劉亮,鮑瑞,易健宏,劉鵬,鄭佳
?
微波輔助化學(xué)鍍銅制備CNTs/Cu復(fù)合粉體
劉亮1,鮑瑞1,易健宏1,2,劉鵬1,鄭佳1
(1. 昆明理工大學(xué)材料科學(xué)與工程學(xué)院,昆明 650093;2. 中南大學(xué)粉末冶金國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410083)
碳納米管(CNTs)表面化學(xué)鍍是粉末冶金法制備CNTs增強(qiáng)金屬基復(fù)合材料的重要預(yù)處理過(guò)程,也是提高其與金屬基體界面結(jié)合強(qiáng)度的重要途徑。本文通過(guò)微波輔助化學(xué)鍍銅法制備CNTs-Cu復(fù)合粉體,并對(duì)該方法的反應(yīng)速率和反應(yīng)效果進(jìn)行研究。通過(guò)碘量法測(cè)試鍍液中Cu2+的濃度表征反應(yīng)速率,XRD檢測(cè)復(fù)合粉體中的物相組成,SEM和TEM分別觀察復(fù)合粉體的微觀形貌和結(jié)構(gòu)。實(shí)驗(yàn)發(fā)現(xiàn)微波輔助化學(xué)鍍的反應(yīng)速率是常規(guī)化學(xué)鍍方法的12倍,XRD和電子顯微鏡分析表明,微波輔助化學(xué)鍍銅的效果良好,Cu顆粒還原較為充分,CNTs表面附著大量納米銅顆粒,銅顆粒與CNTs結(jié)合緊密,且分布均勻。
碳納米管(CNTs);微波輔助;化學(xué)鍍;銅;復(fù)合粉體
碳納米管長(zhǎng)徑比大、易團(tuán)聚,與金屬基體的結(jié)合性差,因此作為增強(qiáng)體難以發(fā)揮其優(yōu)異的性能,尤其是表面因?yàn)闈?rùn)濕性不好造成的表面缺陷會(huì)嚴(yán)重影響材料的力學(xué)性能和其它物理化學(xué)性能的發(fā)揮[1]。為改善CNTs與基體金屬界面的潤(rùn)濕性,通常需要對(duì)CNTs進(jìn)行表面金屬包覆處理[2],常見(jiàn)的有電鍍[3]和化學(xué)鍍[4]等方法。CHO等[5]利用硫酸鎳做前驅(qū)液,利用化學(xué)鍍方法在經(jīng)過(guò)預(yù)處理的CNTs表面均勻地形成了大量近球形的納米Ni顆粒,該實(shí)驗(yàn)還將化學(xué)鍍與球磨結(jié)合在一起,實(shí)驗(yàn)發(fā)現(xiàn)CNTs上形成的Ni顆粒尺寸和球磨的時(shí)間密切相關(guān),當(dāng)球磨時(shí)間為6 h時(shí),Ni顆粒的直徑可達(dá)到120 nm;SHAO等[6]通過(guò)化學(xué)鍍?cè)谔祭w維的表面鍍覆銅金屬;IAREBIDAKI等[7]通過(guò)化學(xué)鍍?cè)贑NTs表面得到了厚度為200~300 nm的Ni-Fe鍍層;YANG等[8]通過(guò)化學(xué)鍍制備出了具有Ni-P復(fù)合鍍層的CNTs;YE等[9]在CNTs表面利用化學(xué)鍍得到了納米Ag鍍層,表面Ag顆粒的形成會(huì)顯著提高了CNTs的電子載流密度和熱導(dǎo)率。微波加熱是一種常見(jiàn)的可以有效提高化學(xué)反應(yīng)速率和效率的方法,其獨(dú)特的加熱方式具有快速加熱、均勻加熱[10]和非熱效應(yīng)[11]等特點(diǎn),被廣泛應(yīng)用于萃取[12]、催化[13]和誘導(dǎo)[14]等領(lǐng)域,有色金屬、黑色金屬和硬質(zhì)合金等[15?16]材料體系也廣泛使用微波加熱進(jìn)行粉末冶金工藝的燒結(jié)。此外,采用微波加熱輔助進(jìn)行化學(xué)反應(yīng)可促進(jìn)反應(yīng)的進(jìn)行[17?18]。因此,本研究采用化學(xué)鍍法對(duì)CNTs進(jìn)行表面鍍銅,并且在化學(xué)鍍銅過(guò)程中采用微波照射進(jìn)行輔助處理,研究微波效應(yīng)對(duì)化學(xué)鍍銅效率和效果的影響。
采用體積比為1:3的HNO3/H2SO4混合酸液進(jìn)行氧化處理,將CNTs浸泡于混合酸中,攪拌10 h、靜置、清洗至中性。采用0.1 mol/L的SnCl2鹽酸溶液作為敏化液,將CNTs放入配置好的敏化液中,室溫下攪拌2 h、靜置、用去離子水洗滌至中性。采用0.005 g PdCl2和100 mL鹽酸溶液作為活化液對(duì)敏化后的CNTs進(jìn)行處理,將CNTs放入配置好的活化液中,攪拌2 h、靜置、洗滌至中性。
先將CuSO4·5H2O溶于適量的去離子水中,再加入絡(luò)合劑KNaC4H4O6·4H2O,然后加入NaOH溶液調(diào)節(jié)pH值,最后加入聚乙二醇(0.15g/L)配置為成分相同的鍍液,分別記為A,B。在化學(xué)鍍過(guò)程中向鍍液里勻速滴加甲醛溶液(HCHO,37%)。鍍液配置好后,取2份經(jīng)過(guò)活化處理的CNTs,分別放入鍍液A和鍍液B中,溶液pH值維持在12~13。對(duì)鍍液A連續(xù)進(jìn)行超聲分散10 min,水浴溫度70 ℃,對(duì)鍍液B在相同條件下進(jìn)行超聲分散1 min后放入微波爐中微波輻射1 min,交替進(jìn)行,2種化學(xué)鍍的反應(yīng)時(shí)間均為10 min?;瘜W(xué)鍍完成后先收集鍍液,將CNTs洗至中性,120 ℃下真空干燥。
2.1 碘量法測(cè)定Cu2+濃度
圖1所示為普通化學(xué)鍍銅和微波輔助化學(xué)鍍銅后鍍液的照片及所得粉末的XRD譜,從圖中可以看出2種鍍液的顏色區(qū)別明顯,沒(méi)有使用微波輔助的鍍液A呈藍(lán)色,接近于原始CuSO4鍍液的顏色,說(shuō)明鍍液A中存在大量Cu2+,化學(xué)鍍過(guò)程中被還原的Cu2+量較少,而采用微波輔助的鍍液B為無(wú)色,說(shuō)明鍍液B中的Cu2+已經(jīng)被還原完全。鍍液A和鍍液B的化學(xué)鍍時(shí)間相同,鍍液顏色的較大差異反映出微波輔助對(duì)化學(xué)鍍過(guò)程有明顯的促進(jìn)作用。通過(guò)XRD圖譜分析發(fā)現(xiàn),普通化學(xué)鍍銅后的CNTs樣品除了出現(xiàn)明顯的CNTs特征峰(36.9°,42.3°和77.5°處出現(xiàn)3個(gè)特征峰)外,還出現(xiàn)了Cu2O對(duì)應(yīng)的(211),(220)和(422)晶面的特征峰,說(shuō)明在化學(xué)鍍過(guò)程中生成了Cu2O,而在微波輔助下進(jìn)行化學(xué)鍍的樣品中出現(xiàn)了明顯的CNTs特征峰和Cu的衍射峰,43.6°,50.7°和73.8°左右分別對(duì)應(yīng)Cu的(111),(200)和(220)晶面,特征峰的衍射強(qiáng)度增加說(shuō)明在該樣品中Cu的含量較高,鍍銅效果較好。除了CNTs和Cu的特征峰外,微波輔助下化學(xué)鍍銅的樣品中也存在Cu2O的特征峰,但和無(wú)微波輔助的樣品相比,Cu2O特征峰的峰強(qiáng)很弱,說(shuō)明微波輔助照射有利于化學(xué)鍍反應(yīng)的正向進(jìn)行。
圖1 CNTs化學(xué)鍍銅的鍍液照片和粉末XRD圖
碘量法是一種應(yīng)用廣泛的氧化還原滴定法,通過(guò)I?離子的還原性發(fā)生氧化還原反應(yīng)間接地測(cè)定物質(zhì)的濃度。通過(guò)碘量法測(cè)得普通化學(xué)鍍銅時(shí),Cu2+的還原速率為0.50 mol/(mL·min),而化學(xué)鍍銅過(guò)程中加入微波輔助,Cu2+的還原速率達(dá)到5.96 mol/(mL·min),使用微波輔助進(jìn)行化學(xué)鍍銅的速率約為不加微波時(shí)化學(xué)鍍銅速率的12倍,顯著提高了化學(xué)鍍銅的效率。這可能是因?yàn)榻?jīng)過(guò)酸化處理的CNTs表面存在大量有機(jī)官能團(tuán)和懸掛鍵,這些官能團(tuán)和懸掛鍵可看成極性分子,在化學(xué)鍍過(guò)程中受到微波照射,引起化學(xué)鍵共振,降低了反應(yīng)活化能[19],使CNTs表面進(jìn)行的Cu2+的還原反應(yīng)更容易發(fā)生,提高了化學(xué)鍍銅的效率。另外,CNTs具有很高的比表面積,其表面大量的官能團(tuán)為Cu的形核和長(zhǎng)大提供了條件,微波每秒鐘上十億次的高頻率使這些官能團(tuán)等快速地運(yùn)動(dòng)或轉(zhuǎn)動(dòng)[20],大大提高了分子間的有效碰撞,加快了反應(yīng)速率,使Cu更易沉積在CNTs表面。此外,微波還有可能改變化學(xué)反應(yīng)的路徑,促進(jìn)化學(xué)鍍銅反應(yīng)的發(fā)生,從而提高化學(xué)鍍銅反應(yīng)的效率。
2.2 顯微組織結(jié)構(gòu)分析
圖2所示為CNTs原料和進(jìn)行微波輔助化學(xué)鍍銅后的CNTs樣品的SEM圖片,由圖可知,CNTs原料和化學(xué)鍍后的CNTs均存在一定的團(tuán)聚現(xiàn)象。圖2(a)中CNTs原料的團(tuán)聚體表面干凈,單根CNTs清晰可見(jiàn),而圖(b)中,尺寸在數(shù)十微米的塊狀物亦是CNTs的團(tuán)聚體,只有表層露出了一些微小的絲頭,通過(guò)微波輔助化學(xué)鍍銅后的CNTs團(tuán)聚體表面均勻地附著大量的白色顆粒,圖2(c)為圖2(b)的局部放大圖,從圖中可以清晰地看到這些白色顆粒內(nèi)部貫穿著大量的CNTs,這些白色顆粒為化學(xué)鍍銅過(guò)程中被還原的Cu粉末顆粒,為進(jìn)一步證明該結(jié)論,對(duì)圖2(b)中的區(qū)域進(jìn)行EDS能譜分析,結(jié)果如圖3所示。
圖2 CNTs原料及微波輔助鍍銅后的SEM圖
圖3 微波輔助鍍銅CNTs的SEM形貌和EDS圖譜
從圖3中可看出,微波輔助化學(xué)鍍后樣品中的主要元素為C和Cu,另外含有少量的O元素和Sn元素,O元素可能是中間產(chǎn)物Cu2O所產(chǎn)生,也可能是在化學(xué)鍍完成后的處理過(guò)程中引入,Sn元素為敏化過(guò)程中殘留的Sn2+,通常氧元素可以在還原氣氛中除去。其中C元素的原子百分比為88%,Cu元素的原子百分比為8%,O元素的原子百分比為4%,所以Cu元素可能以CuO或Cu單質(zhì)的形式存在。此外,從圖中可以看出微波輔助化學(xué)鍍使Cu顆粒在CNTs表面分布均勻,化學(xué)鍍銅效果良好。
圖4所示為CNTs原料及微波輔助鍍銅后的TEM圖,通過(guò)圖4(a)發(fā)現(xiàn)CNTs原料視場(chǎng)干凈,CNTs清晰可見(jiàn),管徑大小均勻,結(jié)構(gòu)完整。微波輔助化學(xué)鍍銅后,圖4(b)視場(chǎng)中出現(xiàn)大量黑色顆粒附著在CNTs表面。圖4(c)和(d)分別為CNTs原料和微波輔助鍍銅后CNTs的高分辨TEM圖片,從中可清晰看到CNTs原料的外徑為10~20 nm,壁厚為3~5 nm,經(jīng)過(guò)微波輔助鍍銅后,CNTs的管壁清晰可見(jiàn)?;罨幚磉^(guò)程使SnCl2水解生成的Sn(OH)Cl將Pd2+還原成金屬鈀吸附在CNTs的表面,在化學(xué)鍍銅的過(guò)程中,金屬鈀作為催化劑可有效促進(jìn)還原銅反應(yīng)的進(jìn)行[21]。由于CNTs表面含有懸掛鍵和有機(jī)官能團(tuán),這些位置最容易為金屬鈀提供附著點(diǎn),故金屬鈀不能在CNTs的表面完全均勻覆蓋,因此Cu顆粒也只能附著在CNTs管壁的部分活性位點(diǎn)[22],這些Cu顆粒的尺寸為8~10 nm,在CNTs表面緊密結(jié)合,且分布均勻。
圖4 CNTs原料及微波輔助鍍銅后的TEM圖
微波快速鍍銅的主要原因可能是:首先CNTs吸波性能強(qiáng),經(jīng)預(yù)處理后表面存在大量的官能團(tuán)和懸掛鍵,在微波的作用下活性增加,加速化學(xué)反應(yīng)的進(jìn)行;其次CNTs的表面缺陷為Cu的形核和長(zhǎng)大提供條件,微波的高頻率促使分子加速運(yùn)動(dòng)或轉(zhuǎn)動(dòng),提高了分子間的有效碰撞頻率,加快了反應(yīng)速率,促使還原的銅顆粒沉積在CNTs的表面缺陷處。
1) 將微波輔助方法與鍍銅工藝相結(jié)合,選擇CuSO4為主鹽,甲醛為還原劑,在CNTs表面進(jìn)行化學(xué)鍍銅,得到了質(zhì)量較好的鍍層。
2) 經(jīng)過(guò)酸化處理的CNTs表面存在大量有機(jī)官能團(tuán)和懸掛鍵等極性分子,在化學(xué)鍍的過(guò)程中受到微波照射,使在CNTs表面進(jìn)行的Cu2+的還原反應(yīng)更容易發(fā)生,化學(xué)鍍銅的效率更高。
[1] 易健宏, 鮑瑞, 李才巨, 等. 碳納米管增強(qiáng)Cu和Al基復(fù)合材料的研究進(jìn)展[J]. 中國(guó)有色金屬學(xué)報(bào), 2015, 25(5): 1209?1219.YI Jianhong, BAO Rui, LI Caiju, et al. Research progress about Cu and Al matrix composites reinforced by carbon nanotubes[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(5): 1209? 1219.
[2] CHOE K, JANG H, LIM J, et al. Fabrication of Cu/CNT nanocomposite powders by metal displacement reaction[J]. Journal of the Korean Institute of Metals and Materials, 2013, 51(10): 773?780.
[3] CASAS C, LI Wenzhi. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources, 2012, 208(2):74?85.
[4] ZHENG Zhong, LI Lianjie, DONG Shijie, et al. Effects of two purification pretreatments on electroless copper coating over single-walled carbon nanotubes[J]. Journal of Nanomaterials, 2014, 14(16): 224?230.
[5] CHO G, LIM J, CHOE K, et al. of Conference. Ni nanoparticles deposition onto CNTs by electroless plating[C]// City. 360?363.
[6] SHAO Zhongcai, ZHANG Yuexiu, ZHANG Ning, et al. Preparation and research of electroless copper on carbon fibers[J]. Materials & Manufacturing Processes, 2014, 31(1): 1?6.
[7] PARK K, HAN J, LEE S, et al. Microwave absorbing hybrid composites containing Ni-Fe coated carbon nanofibers prepared by electroless plating[J]. Composites Part A Applied Science & Manufacturing, 2011, 42(5): 573?578.
[8] ZAREBIDAKI A, ALLAHKARAM S. Effect of heat treatment on the properties of electroless Ni-P-carbon nanotube composite coatings[J]. Micro & Nano Letters, 2012, 7(1):90?94.
[9] YE Yun, XIAO Xiao Jing, GUO Tai Liang, et al. Study on field emission properties of CNTs electroless plating with Ag[J]. Gongneng Cailiao Journal of Functional Materials, 2012, 43(9): 1221?1224.
[10] BAO Rui, YI Jianhong. Densification and alloying of microwave sintering WC–8 wt.%Co composites[J]. International Journal of Refractory Metals & Hard Materials, 2014, 43(12): 269?275.
[11] BAO Rui, YI Jianhong, PENG Yuan Dong. Effects of microwave sintering temperature and soaking time on microstructure of WC-8Co[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 372?376.
[12] FILLY A, FERNANDEZ X, MINUTI M, et al. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale[J]. Food Chemistry, 2014, 150(5): 193?198.
[13] BRUN E, SAFER A, CARREAUX F, et al. Microwave-assisted condensation reactions of acetophenone derivatives and activated methylene compounds with aldehydes catalyzed by boric acid under solvent-free conditions[J]. Molecules, 2015, 20(6): 11617? 11631.
[14] BRUNETTI F, HERRERO M, MU O, et al. Microwave-induced multiple functionalization of carbon nanotubes[J]. Journal of the American Chemical Society, 2008, 130(25): 8094?8100.
[15] LU Jinlin, LI Zihui, JIANG Sanping, et al. Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation[J]. Journal of Power Sources, 2012, 202(1): 56?62.
[16] LI Xiaoguang, CHEN Jin, HAO Jiujiu, et al. Comparative research on solid state decarburization kinetics of high-carbon ferrochrome powder by microwave heating and conventional heating[J]. Chinese Journal of Nonferrous Metals, 2014, 24(8): 2181?2187.
[17] DUDLEY G, RICHERT R, STIEGMAN A. ChemInform abstract: On the existence of and mechanism for microwave-specific reaction rate enhancement[J]. Chemical Science, 2015, 6(21): 2144?2152.
[18] KAPPE C, PIEBER B, DALLINGER D. Microwave effects in organic synthesis: Myth or reality?[J]. Angewandte Chemie International Edition, 2013, 52(4): 1088?1094
[19] SANTOS D, BUKZEM A, ASCHERI D, et al. Microwave- assisted carboxymethylation of cellulose extracted from brewer’s spent grain[J]. Carbohydrate Polymers, 2015, 131(20): 125?133.
[20] WANG Feng, WANG Li Zhong, ZANG Shun Lai, et al. High-frequency microwave heating technology for automobile windshield[J]. Advanced Materials Research, 2011, 287/290: 2221?2224.
[21] MEENAN B, BROWN N, WILSON J. Characterisation of a PdCl2/SnCl2electroless plating catalyst system adsorbed on barium titanate-based electroactive ceramics[J]. Applied Surface Science, 1994, 74(3): 221?233.
[22] WANG Jianshe, XI Jingyu, LEI Zhang, et al. Synthesis of highly active SnO2-CNTs supported Pt-on-Au composite catalysts through site-selective electrodeposition for HCOOH electrooxidation[J]. Electrochimica Acta, 2013, 112(12): 480? 485.
(編輯 高海燕)
Preparation of CNTs/Cu composite powder by microwave assisted chemical copper plating method
LIU Liang1, BAO Rui1, YI Jianhong1, 2, LIU Peng1, ZHENG Jia1
(1. Faculty of Materials Science and Engineering,Kunming University of Science and Technology, Kunming 650093, China? 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
Carbon nanotubes (CNTs) surface chemical plating is one of the most important pretreatment processes for CNTs reinforced metal matrix composite prepared by the powder metallurgy method. It is likewise a useful way to improve the interface bonding strength of CNTs and metal matrix. In this paper, CNTs-Cu composite powder was prepared by microwave assisted method, the reaction rate and plating effects of the method were studied. The reaction rate was marked by iodine volume method for measuring the Cu2+concentration, and the phase composition, morphology and structure of the composite powder were detected by XRD, SEM and TEM, respectively. It is important to emphasize that the reaction rate in microwave assisted chemical plating is 12 times higher than that in the conventional chemical plating method. XRD and electron microscope analysis suggest that the effect of microwave assisted chemical plating copper is just some of best, Cu particle is reduced more fully, and the surface of CNTs attaches a lot of Cu nanoparticles which are connected tightly and distributed evenly.
carbon nanotubes; microwave assistance; chemical plating; Cu; composite powder
TQ146.11
A
1673-0224(2017)02-236-06
云南省科技廳重大項(xiàng)目(2014FC001);云南銅業(yè)(集團(tuán))有限公司校企基金(2013YT07,2015YT04);云南省科技廳應(yīng)用基礎(chǔ)研究項(xiàng)目(2015FB127)
2016?06?17;
2016?09?12
鮑瑞,副教授,博士。電話:13888480327;E-mail: baorui@kmust.edu.cn