亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Relativistic Bound and Scattering Amplitude of Spinless Particles in Modi fi ed Schioberg Plus Manning–Rosen Potentials

        2017-05-18 05:56:46YazarlooandMehraban
        Communications in Theoretical Physics 2017年1期

        B.H.Yazarlooand H.Mehraban

        Physics Department,Semnan University,P.O.Box 35195-363,Semnan,Iran

        1 Introduction

        In the relativistic and nonrelativistic quantum mechanics,the scattering state solution of the relativistic and nonrelativistic wave equation plays an important role for some physical potential.

        Recently,there has been an increased interest in studying the scattering state solutions for nonrelativistic quantum mechanics[1?4]and Scattering state of Dirac equation is investigated under cusp and Coulomb as well in Refs.[5–6]it is well known that the scattering state solutions of the Klein-Gordon equation for some physical potentials are very important since they contain all the necessary information for the relativistic quantum system under consideration,these potentials are of Eckart,Manning–Rosen,Woods–Saxon,Yukawa,and Hulthen.[7?12]Schi¨oberg potential function is a better description for the potential energy of a molecular vibration than the Morse potential function,and it represents also intermolecular interactions.Some authors have used the Schi¨oberg potential function to investigate the rotation and vibration of diatomic molecules.[13?16]Chen etal.[17]studied the nonlinear optical properties in a quantum well with the Schi¨oberg potential.As we know Manning–Rosen potential(MRP)is a central interaction.[18]The central potentials are used in all branches of physics.In particle and high-energy physics,they describe the quark interactions.[19]In nuclear physic,[20]atomic physics[21?22]they have been used to investigate the intermolecular interactions and atomic pair correlation functions[22?23]and it has been applied to study the vibration modes diatomic molecules.[24?25]The organization of the present paper is as follows,after a brief introductory of scattering state in Sec.2,we obtain the energy eigenvalues for bound state of modi fi ed Schioberg plus Manning–Rosen potential.In Sec.3 the calculation of scattering amplitude is presented,and in last section some special cases of the potential,such as Manning Rosen potential and modi fi ed Schioberg potential respectively are reported.

        2 Bound State Solutions

        The radial part of D-dimensional Klein–Gordon(KG)equation in the presence of scalar S(r)and vector V(r)potentials can be written as(~=c=1)[26?27]

        where m andEn,lrepresent the rest mass and energy of the spinless particle,respectively.Under the equal scalar and vector modi fi ed Schioberg plus Manning–Rosen potentials

        where D0,D1,D2,D3,σ,β,α,and b are potential constants,the KG equation is written as

        where we have used the following approximation for the centrifugal term

        By introducing a new variable of the form z=exp(?αr),Eq.(3)is transformed to the following analytically solvable form

        where

        By taking the wave function of the form

        Eq.(5)reduces to

        where

        By de fi ning

        Eq.(10)can be written as

        Eq.(16)is the hypergeometric equation,and its solution is the hypergeometric function.Therefore we have

        And the wave function has the form

        To have a fi nite solutionshould be a negative integer,this gives us the following equation

        Equation(19)gives us equation of energy eigenvalues of KG equation under the equal scalar and vector Schioberg plus Manning–Rosen potentials.For D=1–4,we have reported some numerical results for different states in Table 1.It is clear that the energy shows a degenerate behavior when l increases to l+1 and D reduces to D?2,i.e.

        Table 1 The bound-state energy levels Enlfor m=1/2,α =0.05,d′0=1/12,D0= ?1,D1=0.5,D2=0.3,D3= ?0.9,β=0.2,b=1,A=1/2.__________________________________________________________________________________________

        3 Scattering State Solutions

        In this section we intend to obtain the scattering states for the modi fi ed Schioberg plus Manning–Rosen potentials(D=3)and l=0,therefore we start from Eq.(3).Using a new variable of the form y=1? e?αr,Eq.(3)becomes

        where

        To obtain hypergeometric differential equation from Eq.(20),we use a new transformation

        which gives hypergeometric-type equation for gn,l(y)as

        The solution of Eq.(25)is hypergeometric function

        where

        Thus,the radial wave function of scattering states is

        We now study the asymptotic form of the above expression for large r,and calculate the normalization constant of radial wavefunctionsNn,land phase shifts.From formulaes(27)–(29),we have

        and by applying the following properties of heypergeometric function[27?28]

        we can write Eq.(32)as

        The asymptotic behavior for the wave function is given by(for l=0)[29?30]

        by comparing Eq.(38)with Eq.(39),we find

        or equivalently,from Eqs.(27)–(29),we can easily obtain

        Therefore,the total cross section can be easily obtained from

        where

        4 Discussion

        We are now going to study some special cases of our results.

        4.1 Bound and Scattering States Solutions for Manning–Rosen Potential

        By choosing D0=D1=0,the modi fi ed Schioberg plus Manning–Rosen potentials reduces into Manning–Rosen potential,

        In this case we obtain the following relations for bound states solution of Manning–Rosen potential

        with

        and the scattering amplitude can be given by

        where

        5 Bound and Scattering States Solutions for Modi fi ed Schioberg Potential

        If we consider β =A=0(or β =1,A=0),modi fi ed Schioberg plus Manning–Rosen potentials turns into the modi fi ed Schioberg potential

        according to our results,bound states solution of modi fi ed Schioberg potential in this limit is

        where

        and for the scattering amplitude we have

        with

        6 Conclusions

        In the present work we studied the scattering states solutions of the K–G equation under the equal scalar and vector modi fi ed Schioberg plus Manning–Rosen potentials.The radial wave functions in terms of hypergeometric functions and the energy eigenvalues for bound states are obtained and some numerical results are reported.We considered some special cases of as Manning–Rosen potential and modi fi ed Schioberg potential,respectively.These results may lead to many interesting applications in the different quantum mechanical systems.

        References

        [1]W.G.Feng,C.Y.Long,D.X.Yong,and S.H.Dong,Phys.Scr.77(2008)035001.

        [2]G.F.Wei,C.Y.Long,and S.H.Dong,Phys.Lett.A 372(2008)2592.

        [3]G.F.Wei,W.C.Qiang,and W.L.Chen,Cent.Eur.J.Phys.8(2010)574.

        [4]A.Arda,O.Aydogdu,and R.Sever,Phys.Scr.84(2011)025004.

        [5]Y.Jiang,S.H.Dong,A.Antill′on,and M.L.Cassou,Eur.Phys.J.C 45(2006)525.

        [6]S.H.Dong and M.L.Cassou,Phys.Lett.A 330(2004)168.

        [7]G.F.Wei,S.H.Dong,and V.B.Bezerra,Int.J.Mod.Phys.A 24(2009)161.

        [8]G.F.Wei,Z.Z.Zhen,and S.H.Dong,Cent.Eur.J.Phys.7(2009)175.

        [9]C.Rojas and V.M.Villalba,Phys.Rev.A71(2005)052101.

        [10]A.Arda and R.Sever,J.Math.Phys.52(2011)092101.

        [11]G.F.Wei,X.Y.Liu,and W.L.Chen,Int.J.Theor.Phys.48(2009)1649.

        [12]Z.M.Cang,Chin.Phys.B 17(2008)1274.

        [13]P.Q.Wang,J.Y.Liu,L.H.Zhang,S.Y.Cao,and C.S.Jia,J.Mol.Spectrosc.278(2012)23.

        [14]D.Schi¨oberg,Mol.Phys.59(1986)1123.

        [15]J Lu,Phys.Scr.72(2005)349.

        [16]C.Berkdemir,J.Math.Chem.46(2009)492.

        [17]T.Chen,W.Xie,and S.Liang,Physica B 407(2012)263.

        [18]M.F.Manning and N.Rosen,Phys.Rev.44(1933)943.

        [19]A.A.Khelashvili,Theor.Math.Phys.51(1982)447.

        [20]J.N.Ginocchio and A.Leviatan,Phys.Lett.B425(1998)1.

        [21]M.V.Zhukov,B.V.Danilin,D.V.Fedorov,J.S.Vaagen,F.A.Gareev,and J.Bang,Phys.Lett.B 265(1991)19.

        [22]A.Arda and R.Sever,J.Math.Chem.(2012)DOI:10.1007/s10910-012-0011-0.

        [23]A.Rahan,F.H.Stillinger,and H.L.Lemberg,J.Chem.Phys.63(1975)5223.

        [24]R.J.Le Roy and R.B.Bernstein,J.Chem.Phys.52(1970)3869.

        [25]E.Romera,P.S′anchez-Moreno,and J.S.Dehesa,J.Math.Phys.47(2006)103504.

        [26]H.Hassanabadi,B.H.Yazarloo,S.Zarrinkamar,and H.Rahimov,Commun.Theor.Phys.57(2012)339.

        [27]H.Hassanabadi and B.H.Yazarloo,Indian J.Phys.DOI 10.1007/s12648-013-0317-1.

        [28]H.Hassanabadi,B.H.Yazarlooa,S.Hassanabadia,S.Zarrinkamarb,and N.Salehi,Acta Phys.Pol.A 124(2013)20.

        [29]F.Cooper,A.Khare,and U.Sukhatme,Phys.Rep.251(1995)267.

        [30]R.K.Yadav,A.Khare,and B.P.Mandal,Ann.Phys.331(2013)313.

        一区二区三区日韩亚洲中文视频| 精品无码一区二区三区爱欲| 两个人看的www免费视频中文 | 亚洲午夜精品久久久久久人妖 | 久久人妻一区二区三区免费 | 成人精品综合免费视频| 色窝窝无码一区二区三区2022| 狼人狠狠干首页综合网| 国产一区二区三区影片| 午夜精品免费视频一区二区三区| 成人做爰69片免费看网站野花| 一本大道东京热无码| 久久精品国产88久久综合| 九一精品少妇一区二区三区| 国产中文三级全黄| 亚洲精品久久久久久动漫| 亚洲a人片在线观看网址| 91快射视频在线观看| 午夜三级a三级三点在线观看| 国产女女做受ⅹxx高潮| 国内精品视频成人一区二区| 少妇被啪出水在线视频| 免费a级毛片无码a∨中文字幕下载| 亚洲的天堂av无码| 国产三级国产精品三级在专区| 国产自拍偷拍视频免费在线观看 | 偷拍激情视频一区二区三区| 国产深夜男女无套内射| 国产香蕉尹人综合在线观| 亚洲一区二区女优视频| 久久综合九色欧美综合狠狠| 国精品无码一区二区三区在线| 日本精品一区二区三本中文| 国产少妇高潮在线视频| 玩弄白嫩少妇xxxxx性| 无限看片在线版免费视频大全| 在线观看国产精品自拍| 青青草狠吊色在线视频| 自拍偷自拍亚洲精品情侣| 99久久亚洲国产高清观看 | 亚洲午夜狼人综合影院|