區(qū)0~600 cm土層土壤水分狀況已接近15齡老棗林,在這種情況下棗樹根系不會(huì)向缺乏水分的土層延伸,試驗(yàn)區(qū)再栽棗樹缺乏深層土壤儲(chǔ)水。通過以上分析,推斷深層土壤水分的缺乏可能抑制了試驗(yàn)區(qū)棗樹根系的生長(zhǎng),5齡棗樹耗水深度僅為300 cm左右,只能依靠當(dāng)年降水和降水在土壤淺層的入滲生長(zhǎng),“土壤水庫(kù)”的功能已基本消失。
表5 棗林生長(zhǎng)過程中0~1 000 cm土壤有效水變化Table5 Change of available water content during growth of jujube in 0-1 000 cm
圖5 試驗(yàn)區(qū)5齡棗林與15齡老棗林土壤含水率Fig.5 Soil moisture of 5-yr jujube in experiment plot and 15-yr jujube
3.3 干化土壤中棗樹的生長(zhǎng)及水分利用效率
將對(duì)照棗林1與試驗(yàn)區(qū)4齡棗樹(2014年)、5齡棗樹(2015年)棗吊平均長(zhǎng)度、剪去枝條累積長(zhǎng)度、單株生物量等變化作圖6分析。從圖6看出,棗吊平均長(zhǎng)度、剪去枝條累積長(zhǎng)度、單株生物量均隨著時(shí)間增長(zhǎng),達(dá)到一定值后趨于穩(wěn)定。2015年降雨量較2014年少,各指標(biāo)增長(zhǎng)速度與最終值均小于2014年,說明在半干旱黃土丘陵區(qū)降雨可顯著影響棗樹生長(zhǎng)。由圖 6可知,2015年試驗(yàn)區(qū)與對(duì)照區(qū)1棗吊平均長(zhǎng)度最終值較2014年分別減少34.26 %、32.46 %,2 a中試驗(yàn)區(qū)棗吊平均長(zhǎng)度最終值分別為對(duì)照區(qū)1的1.08倍、1.05倍。試驗(yàn)區(qū)棗樹采用節(jié)水型修剪,修剪強(qiáng)度大于對(duì)照區(qū),在此情況下棗吊平均長(zhǎng)度仍略高于對(duì)照區(qū)1,說明節(jié)水型修剪有利于棗樹生殖生長(zhǎng),這也是產(chǎn)量的基礎(chǔ)。剪去枝條累積長(zhǎng)度用來體現(xiàn)修剪量的大小,2 a間試驗(yàn)區(qū)修剪量均大于對(duì)照區(qū)1,且二者修剪量在2015年均有所減小。試驗(yàn)區(qū)單株生物量2015年較2014年減少22.31%,對(duì)照區(qū)1 2015年單株累計(jì)生物量較2014年減少52.33%;同時(shí),2014年試驗(yàn)區(qū)單株生物量為對(duì)照區(qū)1的56.77%,2015年試驗(yàn)區(qū)單株生物量為對(duì)照區(qū)1的81.89%,說明降雨量減少對(duì)對(duì)照區(qū)1棗樹生物量的影響大于試驗(yàn)區(qū),試驗(yàn)區(qū)棗樹因采用節(jié)水型修剪降低蒸騰耗水量[25-26]能一定程度減小降雨量對(duì)其生長(zhǎng)的影響。
表6為試驗(yàn)區(qū)與對(duì)照棗林1(以下簡(jiǎn)稱對(duì)照1)及對(duì)照棗林2(以下簡(jiǎn)稱對(duì)照2)4齡、5齡棗樹果實(shí)生長(zhǎng)狀況和單株生物量、產(chǎn)量、耗水量以及水分利用效率。追求較高的水分利用效率是缺水條件下農(nóng)業(yè)得以持續(xù)穩(wěn)定發(fā)展的關(guān)鍵所在[38]。本文從生物量和產(chǎn)量來分析水分利用效率。
圖6 試驗(yàn)區(qū)與對(duì)照1棗林棗吊平均長(zhǎng)度、剪去枝條累積長(zhǎng)度、單棵生物量Fig.6 Average length of branches, length of cumulative cutting branches and biomass per plant of jujube in experiment plot and CK1
表6 不同處理?xiàng)棙鋯喂|(zhì)量、果實(shí)個(gè)數(shù)、生物量、產(chǎn)量、耗水量及水分利用效率Table 6 Average fruit weight (AFW), number of fruit (NF), biomass, yield, water consumption (WC) and water use efficiency (WUE) of jujube under different treatments
由表6可知,試驗(yàn)區(qū)4齡、5齡棗樹果實(shí)個(gè)數(shù)大于對(duì)照1、對(duì)照2,單果質(zhì)量差異不大。2 a中試驗(yàn)區(qū)棗樹耗水量均低于對(duì)照區(qū)棗樹。試驗(yàn)區(qū) 4齡棗樹生物量分別是其對(duì)照區(qū)1和2的97%、57%,生物量水分利用效率分別是其對(duì)照區(qū)1和2的96%、62%,5齡棗樹生物量分別是其對(duì)照區(qū)1和2的93%、82%,生物量水分利用效率分別是其對(duì)照區(qū)1和2的96%、95%,主要是試驗(yàn)區(qū)棗樹采用節(jié)水型修剪限制了自身營(yíng)養(yǎng)生長(zhǎng)。試驗(yàn)區(qū) 4齡棗樹產(chǎn)量分別為對(duì)照區(qū)1和2的3.45倍、1.39倍,產(chǎn)量水分利用效率分別是其3.53倍、1.52倍。2015年時(shí)棗樹為5齡,一般來說5齡棗樹較4齡棗樹產(chǎn)量有所提高,而由于2015年降雨量減小,試驗(yàn)區(qū)與對(duì)照區(qū)產(chǎn)量均較2014年有所減小,但試驗(yàn)區(qū)5齡棗樹產(chǎn)量仍為對(duì)照區(qū)1及2的2.96倍、1.43倍,產(chǎn)量水分利用效率是其3.06倍、1.63倍。試驗(yàn)區(qū)棗樹2 a間的產(chǎn)量及其水分利用效率均遠(yuǎn)高于同處深層干化狀況的對(duì)照區(qū) 1棗樹,此時(shí)二者土壤深層水分調(diào)節(jié)能力都較差,降雨成為棗樹產(chǎn)量的主導(dǎo)因素。說明節(jié)水型修剪通過將棗樹樹體規(guī)格保持在較小范圍內(nèi),使其在不同降雨條件下仍能保持較高的水分利用效率。
在半干旱黃土丘陵區(qū)種植23 a蘋果林砍伐后,重新栽植節(jié)水型修剪型棗林,研究其生長(zhǎng)及耗水情況,結(jié)果表明:
1) 23 a生蘋果園0~1 000 cm深土層內(nèi)已形成了干化層,其中300~500、>500~700、>700~1 000 cm范圍土壤水分虧缺度分別為中度偏重虧缺、中度虧缺、輕度虧缺。在蘋果樹伐后休閑4 a 0~300 cm土層水分得到恢復(fù),0~250 cm土層水分與農(nóng)地基本一致。
2)經(jīng)過4 a休閑后的干化土壤中栽植棗樹,此時(shí)0~300 cm 層次土壤對(duì)棗樹而言土壤可用有效水總量為149.71 mm。棗樹栽植前3 a不采取特殊措施能夠正常生長(zhǎng),但第3年開始0~300 cm土層有效水分被棗樹消耗34.97%,第4年時(shí)0~300 cm范圍內(nèi)前期恢復(fù)的土壤水分被消耗殆盡,棗樹生長(zhǎng)只能依靠當(dāng)年降水及其在淺層的入滲。
3)在0~1000 cm土層通體干化情況下,棗樹采用節(jié)水型修剪仍可以保持良好生長(zhǎng),產(chǎn)量及其水分利用效率均高于相同水分條件下的常規(guī)修剪棗樹,產(chǎn)量可達(dá)到正常水分條件下棗樹的1.39倍以上,產(chǎn)量水分利用效率可達(dá)1.52倍以上。
綜上,在前期嚴(yán)重干化的土壤中,土壤水分已經(jīng)失去調(diào)控棗樹生長(zhǎng)的功能,對(duì)棗樹生長(zhǎng)及產(chǎn)量作用甚微,棗樹只能依靠當(dāng)年降雨生長(zhǎng),而節(jié)水型修剪可以通過減小蒸騰耗水提高水分利用效率,在一定程度上提高產(chǎn)量。但本文僅獲得了干化土壤中常規(guī)修剪棗樹的年度生物量和產(chǎn)量,在后續(xù)研究中還需完善更多生長(zhǎng)指標(biāo)的動(dòng)態(tài)觀測(cè)。
本試驗(yàn)研究?jī)H為5 a生棗林,對(duì)于果樹來講屬于幼樹,在深層干化土壤中能否達(dá)到正常生長(zhǎng)年限,能否持久獲得穩(wěn)定產(chǎn)量,以及深層干化土壤環(huán)境與修剪措施對(duì)棗樹根系的影響等問題還需要更長(zhǎng)時(shí)間的試驗(yàn)觀測(cè)來確定。從理論上講,土壤儲(chǔ)水在棗樹生長(zhǎng)中起到一定的調(diào)節(jié)作用,雖然深層干化土壤的調(diào)節(jié)功能大大降低,但是加大棗樹修剪強(qiáng)度又在一定程度上降低了棗樹蒸騰耗水,可起到彌補(bǔ)土壤水分的作用,修剪強(qiáng)度適度則可以維持棗樹持續(xù)生長(zhǎng)和適宜產(chǎn)量,需進(jìn)一步研究獲得適宜的修剪強(qiáng)度,為生產(chǎn)實(shí)踐提供參考。
[1] Da Silva E V, Bouillet J P, de Moraes Conclaves J L. Functional specialization of Eucalyptus fine roots: contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths[J]. Functional Ecology, 2011, 25(5): 996-1006.
[2] Nested D C, de Carvalho C R, Davidson E A, et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures [J]. Nature,1994, 372(6507): 666-669.
[3] 王力,邵明安,侯慶春. 土壤干層量化指標(biāo)初探[J]. 水土保持學(xué)報(bào),2000,14(4):87-90. Wang Li, Shao Ming’an, Hou Qingchun. Preliminary research on measured indexes of dried soil layer[J]. Journal of Soil and Water Conservation, 2000, 14(4): 87-90. (in Chinese with English abstract)
[4] 劉曉麗,馬理輝,汪有科. 滴灌密植棗林細(xì)根及土壤水分分布特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(17):63-71. Liu Xiaoli, Ma Lihui, Wang Youke. Distribution characteristic of fine root and soil water of densely jujube plantation with drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 63-71. (in Chinese with English abstract)
[5] 王力,邵明安,侯慶春. 延安試區(qū)土壤干層現(xiàn)狀分析[J]. 水土保持通報(bào),2000,20(3):35-37. Wang Li, Shao Ming’an, Hou Qingchun. Status of dried soil layer in the Yan’an experimental area[J]. Bulletin of Soil and Water Conservation, 2000, 20(3): 35-37. (in Chinese with English abstract)
[6] 程積民,萬惠娥,王靜,等. 黃土丘陵區(qū)沙打旺草地土壤水分過耗與恢復(fù)[J]. 生態(tài)學(xué)報(bào),2004,24(12):2979-2983. Cheng Jimin, Wan Hui’e, Wang Jing, et al. Over depletion and recovery of soil moisture on Astragalus adsurgens grasslands in the loess hilly—gully region[J]. Acta Ecologica Sinica, 2004, 24(12):2979-2983. (in Chinese with English abstract)
[7] 樊軍,邵明安,郝明德. 渭北旱塬蘋果土壤深層干燥化與硝酸鹽累積[J]. 應(yīng)用生態(tài)學(xué)報(bào),2004,15(7):1213-1216. Fan Jun, Shao Ming’an, Hao Mingde. Desiccation and nitrate accumulation of apple orchard soil on the Weibei dry land[J]. Chinese Journal of Applied Ecology, 2004, 15(7): 1213-1216. (in Chinese with English abstract)
[8] 李軍,陳兵,李小芳,等. 黃土高原不同干旱類型區(qū)苜蓿草地深層土壤干燥化效應(yīng)[J]. 生態(tài)學(xué)報(bào),2007,27(1):75-89. Li Jun, Chen Bing, Li Xiaofang, et al. Effects of deep soil desiccations on alfalfa grasslands in different rainfall areas of the Loess Plateau of China [J]. Acta Ecologica Sinica, 2007, 27(1): 75-89. (in Chinese with English abstract)
[9] 劉賢趙,黃明斌. 渭北旱塬蘋果園土壤水分環(huán)境效應(yīng)[J].果樹學(xué)報(bào),2002,19(2):75-78. Liu Xianzhao, Huang Mingbin. Status of soil water environment in apple orchards located in the area of Loess Plateau[J]. JournaI of Fruit Science, 2002, 19(2): 75-78. (in Chinese with English abstract)
[10] 王國(guó)梁,劉國(guó)斌,常欣,等. 黃土丘陵區(qū)小流域植被建設(shè)的土壤水分效應(yīng)[J]. 自然資源學(xué)報(bào),2002,17(3):339-334. Wang Guoliang, Liu Guobin, Chang Xin, et al. A study on the effect of soil water on vegetation rehabilitation in watershed of loess hilly area[J]. Journal of Natural Resources, 2002, 17(3): 339-334. (in Chinese with English abstract)
[11] 王志強(qiáng),劉寶元,王曉嵐. 黃土高原半干旱區(qū)天然錦雞兒灌叢對(duì)土壤水分的影響[J]. 地理研究,2005,24(1):113-120. Wang Zhiqiang, Liu Baoyuan, Wang Xiaolan. Effects of natural shrub of Caragana opulens Kom. on soil moisture in a semiarid area on the Loess Plateau[J]. Geographical Research, 2005, 24(1): 113-120. (in Chinese with English abstract)
[12] 王志強(qiáng),劉寶元,徐春達(dá),等. 連續(xù)干旱條件下黃土高原幾種人工林存活能力分析[J]. 水土保持學(xué)報(bào),2002,16(4):25-29. Wang Zhiqiang, Liu Baoyuan, Xu Chunda, et al. Survival capability analysis of four kinds of artificial forests in Loess Plateau[J]. Journal of Soil and Water Conservation, 2002, 16(4): 25-29. (in Chinese with English abstract)
[13] 楊文治,韓仕峰. 黃土丘陵區(qū)人工林草地的土壤水分生態(tài)環(huán)境[J]. 中國(guó)科學(xué)院西北水土保持研究所集刊,1985(2):20-30.
[14] 陳洪松,王克林,邵明安,等. 黃土區(qū)人工林草植被深層土壤干燥化研究進(jìn)展[J]. 林業(yè)科學(xué),2005,41(4):155-161. Chen Hongsong, Wang Kelin, Shao Ming’an, et al. A review soil the effect of vegetation rehabilitation on the desiccation of deep soil layer on the Loess Plateau[J]. Sciencia Silvae Sinicae, 2005, 41(4): 155-161. (in Chinese with English abstract)
[15] 侯慶春,韓蕊蓮,韓仕峰,等. 黃土高原人工林草地“土壤干層”問題初探[J]. 中國(guó)水土保持,1999,5(3):11-14. Hou Qingchun, Han Ruilian, Han Shifeng, et al. Preliminary study on dried soil layer about artificial forest grassland on the Loess Plateau[J]. Soil and Water Conservation in China, 1999, 5(3): 11-14. (in Chinese with English abstract)
[16] 王志強(qiáng),劉寶元,劉剛,等. 黃土丘陵區(qū)人工林草植被耗水深度研究[J]. 中國(guó)科學(xué):地球科學(xué),2009,52(6):835-842. Wang Zhiqiang, Liu Baoyuan, Liu Gang, et al. Soil water depletion depth by planted vegetation on the Loess Plateau[J]. Science China Earth Sciences, 2009, 52(6): 835-842. (in Chinese with English abstract)
[17] 曹裕,李軍,張社紅,等. 黃土高原蘋果園深層土壤干燥化特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):72-79.Cao Yu, Li Jun, Zhang Shehong, et al. Characteristics of deep soil desiccation of apple orchards in different weather and landform zones of Loess Plateau in China [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 72-79. (in Chinese with English abstract)
[18] 萬素梅,賈志寬,韓清芳,等. 黃土高原半濕潤(rùn)區(qū)苜蓿草地土壤干層形成及水分恢復(fù)[J]. 生態(tài)學(xué)報(bào),2008,28(3):1045-1051. Wan Sumei, Jia Zhikuang, Han Qingfang, et al. Dry soil layer forming and soil moisture restoration of alfalfa grassland semi-humid region of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(3): 1045-1051. (in Chinese with English abstract)
[19] 侯慶春,黃旭,韓仕峰,等. 黃土高原地區(qū)小老樹成因及其改造途徑的研究Ⅰ.小老樹的分布及其生長(zhǎng)特點(diǎn)[J]. 水土保持學(xué)報(bào),1991,5(1):64-72. Hou Qingchun, Huang Xu, Han Shifeng, et al. Study on the forming of “small olded-tree” and the teansforming way in the Loess Plateau Ⅰ. The distribution and growth nature of the small olded-tree[J]. Journal of Soil and Water Conservation, 1991, 5(1): 64-72. (in Chinese with English abstract)
[20] 侯慶春,黃旭,韓仕峰,等. 黃土高原地區(qū)小老樹成因及其改造途徑的研究:Ⅱ.土壤水分和養(yǎng)分狀況及其與小老樹生長(zhǎng)的關(guān)系[J]. 水土保持學(xué)報(bào),1991,5(2):75-83. Hou Qingchun, Huang Xu, Han Shifeng, et al. The status of moistures and nutrients in small-old-tree stands and impact on tree growth[J]. Journal of Soil and Water Conservation, 1991, 5(2): 75-83. (in Chinese with English abstract)
[21] 關(guān)秀琦,鄒厚遠(yuǎn),魯子瑜,等. 黃土高原草地生產(chǎn)持續(xù)發(fā)展研究:Ⅰ.沙打旺人工草地衰退后的草種更替[J]. 水土保持研究,1994,1(3):56-60. Guang Xiuqi, Zou Houyuan, Lu Ziyu, et al. Study on the sustainable development of the grassland production in Loess Plateau Ⅰ. Grass varieties alternation in the declined artificial grassland ofAstragalus adsurgens[J]. Research of Soil and Water Conservation,1994, 1(3): 56-60. (in Chinese with English abstract)
[22] 王志強(qiáng),劉寶元,路炳軍. 黃土高原半干旱區(qū)土壤干層水分恢復(fù)研究[J]. 生態(tài)學(xué)報(bào),2003,23(9):1944-1950. Wang Zhiqiang, Liu Baoyuan, Lu Bingjun. A study on water restoration of dry soil layers in the semi-arid area of Loess Plateau[J]. Acta Ecologica Sinica, 2003, 23(9): 1944-1950. (in Chinese with English abstract)
[23] 王志強(qiáng),劉寶元,王旭艷,等. 黃土丘陵半干旱區(qū)人工林跡地土壤水分恢復(fù)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(11):77-83. Wang Zhiqiang, Liu Baoyuan, Wang Xuyan, et al. Soil water restoration of different land use after artificial forest in the semi-arid area of Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 77-83. (in Chinese with English abstract)
[24] 梁一民,李代瓊,從心海. 沙打旺草地產(chǎn)草量動(dòng)態(tài)及水分利用研究[J]. 水土保持學(xué)報(bào),1990,4(3):71-78. Liang Yimin, Li Daiqiong, Cong Xinhai. The biomass dynamics and water use of Astragalus adsurgens grassland on the semiarid loess plateau[J]. Journal of Soil and Water Conservation, 1990, 4(3): 71-78. (in Chinese with English abstract)
[25] 謝軍紅,柴強(qiáng),張仁陟,等. 黃土高原區(qū)多年生苜蓿地土壤干層恢復(fù)的適宜后茬篩選[J]. 水土保持學(xué)報(bào),2014,28(5):51-57. Xie Junhong, Chai Qiang, Zhang Renzhi, et al. Suitable succession crop screening after perennial Alfalfa for soil dedication restoration in Loess Plateau[J]. Journal of Soil and Water Conservation, 2014, 28(5): 51-57. (in Chinese with English abstract)
[26] 王美艷,李軍,孫劍,等. 黃土高原半干旱區(qū)苜蓿草地土壤干燥化特征與糧草輪作土壤水分恢復(fù)效應(yīng)[J]. 生態(tài)學(xué)報(bào),2009,29(8):4526-4534. Wang Meiyan, Li jun, Sun Jian, et al. Soil desiccation characteristics of alfalfa grasslands and soil water restoration effects in alfalfa-grain crop rotations on the semi-arid areas of the Loess Plateau[J]. Acta Ecologica Sinica, 2009, 29(8): 4526-4534. (in Chinese with English abstract)
[27] Liu Shouyang, Wang Youke, Wei Xindong, et al. Measured and estimated evapotranspiration of jujube (Ziziphus jujuba) forests in the Loess Plateau, China[J]. International Journal of Agriculture & Biology, 2013, 15(5): 811-819.
[28] 魏新光,陳滇豫,Liu Shouyang,等. 修剪對(duì)黃土丘陵區(qū)棗樹蒸騰的調(diào)控作用[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(12):194-202,315. Wei Xinguang, Chen Dianyu, Liu Shouyang, et al. Effect of trim on Jujube transpiration in Loess Hilly Region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 194-202,315. (in Chinese with English abstract)
[29] 魏新光. 黃土丘陵半干旱區(qū)山地棗樹蒸騰耗水規(guī)律及其調(diào)控策略[D]. 楊凌:西北農(nóng)林科技大學(xué),2015. Wei Xinguang. Low of Rain Fed Jujube Tree Transpiration and Water-saving Control Strategy in Semiarid Hilly Areas of the Loess Plateau[D]. Yangling: Northwest A&F University, 2015. (in Chinese with English abstract)
[30] 佘檀,汪有科,高志永,等. 陜北黃土丘陵山地棗樹生物量模型[J]. 水土保持通報(bào),2015,35(3):311-316. She Tan, Wang Youke, Gao Zhiyong, et al. Biomass models for Jujube in Loess Hilly Mountain of northwest Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2015, 35(3): 311-316. (in Chinese with English abstract)
[31] 陳海濱,劉淑明,黨坤良,等. 黃土高原溝壑區(qū)林地土壤水分特征的研究(Ⅱ):土壤水分有效性及其虧缺狀況的分析[J]. 西北林學(xué)院學(xué)報(bào),2004,19(10):5-8. Chen Haibin, Liu Shuming, Dang Kunliang, et al. A Study onforest soil moisture features of gullied loess region of the Loess Plateau: Analyses on the soil moisture availability and deficit state[J]. Journal of Northwest Forestry University, 2004, 19(10): 5-8. (in Chinese with English abstract)
[32] 易亮,李凱榮,張冠華,等. 黃土高原人工林地土壤水分虧缺研究[J]. 西北林學(xué)院學(xué)報(bào),2009,24(5):5-9. Yi Liang, Li Kairong, Zhang Guanhua, et al. Soil moisture deficit in artificial forest land in Loess Plateau [J]. Journal o f Northwest Forestry University, 2009, 24(5): 5-9. (in Chinese with English abstract)
[33] 劉剛,王志強(qiáng),王曉嵐. 吳旗縣不同植被類型土壤干層特征分析[J]. 水土保持研究,2004,11(1):126-129. Liu Gang, Wang Zhiqiang, Wang Xiaolan. Analysis of driedsoil layer of different vegetation types in Wuqi County[J]. Research o f Soil and Water Conservation, 2004, 11(1): 126 -129. (in Chinese with English abstract)
[34] 馬建鵬. 黃土丘陵區(qū)棗林水分測(cè)定關(guān)鍵因子及方法分析研究[D]. 北京:中國(guó)科學(xué)院研究生院,2015. Ma Jianpeng. Analysis and Research of Methods and Determination of Key Factors of Jujube Forestland Water in Loess Hilly Region[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese with English abstract)
[35] 劉曉麗. 黃土丘陵區(qū)棗林深層細(xì)根分布與土壤水分特征研究[D].楊凌:西北農(nóng)林科技大學(xué),2013. Liu Xiaoli. Study on Spatial Distribution Characteristic of Deep Fine Root and Soil Water on Jujube Plantation in Loess Hilly Region[D]. Yangling: Northwest Agriculture & Forestry University, 2013. (in Chinese with English abstract)
[36] 劉曉麗,馬理輝,楊榮慧,等. 黃土半干旱區(qū)棗林深層土壤水分消耗特征[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(12):139-145. Liu Xiaoli, Ma Lihui, Yang Ronghui, et al. Deep soil water depletion characteristic of jujube plantation in loess semiarid region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 139-145. (in Chinese with English abstract)
[37] 馬理輝,吳普特,汪有科. 黃土丘陵半干旱區(qū)密植棗林隨樹齡變化的根系空間分布特征[J].植物生態(tài)學(xué)報(bào), 2012,36(4):292-301. Ma Lihui, Wu Pute, Wang Youke. Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China[J]. Chinese Journal of Plant Ecology, 2012, 36(4): 292-301. (in Chinese with English abstract)
[38] 王會(huì)肖,劉昌明. 作物水分利用效率內(nèi)涵及研究進(jìn)展[J].水科學(xué)進(jìn)展,2000,11(1):99-104. Wang Huixiao, Liu Changming. Advances in crop water use efficiency research[J]. Advances in Water Science, 2000, 11(1): 99-104. (in Chinese with English abstract)
Growth and water consumption of jujube with water-saving pruning in deep dried soil of Loess Hilly Area
Zhang Wenfei1,2, Wang Xing1※, Wang Youke1,3, Zhang Jingxiao3, Hui Qian3
(1.Research Center of Soil and Water Conservation and Ecological Environment,Chinese Academy of Sciences and Ministry of Education, Yangling712100,China; 2.University of Chinese Academy Sciences,Beijing100049,China; 3.College of Water Resources and Architectural Engineering, Northwest A&F University,Yangling712100,China)
Soil dried layers occur widely in years of trees plantation in orchards. It is important to study soil water restoration condition after tree cutting and effects of dried layers on subsequent vegetation construction and growth. This study aimed to investigate the growth and water consumption of jujube with water-saving pruning in deep dry soil of Loess Hilly Area. The study area was in Jujube Demonstration Base in Mizhi county, Shaanxi province (37°12′N, 109°28′E). The experiment plot had the silt sandy loam with bulk density of 1.24 g/cm3, field water holding capacity of 22% and groundwater depth of 50 m below. In 2011, 5 sampling sites (treatments) were designed. In the sampling site I (experiment plot), 23-yr apple trees were cleared and the jujube with water-saving pruning was planted in soil with dried layers after 4 years; In the sampling site II (CK1), 23-yr apple trees were cleared and the jujube with traditional pruning was planted in soil with dried layers after 4 years; In the sampling site III (CK2), the jujube with traditional dwarf pruning was planted in soil without dried layers; In the sampling site IV (15-yr jujube), the 15-yr jujube with traditional dwarf pruning in soil without dried layers was selected for soil moisture measurement; In the sampling site V (farmland), the farmlands without dried layers for soybean and millet cultivation was selected for soil moisture measurement. Soil moisture in 1 000 cm depth was determined by neutron probes. The jujube yield was determined. The 1-m soil water storage and water consumption were calculated. Available water content, remainder available water and proportion of available water consumption were calculated for orchard soil after cutting, 3-yr jujube soil, 4-yr jujube soil and 5-yr jujube soil. The results showed that 23 years of apple planting had caused soil dried layers in 0-1 000 cm depth. Among the depth, the soil was in the condition of moderate heavy water deficit, moderate water deficit and minor water deficit for 300-500, 500-700 and 700-1 000 cm, respectively. After 4 years of orchard cutting, the soil moisture was recovered in 0-300 cm and the soil moisture in 0-250 cm was almost consistent with the farmland. For the jujube planting after 4-yr of orchard cutting, the soil available water content was 149.71 mm. For the first 3 years, the jujube could growth well but the soil available water in 0-300 cm could be consumed by 34.97%. For the 4thyear, the soil available water in 0-300 cm was nearly used up and the jujube had to depend on the precipitation in the same year. In the soil with deep dried layers in 0-1 000 cm, jujube with water-saving pruning could growth well with the yield more than 1.39 times and the yield water use efficiency up to 1.52 times of that with traditional pruning, respectively. The result indicates that the water-saving pruning is an effective way to overcome precipitation shortage and soil water deficit in semi-arid area.
soils; water content; orchards; dried layer; jujube; water use efficiency
10.11975/j.issn.1002-6819.2017.07.018
S152.7; S155.4+6
A
1002-6819(2017)-07-0140-09
2016-08-06
2017-04-10
國(guó)家支撐計(jì)劃項(xiàng)目“陜北水蝕區(qū)植被功能調(diào)控技術(shù)與示范”(2015BAC01B03);陜西統(tǒng)籌項(xiàng)目“紅棗優(yōu)質(zhì)高效生產(chǎn)關(guān)鍵技術(shù)集成與示范”(2014KTCG01-03)
張文飛,山東濱州人,博士生,主要研究方向?yàn)橥寥栏蓪踊謴?fù)。楊凌 中國(guó)科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心,712100。
Email:zwfzwf1991@163.com
※通信作者:汪 星,陜西楊凌人,副研究員,主要從事林業(yè)水分高效利用方面的研究。楊凌 中國(guó)科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心,712100。
Email:gjzwyk@vip.sina.com