丁滿,楊秋云,化黨領(lǐng),宋曉燕,暴秀麗,王代長(zhǎng),劉世亮
(河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,鄭州 450002)
褐煤基材料對(duì)石灰性土壤鉛鎘生物有效性的影響
丁滿,楊秋云,化黨領(lǐng)*,宋曉燕,暴秀麗,王代長(zhǎng),劉世亮
(河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,鄭州 450002)
為了解褐煤基材料對(duì)石灰性土壤鉛、鎘形態(tài)及其對(duì)生菜吸收鉛、鎘的影響,通過(guò)盆栽試驗(yàn),將8種褐煤基材料分別與鉛(Pb)、鎘(Cd)污染土混合培養(yǎng)并栽培生菜共120 d,測(cè)定土壤DTPA(二乙烯三胺五乙酸)可提取態(tài)和生菜中鉛、鎘的吸收積累情況。結(jié)果如下:褐煤基腐植酸、去礦化褐煤、荷鈣褐煤和褐煤基活性炭顯著降低土壤中DTPA提取態(tài)鉛含量,其3個(gè)施用量分別降低4.67%~7.97%、5.92%~11.46%、5.90%~11.80%和11.69%~26.43%,并隨著材料施用量的增加,土壤中DTPA提取態(tài)鉛含量逐漸減少;腐植酸樹(shù)脂和腐植酸接枝共聚顯著提高DTPA提取態(tài)鉛含量,分別提高了5.82%~32.12%和2.55%~24.76%;硝化褐煤、磺化褐煤也有提高土壤中DTPA提取態(tài)鉛含量的趨勢(shì);改性后比未改性褐煤顯著影響土壤DTPA提取態(tài)鉛含量,以活性炭處理降低最多,以樹(shù)脂和接枝處理增加最多。褐煤、腐植酸、去礦化、活性炭和接枝降低土壤中DTPA提取態(tài)鎘含量,活性炭和接枝作用達(dá)顯著水平,顯著降低的幅度分別是5.41%~13.51%和5.18%~27.70%;硝化、磺化、樹(shù)脂顯著提高土壤中DTPA提取態(tài)鎘,增幅分別是7.92%~20.13%、5.74%~21.05%和21.30%~44.63%。褐煤、腐植酸、去礦化、荷鈣、活性炭和接枝均能提高生菜地上部生物量,硝化、磺化和樹(shù)脂則降低生菜生物量;地上部生物量與土壤中DTPA提取態(tài)鉛、鎘含量呈負(fù)相關(guān)。因此,褐煤基材料可顯著地改變石灰性土壤中DTPA提取態(tài)鉛、鎘含量,顯著影響生菜的生長(zhǎng)量,且褐煤基材料對(duì)DTPA提取態(tài)鉛和鎘的影響存在差別。
改性褐煤;修復(fù)劑;石灰性土壤;DTPA提取態(tài)鉛;DTPA提取態(tài)鎘;生物有效性
河南省濟(jì)源市某鉛冶煉企業(yè)所造成的鉛、鎘、砷多金屬污染已導(dǎo)致約3 km內(nèi)從近到遠(yuǎn)的重、中、輕度污染,需要研究鈍化或活化劑,用于農(nóng)田邊種植邊修復(fù)。國(guó)內(nèi)的土壤重金屬污染修復(fù)研究以南方紅黃壤酸性土壤區(qū)較多[1-3],北方石灰性土壤重金屬污染修復(fù)則為初步研究[4],在輕度污染石灰性土壤中施加赤泥、油菜秸稈、玉米秸稈等可顯著降低豇豆豆角中鎘濃度和土壤中可溶態(tài)鎘濃度[5],石灰性土壤上添加雞糞、腐植酸、海泡石和生物炭,對(duì)土壤鎘均有活化效果[6]。褐煤是我國(guó)儲(chǔ)量豐富的富含天然腐植酸類物質(zhì),對(duì)多種金屬離子具有吸附效應(yīng)[7],尤其鉛和鎘離子[8]。腐植酸可使重金屬離子被絡(luò)合、螯合或吸附固定,降低重金屬離子生物有效性,減少植物吸收量[9]。腐植酸廣泛分布于自然環(huán)境當(dāng)中,在不同的環(huán)境中腐植酸的結(jié)構(gòu)及性質(zhì)有所不同[10]。有研究認(rèn)為,風(fēng)化煤腐植酸可通過(guò)調(diào)節(jié)土壤pH值和有機(jī)質(zhì)含量來(lái)抑制鉛的生物有效性,其中土壤pH值占主導(dǎo)因子[11]。由于這些研究結(jié)論在實(shí)際運(yùn)用中還有許多問(wèn)題,目前褐煤多用于消除重金屬污染的工業(yè)廢水處理,很少研究土壤中特別是石灰性土壤重金屬污染治理。本研究以腐植酸豐富的云南昭通褐煤為原料,經(jīng)過(guò)多種改性研究其對(duì)土壤中重金屬生物有效性的影響,旨在篩選適用于石灰性土壤鉛、鎘的高效鈍化劑或活化劑。
1.1 供試材料
供試土壤取自河南省濟(jì)源市克井鎮(zhèn)青多村某鉛冶煉企業(yè)周圍200 m處0~20 cm重金屬污染土壤,其基本理化性質(zhì)為:pH 8.05,有機(jī)質(zhì)27.13 g·kg-1,速效磷28.45 mg·kg-1,速效鉀145.30 mg·kg-1,堿解氮190.65 mg·kg-1,全鉛1 985.76 mg·kg-1,全鎘29.35 mg·kg-1。供試植物為美國(guó)大速生菜(Lactuca sativa L. var.capitata L.),沈陽(yáng)嘉禾種子有限公司提供。
褐煤基改性材料的制備:選取云南昭通褐煤進(jìn)行改性。荷鈣褐煤[12],褐煤引入鈣離子;磺化褐煤[13],褐煤經(jīng)濃硫酸處理,進(jìn)行磺化反應(yīng),將磺酸基引入煤的縮合芳香環(huán)和脂肪側(cè)鏈中;硝化褐煤[14],即褐煤用20%硝酸氧化,以提高腐植酸含量;去礦化褐煤[15],用一定濃度鹽酸和氫氟酸處理,去掉褐煤中鈣、鎂離子;褐煤基活性炭[16],以褐煤為原料,磷酸為活化劑,硫酸為添加劑,采用炭活化一步法制備活性炭;褐煤制腐植酸[17],堿溶酸析法。腐植酸樹(shù)脂[18]、腐植酸接枝共聚[19]均為腐植酸、丙烯酸、SP-65、過(guò)硫酸鉀和N,N-亞甲基雙丙烯酰胺的混合溶液制取,二者制取流程不同,得到不同性質(zhì)的網(wǎng)狀大分子聚合體。
上述試驗(yàn)材料下文分別簡(jiǎn)稱為:荷鈣、磺化、硝化、去礦化、活性炭、腐植酸、樹(shù)脂和接枝。
1.2 試驗(yàn)設(shè)計(jì)
土壤風(fēng)干后,磨細(xì),混勻,過(guò)20目篩,稱取土600 g,分別加入褐煤基改性材料,根據(jù)土壤重金屬污染修復(fù)中腐植質(zhì)類通常的添加量[20],設(shè)置3個(gè)添加量,改性材料分別占土壤質(zhì)量的1%、3%、5%,以未施添加劑的原土為對(duì)照。將改性材料和土壤混勻裝盆,每處理設(shè)置4個(gè)重復(fù)。蒸餾水澆灌,保持土壤相對(duì)持水量為60%,培養(yǎng)60 d老化處理,將生菜苗移植入盆,每盆間苗后保留5株,生長(zhǎng)60 d后取生菜樣及土樣。生菜烘干、粉碎、消煮,用火焰原子吸收分光光度計(jì)(ZEEnit700原子吸收光譜儀,德國(guó)耶拿分析儀器股份公司)測(cè)Pb、Cd含量;土樣風(fēng)干、過(guò)100目篩,測(cè)二乙烯三胺五乙酸(DTPA)提取態(tài)Pb、Cd含量。
1.3 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)用Excel 2007作圖,DPS 7.05作統(tǒng)計(jì)分析。
2.1 不同褐煤基材料對(duì)土壤DTPA提取態(tài)鉛、鎘含量的影響
2.1.1 土壤中DTPA提取態(tài)鉛
由圖1知,與未加材料的污染土(空白)相比,腐植酸、去礦化、荷鈣、活性炭、樹(shù)脂、接枝處理均表現(xiàn)出顯著性差異。未改性褐煤雖然有降低DTPA提取態(tài)鉛的趨勢(shì),但并未達(dá)顯著水平。
圖1 褐煤基改良劑對(duì)土壤DTPA提取態(tài)鉛含量的影響Figure 1 Effect of lignite-based amendments on DTPA-extractable Pb
同一改性材料在不同添加量時(shí),施加腐植酸、去礦化、鈣化、活性炭的土壤中DTPA提取態(tài)鉛含量降低幅度分別為4.67%~7.97%、5.92%~11.46%、5.90%~11.80%和11.69%~26.43%,隨著添加量的增加,土壤中DTPA提取態(tài)鉛含量逐漸減少,施用活性炭減少最多。硝化、磺化、樹(shù)脂和接枝的土壤中DTPA提取態(tài)鉛含量增加幅度分別為0.33%~3.65%、0.20%~3.93%、5.82%~32.12%和2.55%~24.76%,但硝化和磺化處理的增加未達(dá)顯著水平,DTPA提取態(tài)鉛含量隨著添加量的增加而增加,樹(shù)脂和接枝對(duì)提高土壤DTPA提取態(tài)鉛含量的作用最大。
2.1.2 土壤中DTPA提取態(tài)鎘
由圖2知,與污染土相比,添加1%、3%和5%材料時(shí),褐煤、腐植酸、去礦化、活性炭、接枝共聚處理的DTPA提取態(tài)鎘降低幅度分別為4.21%~9.27%、1.36%~ 5.97%、0.21%~7.85%、5.41%~13.51%和5.18%~27.70%,荷鈣處理對(duì)DTPA提取態(tài)鎘無(wú)影響,其中活性炭和接枝處理與對(duì)照達(dá)到顯著差異水平,而腐植酸、去礦化、荷鈣并不像對(duì)鉛那樣顯著降低;硝化、磺化、樹(shù)脂顯著增加土壤中DTPA提取態(tài)鎘含量,各添加量分別增加了7.92%~20.13%、5.74%~21.05%和21.30%~44.63%,均達(dá)顯著差異水平。與未改性褐煤相比,腐植酸、去礦化、活性炭未有顯著改變,硝化、磺化和樹(shù)脂的DTPA提取態(tài)鎘仍有提高,接枝顯著降低了DTPA提取態(tài)鎘。
2.1.3 對(duì)土壤DTPA提取態(tài)鉛和鎘含量影響的比較
圖2 褐煤基改良劑對(duì)土壤DTPA提取態(tài)鎘的影響Figure 2 Effect of lignite-based amendments on DTPA-extractable Cd
從圖1、圖2對(duì)比分析可知,硝化、磺化對(duì)DTPA提取態(tài)鉛在3個(gè)施用量時(shí)幾乎沒(méi)有影響,而對(duì)DTPA提取態(tài)鎘在3個(gè)用量時(shí)均有顯著性影響,并隨著用量增加鎘增加更多。接枝對(duì)DTPA態(tài)鉛的影響是顯著增加其含量,但對(duì)DTPA態(tài)鎘則是顯著降低其含量。荷鈣對(duì)DTPA態(tài)鉛含量有顯著降低作用,但對(duì)鎘無(wú)影響。褐煤對(duì)鉛無(wú)影響,但在用量3%和5%時(shí)對(duì)土壤DTPA態(tài)鎘有顯著降低作用。腐植酸、去礦化和活性炭均降低DTPA態(tài)鉛和鎘含量,樹(shù)脂則提高鉛和鎘含量。因此,活性炭降低兩種重金屬的DTPA提取態(tài)含量幅度最大,樹(shù)脂和接枝在提高或降低兩種重金屬DTPA提取態(tài)含量方面幅度最大。
2.2 不同褐煤基材料對(duì)生菜地上部生物量和鉛、鎘含量的影響
2.2.1 對(duì)生菜地上部生物量的影響
由圖3可知,9種改性材料在3個(gè)施用量下,對(duì)生菜地上部生物量的影響基本一致。1%施用量時(shí),褐煤、腐植酸、去礦化、荷鈣、活性炭和接枝均能一定程度增加生菜地上部干物質(zhì)量,但與對(duì)照無(wú)顯著差異。硝化、磺化和樹(shù)脂處理的生菜生物量低于未施用的對(duì)照,其中磺化和樹(shù)脂處理生物量顯著低于對(duì)照。3%和 5%施用量時(shí),腐植酸處理顯著高于對(duì)照,而硝化、磺化、樹(shù)脂和接枝比對(duì)照顯著降低生菜的生物量,硝化、樹(shù)脂和接枝用量越大生物量降低越多。對(duì)照?qǐng)D1、圖2中土壤DTPA態(tài)鉛、鎘含量的變化,可以看出隨著土壤中DTPA提取態(tài)鉛和鎘的增加,生物量減少,表現(xiàn)為抑制作用;相反,隨著土壤中DTPA提取態(tài)鉛、鎘含量的降低,生物量則增加。
2.2.2 對(duì)生菜地上部鉛、鎘含量的影響
圖3 褐煤基改良劑對(duì)生菜地上部生物量的影響Figure 3 Effect of lignite-based amendments on biomass of lettuce
圖4 褐煤基改良劑對(duì)生菜地上部鉛含量的影響Figure 4 Effect of lignite-based amendments on Pb content of lettuce
由圖4可見(jiàn),與污染土相比,各施用量下,生菜地上部鉛含量除活性炭在施用量1%和3%、磺化在施用量5%時(shí)顯著低于對(duì)照外,其他均高于對(duì)照。說(shuō)明除了活性炭和磺化外,9種材料中的多數(shù)材料能夠提高生菜中鉛含量。同時(shí),對(duì)照?qǐng)D1中幾種材料對(duì)土壤中DTPA提取態(tài)鉛含量的影響情況可知,除活性炭外,褐煤、腐植酸、去礦化、荷鈣雖降低土壤DTPA提取態(tài)鉛,但并沒(méi)有使生菜地上部鉛含量降低,反而升高。硝化、磺化和樹(shù)脂處理土壤鉛含量升高,生菜地上部鉛含量也升高。由圖5可見(jiàn),與不施褐煤基材料的原污染土比較,幾種材料基本上降低了生菜地上部鎘含量,且隨褐煤基材料用量的增加生菜吸收鎘含量的降低趨勢(shì)愈發(fā)明顯,其中較明顯的是褐煤、腐植酸、去礦化、荷鈣、活性炭、磺化。接枝和樹(shù)脂在用量1%時(shí)也能顯著降低生菜鎘含量,但在3%和5%用量時(shí),生菜中鎘含量反而升高。其原因可能為在3%和5%用量時(shí),兩種材料已使土壤嚴(yán)重結(jié)塊,鉛或鎘的較高含量是生菜生物量減小所導(dǎo)致的濃縮效應(yīng)。幾種改良劑對(duì)生菜中的鉛和鎘含量的影響不同。
2.2.3 相關(guān)性分析
由表1可見(jiàn),土壤中DTPA提取態(tài)鉛含量與生菜地上部鉛含量間在1%施用量時(shí)出現(xiàn)正相關(guān),更高施用量時(shí)不相關(guān);土壤鎘與地上部鎘含量在1%施用量時(shí)呈顯著負(fù)相關(guān),更高用量時(shí)不相關(guān)。土壤鉛與地上部鉛積累量在5%施用量時(shí)呈顯著負(fù)相關(guān);土壤鎘與地上部鎘積累量在1%和5%施用量時(shí)呈極顯著負(fù)相關(guān)。鉛、鎘均對(duì)生菜的地上部生物量有顯著或極顯著的負(fù)相關(guān)關(guān)系,特別是硝化、磺化、樹(shù)脂和接枝在施用量較大時(shí)對(duì)生菜生長(zhǎng)表現(xiàn)出極顯著的抑制作用。由相關(guān)系數(shù)或P值可知,土壤DTPA提取態(tài)鉛鎘與地上部干重的負(fù)相關(guān)關(guān)系隨施用量增加而增強(qiáng)。
3.1 土壤DTPA提取態(tài)重金屬
圖5 褐煤基改良劑對(duì)生菜地上部鎘含量的影響Figure 5 Effect of lignite-based amendments on Cd content of lettuce
表1 土壤DTPA提取態(tài)鉛、鎘含量與生菜地上部鉛、鎘含量及地上部生物量的相關(guān)性(n=8)Table 1 The relativity between the content of DTPA-extractable Pb,Cd in soil and the content of Pb,Cd as well as the biomass of stem and leaf of the lettuce
DTPA可提取態(tài)組分可以作為檢驗(yàn)土壤重金屬生物有效性的補(bǔ)充方法[21]。很多研究中使用DTPA螯合劑估計(jì)土壤重金屬對(duì)植物的潛在有效性[22],當(dāng)pH變化小時(shí),DTPA提取態(tài)重金屬與植物吸收有很好的相關(guān)性[23]。多種褐煤基材料均使土壤中鉛鎘的有效態(tài)發(fā)生顯著變化。由于褐煤具有高胡敏酸和富里酸含量,通過(guò)復(fù)合和吸附能夠穩(wěn)定重金屬[24],腐植酸含有大量功能基團(tuán),能夠與二價(jià)或三價(jià)金屬形成螯合態(tài)復(fù)合體[25],褐煤能夠穩(wěn)定非常酸化土壤中的鉛,但不推薦用在弱酸化、中性和堿性土壤中[26]。關(guān)于腐植酸-金屬化合物的結(jié)構(gòu)存在不同看法,特定功能團(tuán)并不能給出確定性解釋[27],腐植酸吸持大多數(shù)離子一般在pH3.0~5.2范圍,對(duì)Pb2+最大吸附能力的pH為4.05[28]。這與本研究中褐煤未經(jīng)改性時(shí)對(duì)石灰性土壤鉛鎘的鈍化效果不顯著是一致的。褐煤去礦化后比表面積增大,C-O鍵(酚,醚)和C=C芳香鍵增加[29],本研究中去礦化表現(xiàn)出了比褐煤較明顯的鈍化效果。活性炭的吸附能力依賴于其具有的高比表面積、微孔特征和表面化學(xué)特征[30],土壤pH值可能對(duì)其吸附能力影響較小,所以本研究中活性炭降低鉛鎘的效果最大。荷鈣褐煤在低濃度廢水中能高效吸附重金屬,對(duì)鉛的吸附力高于鎘[31],本研究中,與對(duì)照相比,土壤有效鉛含量降低達(dá)到顯著水平,而鎘不顯著,與其結(jié)論一致。硝酸氧化褐煤提高了褐煤中的腐植酸含量、陽(yáng)離子代換量和中等分子腐植質(zhì),從氧化褐煤中提取的腐植酸含有更多含氧功能團(tuán)和較小分子量的腐植酸[32],而小分子量腐植酸可能與重金屬離子更易形成可溶解的小分子絡(luò)合物,提高重金屬有效態(tài)含量,從而可較好地解釋本研究結(jié)果。硝化褐煤提高鉛有效態(tài)在3個(gè)施用量均達(dá)顯著差異,但對(duì)有效鎘雖然有所提高,但未達(dá)顯著差異。褐煤經(jīng)磺化反應(yīng)生成磺化褐煤后,增加了-SO3H、-COOH、-OH等基團(tuán)[33],可能在石灰性土壤合適的pH范圍內(nèi),增強(qiáng)了離子交換能力。本研究中,腐植酸樹(shù)脂顯著地提高了土壤中DTPA提取態(tài)鉛含量,腐植酸接枝共聚提高了土壤中DTPA提取態(tài)鉛而降低了DTPA提取態(tài)鎘含量,可能與腐植酸樹(shù)脂和接枝共聚的三維網(wǎng)絡(luò)結(jié)構(gòu)和親水性基團(tuán)羥基、羧基、酰胺基和磺酸基等高吸水性能有關(guān),多種功能團(tuán)與多價(jià)金屬離子螯合、吸附和離子交換[34],因此具有較強(qiáng)吸附能力和交換容量。從本研究中腐植酸接枝共聚和樹(shù)脂合成看,雖有相同反應(yīng)物,但反應(yīng)過(guò)程或反應(yīng)條件不同,生成物對(duì)于鉛和鎘的影響不同。
3.2 土壤DTPA提取態(tài)鉛鎘與生菜生物吸收有效性的關(guān)系
檢驗(yàn)土壤重金屬生物有效性提取劑的選擇,對(duì)考察土壤改良劑的效果是至關(guān)重要的。較少的提取劑和較少的改良劑試驗(yàn)可能會(huì)得出偏頗的結(jié)論。Singh等[35]研究了CaCl2、NH4OAc、NH4OAc-EDTA、DTPA、HCl對(duì)土壤Cd、Cu、Mn、Pb、Zn的提取和意大利黑麥草吸收金屬的效果,結(jié)果表明,不存在單個(gè)的提取劑對(duì)植物吸收的所有金屬濃度能做可靠的預(yù)測(cè),盡管提取的Cd與黑麥草中含量相關(guān)性較好,Pb在所有提取劑中相關(guān)性均差。Nicoletta等[36]認(rèn)為Pb被大麥根固定在根細(xì)胞而不容易從根部運(yùn)輸?shù)饺~。本研究中DTPA提取態(tài)鉛鎘同樣并不總是與生菜中的含量呈正相關(guān),也反映了這個(gè)問(wèn)題,表現(xiàn)在不同的添加劑種類和用量、鉛鎘不同重金屬等方面,土壤重金屬與生菜吸收量有不一致的增減。在對(duì)土壤污染修復(fù)材料進(jìn)行鈍化或活化判斷時(shí),應(yīng)該選擇適合土壤性質(zhì)的提取劑,因?yàn)橹参镂?、運(yùn)輸和積累過(guò)程是復(fù)雜的,土壤中某個(gè)提取方法的測(cè)定值與植物地上部吸收量的關(guān)系也是復(fù)雜的。Serife等[37]對(duì)Cd、Pb以及22個(gè)葡萄樣品,用HCl、H2SO4和NH4OAc進(jìn)行提取,統(tǒng)計(jì)結(jié)果表明,土壤中提取的Cd、Pb易利用態(tài)含量與葡萄中含量相關(guān),提取方法可用于生物有效性的研究。本研究表明,研究特定土壤上特定的重金屬污染修復(fù)材料和特定的供試植物,需要用特定的提取方法才可做出正確判斷。
(1)各褐煤基材料對(duì)土壤DTPA提取態(tài)Pb或Cd均有不同程度的影響,隨著添加量增加,降低或提高的量越大。各褐煤基材料對(duì)土壤DTPA提取態(tài)Cd的影響,除接枝共聚作用相反而降低其含量外,其他材料的影響規(guī)律與鉛相同。說(shuō)明褐煤改性后顯著地改變了性質(zhì),向鈍化或活化鉛鎘兩個(gè)方向變化。
(2)各褐煤基材料多是提高了生菜地上部鉛的含量,土壤DTPA提取態(tài)鉛與生菜吸收并不總是正相關(guān)。3個(gè)添加量對(duì)生菜吸收鉛的影響規(guī)律基本相同。各褐煤基材料對(duì)生菜地上部鎘含量的影響與鉛有較大差別。生菜地上部鎘含量與土壤DTPA提取態(tài)鎘含量有一定相關(guān)性。
(3)各褐煤基材料對(duì)生菜地上部生物量的影響較有規(guī)律。起鈍化作用的褐煤、腐植酸、去礦化、荷鈣使生菜生長(zhǎng)量略微增加,起活化作用的硝化、磺化、樹(shù)脂使生菜生長(zhǎng)量顯著降低,而且添加量增加時(shí),活化作用導(dǎo)致的生長(zhǎng)量更低。
[1]顏世紅.酸化土壤中鎘化學(xué)形態(tài)特征與鈍化研究[D].淮南:安徽理工大學(xué),2013.
YAN Shi-hong.Study on chemical speciation of cadmium in acidic soil and its inactivation[D].Huainan:Anhui University of Science and Technology,2013.
[2]王朋超,孫約兵,徐應(yīng)明,等.施用磷肥對(duì)南方酸性紅壤鎘生物有效性及土壤酶活性影響[J].環(huán)境化學(xué),2016,35(1):150-158.
WANG Peng-chao,SUN Yue-bing,XU Ying-ming,et al.Effects of phosphorous fertilizers on Cd bioavailability and soil enzyme activities in south acidic red soil[J].Environmental Chemistry,2016,35(1):150-158.
[3]殷飛,王海娟,李燕燕,等.不同鈍化劑對(duì)重金屬?gòu)?fù)合污染土壤的修復(fù)效應(yīng)研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(3):438-448.
YIN Fei,WANG Hai-juan,LI Yan-yan,et al.Remediation of multiple heavy metal polluted soil using different immobilizing agents[J].Journal of Agro-Environment Science,2015,34(3):438-448.
[4]歷琳.河南省鉛冶煉污染土壤的穩(wěn)定修復(fù)研究[D].鄭州:河南工業(yè)大學(xué),2013.
LI Lin.Immobilization of heavy metals in soils polluted by lead smelting in Henan Province[D].Zhengzhou:Henan University of Technology, 2013.
[5]丁瓊.土壤性質(zhì)及鈍化劑對(duì)鎘在土壤植物系統(tǒng)轉(zhuǎn)移的影響[D].北京:首都師范大學(xué),2012.
DING Qiong.The effects of soil properties and soil amendments on the transfer of cadmium in soil-plant system[D].Beijing:Capital Normal U-niversity,2012.
[6]李丹,李俊華,何婷,等.不同改良劑對(duì)石灰性鎘污染土壤的鎘形態(tài)和小白菜鎘吸收的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(9):1679-1685.
LI Dan,LI Jun-hua,HE Ting,et al.Effects of different amendments on soil Cd forms and Cd uptake by Chinese cabbage in Cd-contaminated calcareous soils[J].Journal of Agro-Environment Science,2015,34(9):1679-1685.
[7]Doskoil L,Peka M.Removal of metal ions from multi-component mixture using natural lignite[J].Fuel Processing Technology,2012,101(22):29-34.
[8]Havelcová M,Mizera J,Sykorová I,et al.Sorption of metal ions on lignite and the derived humic substances[J].Journal of Hazardous Materials,2009,161(1):559-564.
[9]鄒德乙.腐植酸對(duì)防治土壤重金屬污染的作用[J].腐植酸,2007(3):50-51.
ZOU De-yi Remediation effect of humic acid on heavy metal polluted soil[J].Humic Acid,2007(3):50-51.
[10]童毅,陳坤,楊睿彬.腐植酸在環(huán)境生態(tài)領(lǐng)域中的應(yīng)用進(jìn)展[J].腐植酸,2014(1):9-13.
TONG Yi,CHEN Kun,YANG Rui-bin.The application progress of humic acid in ecological environment[J].Humic Acid,2014(1):9-13.
[11]武瑞平.風(fēng)化煤腐植酸對(duì)重金屬鉛污染土壤修復(fù)作用的研究[D].太原:山西大學(xué),2010.
WU Rui-ping.Amelioration of humic acid in weathered coal on Pb contaminated soil[D].Taiyuan:Shanxi University,2010.
[12]Jochová M,PuncˇochárˇM,Horácˇek J,et al.Removal of heavy metals from water by lignite-based sorbents[J].Fuel,2004,83(9):1197-1203.
[13]張懷成,王在峰,李建義,等.褐煤經(jīng)磺化及堿化處理對(duì)重金屬離子吸附性能研究[J].環(huán)境化學(xué),1999,18(5):482-487.
ZHANG Huai-cheng,WANG Zai-feng,LI Jian-yi,et al.Studies on the adsorption characteristics of lignite activated by sulphonation or alkalization for heavy-metal ions[J].Environmental Chemistry,1999,18(5):482-487.
[14]王魯敏,鄧昌亮,殷軍港,等.硝化褐煤對(duì)鉻離子溶液的吸附研究[J].環(huán)境化學(xué),2001,20(1):54-58.
WANG Lu-min,DENG Chang-liang,YIN Jun-gang,et al.Study on adsorption of nitrify lignite for chromium-ion solution[J].Environmental Chemistry,2001,20(1):54-58.
[15]Yagˇmur E.Effect of demineralization process on the liquefaction of Turkish coals in tetralin with microwave energy:Determination of particle size distribution and surface area[J].Fuel,2005,84(18):2316-2323.
[16]羅道成,鄭李輝.用褐煤活化一步法制備活性炭的研究[J].煤化工, 2009,37(5):25-28.
LUO Dao-cheng,ZHENG Li-hui.Study on the preparation of activated carbon by one-step method of carbonization-activation with lignite coal[J].Coal Chemistry Industry,2009,37(5):25-28.
[17]黃金鳳,趙義龍,趙金香,等.腐植酸的提取及其成分含量測(cè)定[J].四川畜牧獸醫(yī),2007,34(5):27-28.
HUANG Jin-feng,ZHAO Yi-long,ZHAO Jin-xiang,et al.The extraction and determination of composition of humic acid[J].Sichuan Animal &Veterinary Science,2007,34(5):27-28.
[18]劉煥梅,劉煥昱,孫曉然.反相懸浮法制備腐植酸高吸水性樹(shù)脂[J].化工生產(chǎn)與技術(shù),2011,18(5):27-30.
LIU Huan-mei,LIU Huan-yu,SUN Xiao-ran.Preparation of humic acid high water absorbent resin by inverse phase suspension method[J].Chemical Production and Technology,2011,18(5):27-30.
[19]黃占斌,朱書全,張鈴春,等.保水劑在農(nóng)業(yè)改土節(jié)水中的效應(yīng)研究[J].水土保持研究,2004,11(3):57-60.
HUANG Zhan-bin,ZHU Shu-quan,ZHANG Ling-chun,et al.The effect on soil improving and water saving applied with chemical aquasorb in agriculture[J].Research of Soil and Water Conservation,2004,11(3):57-60.
[20]李麗明,丁玲,姚琨,等.胡敏素鈍化修復(fù)重金屬Cu(Ⅱ)Pb(Ⅱ)污染土壤[J].環(huán)境工程學(xué)報(bào),2016,10(6):3275-3280.
LI Li-ming,DING Ling,YAO Kun,et al.Remediation of heavy metal Cu(Ⅱ),Pb(Ⅱ)contaminated soils using humin[J].Chinese Journal of Environmental Engineering,2016,10(6):3275-3280.
[21]Fuentes A,Llorens M,Saez J,et al.Ecotoxicity,phytotoxicity and extractability of heavy metals from different stabilised sewage sludges[J].Environment Pollution,2006,143(2):355-360.
[22]Gregory E,Beshr S,Martha A E,et al.Bioavailability of heavy metals in biosolids-amended soil[J].Communications in Soil Science and Plant Analysis,2006,37(15-20):2157-2170.
[23]Bidwell A M,Dowdy R H.Cadmium and zinc availability to corn following termination of sewage sludge applications[J].Journal of Environmental Quality,1987,16(4):438-442.
[24]Dong L H,Yang J S,Yuan H L,et al.Chemical characteristics and influences of two fractions of Chinese lignite humic acids on urease[J].European Journal of Oil Biology,2008,44(2):166-171.
[25]Clemente R,Bernal M P.Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acid [J].Chemosphere,2006,64(8):1264-1273.
[26]Nikolett U,Márk R,Eszter D,et al.Stabilization of Cr,Pb,and Zn in soil using lignite[J].Soil and Sediment Contamination,2014,23(3):270-286.
[27]Pehlivan E,Arslan G.Uptake of metal ions on humic acids[J].EnergySources,2006,28(Part A):1099-1112.
[28]Brown P A,Gill S A,Allen S J.Metal removal from wastewater using peat[J].Water Research,2000,34(16):3907-3916.
[29]Starck J,Burg P,Muller S,et al.The influence of demineralisation and ammoxidation on the adsorption properties of an activated carbon prepared from a polish lignite[J].Carbon,2006,44(12):2549-2557.
[30]Demirbas A,Arslan G,Pehlivan E.Recent studies on activated carbons and fly ashes from Turkish resources[J].Energy Sources,2006(Part A), 28:627-638.
[31]Jochová M,Punochá M,Horáek J.Removal of heavy metals from water by lignite-based sorbents[J].Fuel,2004,83(9):1197-1203.
[32]Liu F C,Xing S J,Du Z Y.Nitric acid oxidation for improvement of a Chinese lignite as soil conditioner[J].Communications in Soil Science and Plant Analysis,2011,42(15):1782-1790.
[33]羅道成,劉俊峰,李忠遠(yuǎn).用磺化褐煤處理含鉻(Ⅵ)廢水的研究[J].煤化工,2010,38(2):36-38.
LUO Dao-cheng,LIU Jun-feng,LI Zhong-yuan.Study on the treatment of chromium(Ⅵ)-containing waste water using sulphonated lignite[J].Coal Chemical Industry,2010,38(2):36-38.
[34]劉煥梅,孫曉然,劉煥昱,等.反相懸浮聚合法制備腐植酸高吸水性樹(shù)脂進(jìn)展[J].化學(xué)世界,2013(1):54-58.
LIU Huan-mei,SUN Xiao-ran,LIU Huan-yu,et al.Progress in humic acid super-absorbent resin prepared by inverse-phase suspension polymerization[J].Chemical World,2013(1):54-58.
[35]Singh S P,Tack F M G,Verloo M G.Extractability and bioavailability of heavy metals in surface soils derived from dredged sediments[J].Chemical Speciation&Bioavailability,1996,8(3):105-110.
[36]Nicoletta C,Bianca M P,Massimiliano P,et al.Heavy metal uptake by barley growing in polluted soils:Relationship with heavy metal speciation in soils[J].Communications in Soil Science&Plant Analysis, 2002,33(1/2):103-115.
Effects of amendments derived from lignite on Pb,Cd bioavailability of lettuce in calcareous soil
DING Man,YANG Qiu-yun,HUA Dang-ling*,SONG Xiao-yan,BAO Xiu-li,WANG Dai-chang,LIU Shi-liang
(College of Resources and Environment,Henan Agricultural University,Zhengzhou 450002,China)
The effect of amendments derived from lignite on DTPA-extractable lead(Pb)and cadmium(Cd)chemical speciation and its effect on lettuce growth in calcareous soil were examined by the pot experiment,eight kinds of lignite-based materials were mixed with Pb and Cd contaminated soil for 60 days,and then lettuce were grew for 60 days,soil DTPA-extractable Pb,Cd(two ethylene three amine five acetic acid)and the absorbed Pb and Cd in lettuce were determined.The results are as follows:humic acid,demineralization,calciumloaded and activated carbon significantly reduced DTPA-extractable Pb content by 4.67%~7.97%,5.92%~11.46%,5.90%~11.80%and 11.69%~26.43%respectively,with the increasing of the materials added,the content of DTPA-extractable Pb decreased,resin and graft copolymerization significantly increased the DTPA-extractable Pb by 5.82%~32.12%and 2.55%~24.76%,nitrification and sulfonation also have the capacity of increasing the DTPA-extractable Pb in soil.The content of DTPA-extractable Pb in soil was significantly influenced by the modified lignites,which was decreased most by the activated carbon treatment,and increased most by resin and graft copolymerization. Lignite,humic acid,demineralization,activated carbon and graft copolymerization reduced DTPA-extractable Cd content in soil,activatedcarbon and graft significantly decrease it by 5.41%~13.51%and 5.18%~27.70%;nitration,sulfonation and resin significantly improved it by 7.92%~20.13%,5.74%~21.05%and 21.30%~44.63%.Lignite,humic acid,demineralization,calcium-loaded,activated carbon and grafting could increase the biomass of lettuce;nitration,sulfonation and resin decreased the biomass of lettuce.The relationship of biomass and soil DTPA-extractable Pb,Cd content was negatively correlated.Therefore,several lignite-based materials can significantly change Pb,Cd chemical specification in calcareous soil,significantly affect the growth of lettuce,and have different influence on DTPA-extractable Pb and Cd.
modified lignite;amendment;calcareous soil;DTPA-extractable Pb;DTPA-extractable Cd;bioavailability
X53
A
1672-2043(2017)04-0678-08
10.11654/jaes.2016-1319
2016-10-16
丁滿(1990—),男,碩士,從事土壤重金屬污染修復(fù)研究。E-mail:729743141@qq.com
*通信作者:化黨領(lǐng)E-mail:collegehua@163.com
國(guó)家自然科學(xué)基金項(xiàng)目(41371311,41271471)
Project supported:The National Natural Science Foundation of China(41371311,41271471)
丁滿,楊秋云,化黨領(lǐng),等.褐煤基材料對(duì)石灰性土壤鉛鎘生物有效性的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(4):678-685.
DING Man,YANG Qiu-yun,HUA Dang-ling,et al.Effects of amendments derived from lignite on Pb,Cd bioavailability of lettuce in calcareous soil[J].Journal of Agro-Environment Science,2017,36(4):678-685.