亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The regularity of Navier-Stokes equations in five-dimensional space

        2017-05-18 11:59:59

        (Graduate School of China Academy of Engineering Physics, Beijing 100088, China)

        The regularity of Navier-Stokes equations in five-dimensional space

        MAXixia

        (Graduate School of China Academy of Engineering Physics, Beijing 100088, China)

        five dimensional space; Navier-Stokes; compact theorem; H?lder continuous

        This paper is concerned with the partial regularity of weak solutions of incompressible Navier-Stokes equations in five dimensional space with unit viscosity and zero external force:

        (1)

        forx∈Ω?R5,t<0, and

        (2)

        The concepts of weak solutions of (1)-(2), and their regularity were already introduced in the fundamental paper of J.Leray. Pioneering works of J. Leray showed the existence of a functionuandpsuch that

        (iii)usatisfies the Navier-Stokes equations in the distribution sense.

        In the series of papers [1-2,4-5], when the spatial dimensiondis 3, Scheffer introduced the notions of suitable weak solutions and the generalized energy inequality. He also established various partial regularity results of such weak solutions. Scheffer’s results were further generalized and strengthened in the paper of Caffareli, Kohn and Nirenberg[2], ford=3.

        Ford=4,V.Scheffer[6]provedthatthereexistsaweaksolutionuinR4×RsuchthatuiscontinuousoutsidealocallyclosedsetofR4×Rwhose3-DHausdorffmeasureisfinite.Ford=5,6,Struwe[2],DuandDong[3]obtainedthecorrespondingresultsinthesteadyNavier-Stokesequations.TianandXin[7]showedthepartialregularityforsmoothsolutionsandanyspatialdimensioninthesteadyNavier-Stokesequations.

        1 The Compactness theorem

        Definition 1 Let Ω be a open set in R5. We say that a pair (u,p)isasuitableweaksolutiontotheNavier-StokesequationsonthesetΩ×(-T1,0)ifitsatisfiestheconditions:

        (i)

        u∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)),

        (3)

        (ii)uandpsatisfytheNavier-Stokesequationsinthedistributionsense;

        (iii)uandpsatisfythelocalenergyinequality

        (4)

        Theorem 1[5]LetX0,XandX1bethreeBanachspacesandXi(i=0,1)isreflectivesuchthat

        X0?X?X1

        theinjectionofXintoX1beingcontinuous;andtheinjectionofX0intoXiscompact.LetTbeafixednumber,andletα0,α1betwofinitenumberssuchthatαi≥1,i=0,1.

        Weconsiderthespace

        AndthespaceΥisprovidedwiththenorm

        ThentheinjectionofΥintoLα(0,T;X)iscompact.

        Lemma 1 Let (u,p)isaweaksolutionoftheCauchyproblemsoftheNavier-StokesequationsinΩwithu∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)).Inaddition,

        u∈L4,∞(Ω×(-T1,0))

        (5)

        Proof First by using Holder inequality and Young inequality,

        (6)

        In fact, by interpolation inequality,

        Andthenweknow

        (7)

        inanyopensetΩ?R5fora.e.t∈(-T,0).

        By the elliptic regularity theory,

        Theorem 2 Let (un,pn)isasequenceofweaksolutions(1)-(2)inΩ×(-T,0)satisfying:

        (c) (un,pn)satisfy(4),whereE,E1somepositiveconstants.

        Supposethat(u,p)isaweaklimitof(un,pn),then(u,p)isalsoasuitableweaksolutionof(1)-(2).

        Proof In fact, we can choose a subsequence

        (8)

        (?tun,φ)=-(un·▽un,φ)-(▽un,▽φ)≤

        Hence

        In the following we prove in two steps.

        asδ→0,o(1)→0

        And

        ο(1)asn→0,ο(1)→0

        Accordingtotheweakcontinuousint,

        asδ→0,ο(1)→0isindependentofn.

        Hence,

        FinallybyTheorem1,

        un→u

        (9)

        convergesstronglyinL2(Ω×(-T,0)). Also,u∈L4,∞(Ω×(-T,0)),byinterpolationinequality,

        Hencefrom(9),

        un→u

        (10)

        convergesstronglyinL3(Ω×(-T,0)). Since (u,p)istheweaklimitof(un,pn), for any smoothφ>0compactlysupportedinΩ×(-T,0), we have that

        From Lemma 1 and (10), the theorem is proved.

        2 The Regularity theorem

        Using the compactness theorem in the last section, we show the partial regularity of the weak solutions of (1)-(2). Here we give a result which characterizes H?lder continuous functions by the growth of their local integrals.

        Theorem 3 Supposeu∈L2(Ω)satisfies

        (11)

        foranyBr(x)?Ωandα∈(0,1),where

        thenu∈Cα(Ω).

        Proof DenoteR0=dist(Ω′,?Ω),Ω′?Ω. For anyx0∈Ω′and0

        andintegratingwithrespecttoxinBr1(x0)

        from(11),

        (12)

        andthereforeforh

        with

        forany0

        for anyx∈Ω′ andR≤R0. Henceuis bounded in Ω′withtheestimate

        Then we have

        The first two terms on the right sides are estimated in (11). For the last term we write

        and integrating with respect toζoverB2R(x)∩B2R(y),whichcontainsBR(x),yields

        Therefore,wehave

        Inthefollowingweassume(u,p)isasuitableweaksolutionofNavier-StokesequationsinΩ×(-T1,0).

        Lemma 2 Suppose (u,p)isasuitableweaksolutionof(1)-(2),ifthereexiststwopositiveconstantε0suchthat

        (13)

        and

        u∈L4,∞(Ω×(-T,0))

        (14)

        then

        (15)

        for-θ2≤t≤0.DenoteQθ=Bθ×(-θ2,0).

        Proof Suppose that Lemma 2 is false, then there is a subsequence of weak solutions (ui,pi)with

        (16)

        whereQ1=B1×(-1,0),andsuchthat(15)isnotvalidfor(ui,pi).Let

        then

        (17)

        ▽vi)

        (18)

        inQ1. By Fatou Lemma,

        Sinceun→uisstrongconvergeinL3(Q), we have

        (19)

        for all sufficiently enoughi.

        (20)

        Here

        (21)

        and

        Denote

        thenbyCalderon-Zygmundestimateand(20),

        (22)

        Hencefrom(20),(22),(23),weget

        (24)

        Itisobviousfrom(24)that

        (25)

        Combining (19) and (25), we obtain a contraction and the lemma is proved.

        Theorem 4 Under the assumptions of Lemma 2, then for any numberk,▽k-1uisH?ldercontinuousinsubsetK??Ω×(-T,0)andthefollowingboundisvalid:

        wherec0isaconstantonlydependingonk.

        Proof Let (u,p)beasuitableweaksolutionsuchthat

        Let

        Asimplecomputationyieldsthatis(u1,p1)asuitableweaksolutionof

        ▽u1+▽p1=0

        Moreover,Lemma2impliesthat

        WerepeatthesameargumentsasLemma2 ,itisconcludedthat

        isboundedbyanabsoluteconstant.

        Thecasek>1istreatedwiththehelpoftheregularitytheoryfortheStokesequationsandbootstraparguments.

        Reference:

        [1] ESCAURIAZA L, SEREGIN G, SVERáK V.OnL3,∞-solutions to the navier-stokes equations and backward uniqueness [J]. Retrieved from the University of Minnesota Digital Conservancy, 2002. http://hdl.handle.net/11299/3858.

        [2] STRUWE M. On partial regularity results for the Navier-Stokes equations [J]. Comm Pure Appl Math, 1988,41(4):437-458.

        [3] DONG H, DU D. Partial regularity of Solutions to four-dimmensional Navier-Stokes equations at the first blow-up time [J].Comm Math Phys, 2007, 273(3): 785-801.

        [4] CAFFARELLI L, KOHN V, NIRENBERG L. Partial regularity of suitable weak solutions of the Navier-Stokes equations [J]. Comm Pure Appl Math, 1982, 35(6): 771-831.

        [5] LIN F. A new proof of the Caffarelli-Kohn-Nirenberg theorem [J]. Comm Pure Appl Math, 1998, 51(3): 241-257.

        [6] SCHEFFER V. Partial regularity of solutions to the Navier-Stokes equations[J]. Pacific Journal of Mathematics, 1976, 66(2):535-552.

        [7] TIAN G, XIN Z. Gradient estimation on Navier-Stokes equations [J]. Comm Anal Geom, 1999, 7(2): 221-257.

        [8] KATO T. StrongLp-solutions of the Navier-Stokes equations in Rm with applications to weak solutions [J]. Math Zeit, 1984, 187: 471-480.

        [9] SEREGIN G. Differentiability properties of weak solutions to the Navier-Stokes equations [J]. Algebra and Analysis, 2002, 14: 193-237.

        [12] SERRIN J. On the interior regularity of weak solutions of the Navier-Stokes equations [J]. Archive for Rational Mechanics and Analysis, 1962, 9(1):187-195.

        [13] 張雙虎,馮兆永,楊凱波. 修正Camassa-Holm方程的Cauchy問題[J]. 中山大學學報(自然科學版), 2014, 53(4): 8-12. ZHANG S H, FENG Z Y, YANG K B. The Cauchy problem for the modified Camassa-Holm equations [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(4): 8-12.

        [14] 趙繼紅,馮兆永. 具有臨界增長邊界條件的p-Laplace方程解的存在性[J]. 中山大學學報(自然科學版), 2010, 49(1):1-4. ZHAO J H, FENG Z Y. Existence of weak solutions for thep-Laplace equation with critical growth in boundary conditions [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1):1-4.

        [15] 關春霞,馮兆永. 弱耗散的Degasperis-Procesi方程弱解的存在性[J]. 中山大學學報(自然科學版), 2014, 53(2): 49-54. GUAN C X, FENG Z Y. The existence of global entropy weak solutions for a weakly dissipative Degasperis-Procesi equation [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(2): 49-54.

        五維空間Navier-Stokes方程的正則性*

        2016-09-19 基金項目:國家自然科學基金 (11671045)

        馬西霞(1990年生),女;研究方向:流體方程 ;E-mail:kfmaxixia@163.com

        馬西霞

        (中國工程物理研究院研究生院,北京 100088)

        五維空間;Navier-stokes方程;緊性定理;H?lder連續(xù)

        O175.26;O175.29

        A

        0529-6579(2017)01-0096-06

        10.13471/j.cnki.acta.snus.2017.01.016

        私人vps一夜爽毛片免费| 日本一区二区三区一级免费| 亚洲国产综合精品一区最新| 日本a级片免费网站观看| 欧美黑人性暴力猛交喷水黑人巨大| 真正免费一级毛片在线播放| 欧洲一级无码AV毛片免费| 久久精品熟女亚洲av香蕉| 比较有韵味的熟妇无码| 久热在线播放中文字幕| 最新手机国产在线小视频| 最新天堂一区二区三区| 高潮内射双龙视频| 亚洲精品无码国模| 日韩不卡无码三区| 男性av天堂一区二区| 欧美成人猛交69| 在线看片无码永久免费aⅴ| 人妻少妇av中文字幕乱码免费| 一本久久精品久久综合| 欧洲vat一区二区三区| 欧美日韩亚洲色图| 亚洲日本国产一区二区三区| 久久不见久久见www日本网| 久久人人玩人妻潮喷内射人人| 精品久久久久中文字幕APP| 中文字幕日本在线乱码| 久久人人爽爽爽人久久久| 国产午夜无码视频免费网站| 在线免费观看亚洲天堂av| 日本高清乱码中文字幕| 国产精品自在线拍国产| 成人永久福利在线观看不卡 | 国产在线不卡视频| 国产av一级二级三级| 亚洲精品动漫免费二区| 久久99国产亚洲高清观看韩国| 亚洲性码不卡视频在线| 又硬又粗进去好爽免费| 天堂影院一区二区三区四区| 日韩欧美亚洲国产一区二区三区|