楊慶,周桐,劉秀紅,李海鑫,李健敏,余飛,彭永臻
?
常溫下接種回流污泥實(shí)現(xiàn)BAF一體化自養(yǎng)脫氮工藝
楊慶1,周桐1,劉秀紅2,李海鑫1,李健敏1,余飛1,彭永臻1
(1北京工業(yè)大學(xué)城鎮(zhèn)污水深度處理與資源化利用技術(shù)國家工程實(shí)驗(yàn)室,北京 100124;2中國人民大學(xué)環(huán)境學(xué)院,北京 100872)
為實(shí)現(xiàn)高氨氮廢水的高效低耗穩(wěn)定去除,在常溫條件下,對(duì)曝氣生物濾池(BAF)中實(shí)現(xiàn)與穩(wěn)定短程硝化-厭氧氨氧化自養(yǎng)脫氮工藝進(jìn)行了研究。研究結(jié)果表明:常溫條件下,BAF接種二沉池回流污泥,采用悶曝-連續(xù)運(yùn)行結(jié)合的接種掛膜方式,可成功實(shí)現(xiàn)短程硝化-厭氧氨氧化一體化自養(yǎng)脫氮。悶曝階段使種泥活性恢復(fù),而連續(xù)流運(yùn)行過程中游離氨(FA)濃度高,可抑制亞硝酸鹽氧化菌(NOB),實(shí)現(xiàn)BAF中亞硝酸鹽累積;通過調(diào)整BAF回流方式,降低回流液中,防止NOB生長,并通過厭氧氨氧化(Anammox)濾池出水回流方式,接種微量Anammox菌,運(yùn)行80 d可實(shí)現(xiàn)短程硝化-厭氧氨氧化,140 d后系統(tǒng)運(yùn)行穩(wěn)定,總氮(TN)去除率達(dá)76.62%。生物濾池有利于短程硝化-厭氧氨氧化工藝的實(shí)現(xiàn)與穩(wěn)定,生物膜中不同厚度存在好氧缺氧環(huán)境,利于氨氧化菌(AOB)和Anammox菌共存;濾料的過濾作用有效地防止了Anammox菌流失,使其在系統(tǒng)中不斷累積生長。不僅如此,AOB和Anammox菌均為自養(yǎng)菌且生長緩慢,避免了生物濾池的頻繁反沖洗,簡化了生物濾池的運(yùn)行。氣水比是BAF中一體化運(yùn)行的關(guān)鍵參數(shù),本研究中最佳的氣水比為12:1,氨氮去除負(fù)荷達(dá)到0.91 kg N·m-3·d-1,氨氮和TN去除率分別可達(dá)96.86%和85.47%。
BAF;高氨氮廢水;短程硝化;厭氧氨氧化;自養(yǎng)脫氮;啟動(dòng);生物膜;過濾
短程硝化(partial nitrification,PN)-厭氧氨氧化(Anammox)自養(yǎng)脫氮工藝因其具有低能耗、污泥產(chǎn)率低和無需投加藥劑等優(yōu)勢(shì)成為國內(nèi)外廣泛研究的熱點(diǎn)[1-4],該工藝是一種典型的高效低耗可持續(xù)污水處理工藝。目前,已有100多座污水處理廠采用Anammox工藝處理實(shí)際污水[5],但由于Anammox菌生長緩慢,易受多種因素的抑制[6-10],該工藝仍存在難于快速啟動(dòng)[11]、污泥易流失等諸多問題,導(dǎo)致該工藝應(yīng)用過程受到種泥等諸多因素的限制。采用二沉池回流污泥實(shí)現(xiàn)一體化自養(yǎng)脫氮工藝快速啟動(dòng),將為該工藝進(jìn)一步推廣應(yīng)用奠定基礎(chǔ)。
高氨氮廢水不但對(duì)環(huán)境污染嚴(yán)重,且處理難度大,成本高。目前,我國處理高氨氮廢水所用生物處理工藝主要包括A/O+BAF[12]、UASBB[13]、UASB-A/O[14]、SBR[15]、A/O-CSTR[16]、升流式微氧生物膜反應(yīng)器[17]等。這些處理工藝復(fù)雜,停留時(shí)間長,占地面積大,且難于實(shí)現(xiàn)目前地方提出的更為嚴(yán)格的排放標(biāo)準(zhǔn)。
生物濾池工藝集生化反應(yīng)和物理截留于一體[18],極度簡化了工藝流程,不但出水濁度較低,且無污泥膨脹等問題。近幾年,反硝化生物濾池(denitrifying biofilter,DNBF)和曝氣生物濾池(biological aerated filter,BAF)實(shí)際應(yīng)用過程中,因生物膜生長迅速,導(dǎo)致反沖洗頻繁[19-20],加大了工藝運(yùn)行維護(hù)管理 難度。
短程硝化和厭氧氨氧化均為自養(yǎng)微生物反應(yīng),且細(xì)菌生長緩慢,因此實(shí)現(xiàn)短程硝化-厭氧氨氧化需有效防止好氧氨氧化菌和厭氧氨氧化菌的流失。在BAF中實(shí)現(xiàn)短程硝化-厭氧氨氧化自養(yǎng)脫氮,不但能夠有效防止好氧氨氧化菌和厭氧氨氧化菌的流失,而且避免了生物濾池頻繁反沖洗的問題。在BAF中實(shí)現(xiàn)短程硝化-厭氧氨氧化自養(yǎng)脫氮,將充分發(fā)揮兩種工藝的優(yōu)勢(shì),目前,有關(guān)曝氣生物濾池中實(shí)現(xiàn)短程硝化-厭氧氨氧化工藝的相關(guān)報(bào)道較少[21]。
基于此,本研究以模擬污泥脫水液為研究對(duì)象,采用火山巖作為BAF濾料,常溫條件下,利用普通活性污泥,對(duì)高氨氮廢水短程硝化-厭氧氨氧化自養(yǎng)脫氮工藝的啟動(dòng)進(jìn)行研究,以確定工藝快速啟動(dòng)方法。在此基礎(chǔ)上,針對(duì)氣水比這一關(guān)鍵性運(yùn)行參數(shù)進(jìn)行研究,進(jìn)一步對(duì)工藝優(yōu)化,旨在為實(shí)際工程提供簡單有效的自養(yǎng)脫氮工藝啟動(dòng)方法及最佳運(yùn)行參數(shù)。
1.1 試驗(yàn)材料
1.1.1 試驗(yàn)裝置 本研究采用上流式曝氣生物濾池,反應(yīng)裝置如圖1所示。反應(yīng)器主體由有機(jī)玻璃制成,濾池底部設(shè)置曝氣盤,濾柱直徑14 cm,總高196 cm,其中濾料層高110 cm,有效容積為19.2 L,濾柱每隔20 cm設(shè)1個(gè)取樣口,共8個(gè)取樣口。試驗(yàn)所用火山巖濾料直徑為3~5 mm。
圖1 曝氣生物濾池裝置
1.1.2 試驗(yàn)用水 試驗(yàn)初期采用北京工業(yè)大學(xué)家屬區(qū)生活污水,和COD濃度分別為64.5和70.6 mg·L-1。試驗(yàn)后期采用模擬污泥脫水液作為原水,為更加接近實(shí)際廢水,本研究采用在生活污水中投加(NH4)2SO4和NaHCO3方法,模擬高氨氮廢水。模擬廢水中、COD、堿度和pH 分別為300 mg·L-1,99.74 mg·L-1,2.14 g·L-1(以CaCO3計(jì)),7.0~8.0。
1.1.3 接種污泥 接種污泥取自北京某城市污水處理廠二沉池回流污泥,其污水處理工藝為A/O工藝,污泥濃度(MLSS)為4.088 g·L-1,污泥容積指數(shù)(SVI)為85.61 ml·g-1。本試驗(yàn)所接種Anammox菌種來自Anammox濾池流失在出水中的菌種,即采用將Anammox濾池出水回流至BAF進(jìn)水的方式接種Anammox菌。
1.2 試驗(yàn)方法
掃描電鏡方法:首先將濾料樣品置于2.5%戊二醛中,于4℃冰箱中固定1.5 h,用磷酸緩沖液沖洗 3 次后分別用 50%、70%、80%、90%和100%乙醇進(jìn)行脫水,每次 10~15 min。然后分別用 100%乙醇/乙酸異戊酯(1:1)、純乙酸異戊酯各置換一次,每次 15 min。干燥噴金后采用掃描電鏡(Hoskin Scientific, Tokyo, Japan)對(duì)樣品進(jìn)行觀察。
1.3 試驗(yàn)設(shè)計(jì)
本試驗(yàn)高氨氮廢水自養(yǎng)脫氮工藝啟動(dòng)與優(yōu)化研究可分為4個(gè)階段,第1階段:悶曝階段。傳統(tǒng)活性污泥接種至BAF反應(yīng)器,采用連續(xù)曝氣方式,恢復(fù)污泥活性。采用pH為控制參數(shù)及時(shí)停止曝氣,悶曝共8個(gè)周期。第2階段:實(shí)現(xiàn)BAF中亞硝酸鹽的累積。悶曝結(jié)束后,BAF連續(xù)運(yùn)行,初期采用生活污水,處理效果穩(wěn)定后逐漸增加濃度至300 mg·L-1。內(nèi)回流比為1:1。第3階段:實(shí)現(xiàn)短程硝化-厭氧氨氧化啟動(dòng)。短程硝化啟動(dòng)成功后,將BAF內(nèi)回流改為Anammox濾池出水作為外回流??偟═N)去除率升高后取消Anammox濾池出水外回流,改為采用BAF內(nèi)回流,形成BAF高氨氮廢水短程硝化-厭氧氨氧化一體化自養(yǎng)深度脫氮系統(tǒng)。第4階段:運(yùn)行參數(shù)優(yōu)化。DO是一體化自養(yǎng)脫氮系統(tǒng)中的關(guān)鍵參數(shù),也是厭氧氨氧化過程的限制因素,氣水比是BAF中控制DO的關(guān)鍵性運(yùn)行參數(shù),本研究進(jìn)一步確定了BAF中的最佳氣水比。
2.1 BAF中傳統(tǒng)活性污泥活性恢復(fù)
悶曝是BAF啟動(dòng)常用的方法,本研究中為促進(jìn)活性污泥活性的恢復(fù)和生物膜的形成,悶曝了8個(gè)周期。同時(shí)為了防止過度曝氣對(duì)后續(xù)短程硝化實(shí)現(xiàn)的影響,在線監(jiān)測(cè)pH變化,根據(jù)pH逐漸下降判斷系統(tǒng)中氨氮降解程度,防止pH曲線上氨谷點(diǎn)出現(xiàn),利于AOB生長,防止NOB的過度生長。
圖2 第8個(gè)悶曝階段COD、、和濃度變化情況
2.2 實(shí)現(xiàn)BAF中亞硝酸鹽的累積
2.2.1 亞硝酸鹽累積過程中水質(zhì)變化情況 悶曝結(jié)束后,BAF改為連續(xù)進(jìn)水運(yùn)行模式,初期采用生活污水,此后逐漸增加氨氮濃度,設(shè)置內(nèi)回流為1:1。連續(xù)運(yùn)行第28 d水質(zhì)和亞硝酸鹽積累率(NAR)沿濾池高度變化情況如圖3所示。
圖3 連續(xù)運(yùn)行第28 d?、、和NAR沿不同濾層高度變化情況
2.2.2 FA對(duì)亞硝酸鹽累積的影響 從微生物學(xué)角度分析,實(shí)現(xiàn)積累關(guān)鍵在于抑制NOB活性并使AOB成為優(yōu)勢(shì)菌群。已有研究結(jié)果表明,可通過控制DO濃度[22-23]、控制溫度和短污泥齡(SRT)[24]、FA和FNA的抑制作用[25]、添加抑制劑[26]、控制HRT和曝氣時(shí)間[27]實(shí)現(xiàn)短程硝化。
圖4 連續(xù)運(yùn)行過程中進(jìn)水FA濃度與系統(tǒng)NAR關(guān)系
2.3 實(shí)現(xiàn)短程硝化-厭氧氨氧化過程中TN去除及生物膜變化情況
2.3.1 實(shí)現(xiàn)短程硝化-厭氧氨氧化過程中TN去除情況 圖5給出了BAF連續(xù)運(yùn)行后,系統(tǒng)進(jìn)出水TN變化情況。連續(xù)運(yùn)行初期主要進(jìn)行好氧硝化(圖4),隨著濃度的提高,F(xiàn)A對(duì)NOB產(chǎn)生抑制,第24~40 d亞硝酸鹽不斷累積,硝化過程以AOB的氨氧化作用為主導(dǎo)。同時(shí)發(fā)現(xiàn)出現(xiàn)積累后,TN去除率隨之升高。經(jīng)過20幾天的培養(yǎng),生物膜已基本形成(圖6)并有一定厚度。BAF曝氣過程中,生物膜外部為富氧區(qū)域,主要進(jìn)行硝化反應(yīng)將氨氮氧化為或;生物膜內(nèi)部可形成低氧或缺氧環(huán)境[28],反硝化細(xì)菌利用進(jìn)水中的有機(jī)物可將產(chǎn)生的或內(nèi)回流液中的和進(jìn)一步反硝化,因此,系統(tǒng)好氧曝氣硝化的同時(shí)發(fā)生了反硝化現(xiàn)象。此外,短程硝化過程中易出現(xiàn)一定量的TN損失,已有研究表明[29-30],短程硝化過程中產(chǎn)生的N2O是全程硝化過程的1.5倍,N2O氣體的產(chǎn)生,可能也是TN去除率升高的原因之一,N2O產(chǎn)生問題需要進(jìn)一步研究。
圖5 BAF連續(xù)運(yùn)行后系統(tǒng)進(jìn)出水TN變化情況
2.3.2 實(shí)現(xiàn)短程硝化-厭氧氨氧化過程中生物膜變化情況 BAF中短程硝化-厭氧氨氧化啟動(dòng)過程中,分別對(duì)第9、20、39、140 d濾料表面生長的生物膜進(jìn)行了掃描電鏡觀察,結(jié)果如圖6所示。
圖6 第9、20、39、140 d濾料的掃描電鏡觀察結(jié)果
(a) the ninth day; (b) the twentieth day; (c) the thirty-ninth day; (d) the one hundred and fortieth day
從圖6(a)中可觀察到連續(xù)運(yùn)行9 d后,只有少量微生物吸附于濾料孔隙中,仍可明顯看到濾料表面。運(yùn)行20 d后,圖6(b)中微生物已分泌胞外聚合物(EPS),使得部分桿菌通過EPS首尾相接,EPS和細(xì)菌組成了生物膜骨架,并形成大量利于傳質(zhì)的空隙。第140 d生物膜的掃描電鏡觀察中發(fā)現(xiàn),由EPS和細(xì)菌形成了密實(shí)的生物膜,幾乎看不到濾料表面,并且觀察到團(tuán)聚在一起呈花椰菜型的細(xì)菌[31],推測(cè)其為Anammox菌。BAF運(yùn)行140 d已形成了穩(wěn)定的短程硝化-厭氧氨氧化自養(yǎng)脫氮生物膜。
短程硝化過程消耗氧氣,但溶解氧過高會(huì)使NOB快速增長,且抑制生物膜內(nèi)部的厭氧氨氧化作用,導(dǎo)致短程硝化-厭氧氨氧化過程遭到破壞。因此,DO濃度是BAF自養(yǎng)脫氮系統(tǒng)的重要影響因素,氣水比是BAF自養(yǎng)脫氮系統(tǒng)的關(guān)鍵性運(yùn)行參數(shù)。
圖7 不同氣水比條件下短程硝化-厭氧氨氧化系統(tǒng)中去除情況
2.4.2 不同氣水比對(duì)TN去除效果影響 圖8給出了不同氣水比條件下,BAF系統(tǒng)中TN去除情況。氣水比為8:1時(shí)出水TN濃度為89.13 mg·L-1,TN去除率為70.12%。當(dāng)氣水比升至10:1及12:1時(shí),出水TN濃度分別為62.47 mg·L-1和46.88 mg·L-1,TN去除率分別升高為78.47%和85.47%。氣水比繼續(xù)升高至15:1時(shí)出水TN濃度升高為61.37 mg·L-1,TN去除率降至81.40%。逐步提高氣水比時(shí)DO濃度逐漸升高,在FA抑制作用下短程硝化作用加強(qiáng),生成的與未被氧化的在Anammox作用下轉(zhuǎn)化為N2,TN去除率升高。但當(dāng)氣水比升至15:1時(shí)DO濃度過高,Anammox反應(yīng)已受到DO濃度抑制,導(dǎo)致TN去除率開始下降。根據(jù)去除率以及TN去除率結(jié)果可知,本試驗(yàn)最佳氣水比為12:1,去除負(fù)荷達(dá)到0.91 kg N·m-3·d-1,TN去除率為85.47%。
圖8 不同氣水比條件下短程硝化-厭氧氨氧化系統(tǒng)中TN去除情況
(1)常溫條件下,BAF中接種傳統(tǒng)活性污泥,采用悶曝-連續(xù)運(yùn)行結(jié)合的接種掛膜方式啟動(dòng)短程硝化-厭氧氨氧化自養(yǎng)脫氮系統(tǒng)。悶曝階段,使種泥活性恢復(fù);連續(xù)運(yùn)行過程中,高FA濃度,抑制NOB,實(shí)現(xiàn)BAF中亞硝酸鹽累積;通過調(diào)整BAF回流方式,降低回流液中,防止NOB生長,并通過Anammox濾池出水,接種微量Anammox菌,運(yùn)行80 d可實(shí)現(xiàn)短程硝化-厭氧氨氧化,140 d后系統(tǒng)運(yùn)行穩(wěn)定,TN去除率穩(wěn)定在76.62%。
(2)生物濾池有利于短程硝化-厭氧氨氧化工藝的實(shí)現(xiàn)與穩(wěn)定,生物膜中不同厚度存在好氧缺氧環(huán)境,為AOB和Anammox菌提供生存環(huán)境;濾料的過濾作用,有效地防止了Anammox菌的流失,使得Anammox菌在系統(tǒng)中不斷累積生長。不僅如此,由于AOB和Anammox菌均為自養(yǎng)菌生長緩慢,避免了生物濾池的頻繁反沖洗,因此,生物濾池的生物膜系統(tǒng)不但有利于短程硝化-厭氧氨氧化自養(yǎng)脫氮的實(shí)現(xiàn),且簡化了生物濾池的運(yùn)行。
(3)氣水比是BAF中短程硝化-厭氧氨氧化運(yùn)行的關(guān)鍵參數(shù),本研究中最佳的氣水比為12:1,氨氮去除負(fù)荷達(dá)到0.91 kg N·m-3·d-1,TN去除率為85.47%。
[1] OKABE S, OSHIKI M, TAKAHASHI Y,. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules [J]. Water Research, 2011, 45 (19): 6461-6470.
[2] KUENEN J G. Anammox bacteria: from discovery to application [J]. Nat. Rev. Microbiol., 2008, 6 (4): 320-326.
[3] KARTAL B, KUENEN J G, LOOSDRECHT M C M. Sewage treatment with Anammox [J]. Science, 2010, (328): 702-703.
[4] GAO D, LU J, LIANG H. Simultaneous energy recovery and autotrophic nitrogen removal from sewage at moderately low temperatures [J]. Applied Microbiology and Biotechnology, 2014, 98 (6): 2637-2645.
[5] LACKNER S, GILBERT E M, VLAEMINCK S E,. Full-scale partial nitritation/anammox experiences—an application survey [J]. Water Research, 2014, 55: 292-303.
[6] JETTEN M S M, STROUS M, VAN DE PAS-SCHONEN K T,. The anaerobic oxidation of ammonium [J]. FEMS Microbiology Reviews, 1999, (22): 421-437.
[7] PARK H, ROSENTHAL A, RAMALINGAM K,. Linking community profiles, gene expression and N-removal in Anammox bioreactors treating municipal anaerobic digestion reject water [J]. Environmental Science & Technology, 2010, 44 (16): 6110-6116.
[8] ALI M, OSHIKI M, AWATE T,. Physiological characterization of anaerobic ammonium oxidizing bacterium[J]. Environmental Microbiology, 2014, 17 (6): 2172-2189.
[9] AWATA T, OSHIKI M, KINDAICHI T,. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “” group [J]. Applied and Environmental Microbiology, 2013, 79 (13): 4145-4148.
[10] OSHIKI M, SHIMOKAWA M, FUJJII N,. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium[J]. Microbiology, 2011, (157): 1706-1713.
[11] 張倩, 王淑瑩, 苗圓圓, 等. 間歇低氧曝氣下CANON工藝處理生活污水的啟動(dòng) [J]. 化工學(xué)報(bào), 2017, 68 (1): 289-296. ZHANG Q, WANG S, MIAO Y Y,. Start-up of CANON process on domestic wastewater using intermittent aeration with low DO [J]. CIESC Journal, 2017, 68 (1): 289-296.
[12] 余彬, 陳廣升. A/O+BAF工藝處理高氨氮煤化工廢水 [J]. 中國給水排水, 2013, 29 (6): 81-88. YU B, CHEN G S. A/O+BAF process for treatment of coal chemical wastewater with high ammonia nitrogen [J]. China Water& Wastewater, 2013, 29 (6): 81:88.
[13] 李亞峰, 馬晨曦, 張馳. UASBB厭氧氨氧化反應(yīng)器處理污泥脫水液的影響因素研究 [J]. 環(huán)境科學(xué), 2014, 35 (8): 3044-3051. LI Y F, MA C X, ZHANG C. Influencing factors of sludge liquor treatment in UASBB [J]. Environmental Science, 2014, 35 (8): 3044-3051.
[14] 孫洪偉, 彭永臻, 時(shí)曉寧. UASB-A/O工藝處理垃圾滲濾液短程生物脫氮的實(shí)現(xiàn) [J]. 中國環(huán)境科學(xué), 2009, 29 (10): 1059-1064. SUN H W, PENG Y Z, SHI X N. Achieving nitrogen removal from landfill leachateUASB-A/O process [J]. China Environmental Science. 2009, 29 (10): 1059-1064.
[15] 李忠明, 王淑瑩, 苗蕾. 單級(jí)SBR厭氧/好氧/缺氧處理中期垃圾滲濾液深度脫氮 [J]. 化工學(xué)報(bào), 2015, 66 (2): 746-752. LI Z M, WANG S Y, MIAO L. Nitrogen removal from medium-age landfill leachateanaerobic/aerobic/anoxic process in SBR [J]. CIESC Journal, 2015, 66 (2): 746-752.
[16] 張亮, 王淑瑩, 張樹軍, 等. 高氨氮污泥脫水液短程硝化反硝化的啟動(dòng)及穩(wěn)定 [J]. 環(huán)境工程學(xué)報(bào), 2012, 6 (4): 1064-1068. ZHANG L, WANG S Y, ZHANG S J. Start up and maintenance of partial nitrification-denitrification of high strength ammonia sludge dewatering water [J]. Chinese Journal of Environmental Engineering. 2012, 6 (4): 1064-1068.
[17] 王成, 孟佳, 李玖齡, 等. 升流式微氧生物膜反應(yīng)器處理高氨氮低C/N比養(yǎng)豬廢水的效能 [J]. 化工學(xué)報(bào), 2016, 67 (9): 3895-3901. WANG M,MENG J, LI J L,. Pollutant removal efficiency in upflow microaerobic biofilm reactor treating manure-free piggery wastewater with low COD/TN ratio and high[J]. CIESC Journal, 2016, 67 (9): 3895-3901.
[18] 馬軍, 邱立平. 曝氣生物濾池及其研究進(jìn)展 [J]. 環(huán)境工程, 2002, 20 (3): 7-11. MA J, QIU L P. Biological aerated filter and its research progress [J]. Environment Engineering, 2002, 20 (3): 7-11.
[19] LIU X H, WANG H C, LONG F,. Optimizing and real-time control of biofilm formation, growth and renewal in denitrifying biofilter [J]. Bioresource Technology, 2016, (209): 326-332.
[20] 楊慶, 谷鵬超, 劉秀紅, 等. 兩種典型濾料厭氧氨氧化效果與工藝運(yùn)行優(yōu)化 [J]. 化工學(xué)報(bào), 2015, 66 (1): 455-463. YANG Q,GU P C, LIU X H,. Comparison of performance and optimizing process for two typical filter medias of ANAMMOX biofilters [J]. CIESC Journal, 2015, 66 (1): 455-463.
[21] 李冬, 楊卓, 梁瑜海, 等. 耦合反硝化的CANON生物濾池脫氮研究 [J]. 中國環(huán)境科學(xué), 2014, (6): 1448-1456. LI D,YANG Z,LIANG Y H,. Nitrogen removal performance by CANON biological filtration with denitrification [J]. China Environmental Science, 2014, (6): 1448-1456.
[22] GUO J, PENG Y, WANG S,. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure [J]. Bioresource Technology, 2009, 100 (11): 2796-2802.
[23] BLACKBUME R, YUAN Z G, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor [J]. Biodegradation, 2008, 19 (2): 303-312.
[24] HELLINGA C, SCHELLEN A A J C, MULDER J W,. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water [J]. Water Science and Technology, 1998, 37 (9): 135-142.
[25] PARK S, BAE W. Modeling kinetics of ammonia oxidation under simultaneious inhibition by free ammonia and free nitrous acid [J]. Process Biochemistry, 2009, 44 (6): 631-640.
[26] MOSQUERA C A, FERMOSO F G, CAMPOS J L,. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds [J]. Process Biochemistry, 2005, 40 (9): 3109-3118.
[27] ZENG W, LI L, YANG Y,. Nitritation and denitritation of domestic wastewater using a continuous anaerobic–anoxic–aerobic (A2O) process at ambient temperatures [J]. Bioresource Technology, 2010, 101 (21): 8074-8082.
[28] CHO S, TAKAHASHI Y, FUJII N,. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor [J]. Chemosphere, 2010, 78 (9): 1129-1135.
[29] YANG Q, LIU X H, PENG C Y,. N2O production during nitrogen removalnitrite from domestic wastewater: main sources and control method [J]. Environmental Science & Technology, 2009, 43 (24): 9400-9406.
[30] LIU X H, PENG Y, WANG C Y,. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor [J]. Journal of Environmental Sciences, 2008, 20 (6): 641-645.
[31] ARROJO B, MOSQUERA C A, CAMPOS J L,. Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR) [J]. Journal of Biotechnology, 2006, 123 (4): 453-463.
[32] CEMA G, PLAZA E, TRELA J,. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process [J]. Water Science and Technology, 2011, 64 (5): 1009-1015.
Implementation of integrated autotrophic nitrogen removal system at normal temperature by returned sludge
YANG Qing1, ZHOU Tong1, LIU Xiuhong2, LI Haixin1, LI Jianmin1, YU Fei1, PENG Yongzhen1
(1Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University and Technology, Beijing 100124,China;2School of Environment and Natural Resources, Renmin University of China,Beijing 100872, China)
To treat high ammonia nitrogen wastewater efficiently and low costly, achieving and stabilizing autotrophic nitrogen removal in biology aerated filter (BAF) were studied. The obtained results showed that autotrophic nitrogen removal was achieved through the combination of batch and continuous operation in the BAF with volcanics as filter, using the second pond reflux sludge as seeding sludge. During batch operation, the activity of seeding sludge was recovered. During the continuous operation, high free ammonia (FA) concentration inhibited the growth of nitrite oxidation bacteria (NOB). Through recycling the effluent of anaerobic ammonia oxidation (Anammox) biofilter, very slight of Anammox bacteria was inoculated in BAF. After 80 days operation, autotrophic nitrogen removal was achieved. From the 140th day, the removal rate of total nitrogen (TN) approach to 76.62%, and it can be stable all the time. Since aerobic and anoxic environment occurred in different depth of biofilm, ammonia oxidation bacteria (AOB) and Anammox bacteria can coexist in biofilm. Meanwhile, the filtration of volcanics can prevent Anammox bacteria from flowing out of BAF, making the enrichment of Anammox in the system of autotrophic nitrogen removal. In the meantime, AOB and Anammox as autotrophic bacteria grows slow, preventing the biofilter backwash frequently and simplifying the operation of biofilter. Air and water ratio is one of the key operation parameters in BAF of partial nitrification and Anammox. It was shown that the optimal air and water ratio in this study was 12:1. Accordingly, the removal loading radio of ammonia was 0.91 kg N·m-3·d-1. The removal efficiency of ammonia and TN were 96.86% and 85.47%, respectively.
BAF; high ammonia nitrogen wastewater; partial nitrification; Anammox; autotrophic nitrogen removal; start-up; biofilm; filtration
10.11949/j.issn.0438-1157.20161699
X 703.1
A
0438—1157(2017)05—2081—08
劉秀紅。
楊慶(1979—),男,副教授。
國家自然科學(xué)基金項(xiàng)目(51508561)。
2016-12-02收到初稿,2017-01-19收到修改稿。
2016-12-02.
LIU Xiuhong, lxhfei@163.com
supported by the National Natural Science Foundation of China (51508561).