亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A New Negative Discrete Hierarchy and Its N-Fold Darboux Transformation?

        2017-05-09 11:46:04NingZhang張寧andTieChengXia夏鐵成
        Communications in Theoretical Physics 2017年12期
        關(guān)鍵詞:張寧

        Ning Zhang(張寧) and Tie-Cheng Xia(夏鐵成)

        1Department of Basical Courses,Shandong University of Science and Technology,Taian 271019,China

        2Department of Mathematics,Shanghai University,Shanghai 200444,China

        1 Introduction

        Itis an importanttask in soliton theory to find integrable lattice system such as those connecting with well-known physical meaning equations. In past decades,lots of nonlinear integrable lattice soliton systems have been obtained and discussed successfully,e.g. the Ablowitz–Ladik lattice,[1]the Toda lattice,[2]the differential-difference KdV equation,[3]the Blaszakl–Marciniak lattice,[4?5]and so on.[6?10]It is well known,there are many systematic approaches to obtain explicit solutions of lattice soliton systems,such as the inverse scattering transformation,[11]the Hirota technique,[12]the algebra-geometric method,[13]the Darboux transformation,[14?15]etc.Among them,it has been proved that Darboux transformation is one of the most fruitful algorithmic procedures to get explicit solutions of nonlinear partial differential equations from a trivial seed.[16?22]

        In this paper,we consider a discrete spectral problem

        whereqn=q(n,t),pn=p(n,t)are potentials,andλis the spectral parameter andλt=0.For a lattice functionfn=f(n),the shift operatorE,the inverse ofEand difference operatorDare de fined as follows

        If letpn→qn/λ,qn→λpn,then the spctral problem(1)can be changed into the spectral problem

        which was considered by Dinget al.,where only a positive discrete hierarchy and 1-fold Darboux transformation were obtained.[23]So in this paper,we would like to further consider a negative discrete hierarchy and its properties associated with spectral problem(1).

        The organization of this paper is as follows.In Sec.2,we first establish a negative discrete hierarchy related to the spectral problem(1).In Sec.3,it is shown that the hierarchy is integrable in Liouville sense and possesses bi-Hamiltonian structure.In Sec.4,anN-fold Darboux transformation for negative discrete hierarchy is established with the help of gauge transformations of Lax pair.As an application,some exact solutions for a discrete equation in the negative hierarchy are given in Sec.5.

        2 A New Negative Discrete Hierarchy

        In order to get the discrete integrable system,we first proceed to solve the stationary discrete zero curvature equation

        From Eq.(5),it is easy to obtain the following recursion relations

        then compatibility condition between Eqs.(1)and(12)gives zero curvature equation

        We can give the first two discrete integrable systems in the hierarchy:

        Whenm=0,the hierarchy(13)gives

        Eq.(14)is a new negative discrete system,whose time part of the Lax pairs is

        V(n)=V(0)(n)

        3 Bi-Hamiltonian Structures of the Hierarchy

        De fine

        By implying the discrete trace identity

        withεto be determined later.Substituting expressions

        into Eq.(20)and comparing the coefficient ofλm?1,we obtain

        Takingm=1 in Eq.(21),a direct calculation shows thatε=0,so we get

        It is easy to verify thatJandKare all skew-symmetric operators,i.e.J=?J?,K=?K?.Then substituting Eq.(22)into Eq.(23)gives the bi-Hamitonian structure for the hierarchy(13)

        We can further prove the following theorem:

        4N-Fold Darboux Transformation

        As an illustrative example,we construct theN-fold Darboux transformation for the system(14)based on its Lax pair

        In fact,the Darboux transformation of the system(14)is a special gauge transformation of Lax pair(26)and(27).Consider the following gauge transformation

        whereφin=(φi1n(λj),φi2n(λj))T(i=1,2)are two basic solutions of Lax pair(26)and(27),andλj(j=1,2,...,2N)are 2Nparameters suitably chosen so that the determinant of the coefficients of the system(31)is nonzero.According to Eqs.(30)–(32),we can show that detTnis a(2N)-th order polynomial ofλ

        By using above fact,we can prove the following proposition.

        It is easy to see thatf11(λ,n)andf22(λ,n)are(2N+1)-th order polynomials inλ,f12(λ,n),andf21(λ,n)are(2N)-th order polynomials inλ,respectively.From Eqs.(26)and(32),we can get

        Moreover,by virtue of Eqs.(33)and(36),it can be proved thatλj(j= 1,2,...,2N)are roots offk,l(λ,n)(k,l=1,2),which together with Eq.(33)imply thatfk,l(λ,n)(k,l=1,2)may be divided by detTn.Therefore,we have

        By comparing the coefficients ofλN+1,λNin Eq.(37),we obtain

        Proposition 2Under the Darboux transformation(28),the matrix?V(n)de fined by Eq.(29)has the same form as

        It is obvious thatg11(λ,n),g22(λ,n)org12(λ,n),g21(λ,n)are(2N+1)-th or(2N)-th polynomials inλ,respectively.It can be checked thatλj(j=1,2,...,2N)are roots ofgk,l(λ,n)(k,l=1,2). Therefore,the matrix(Tn,t+TnVn)T?nis written as

        whererl ij(i,j=1,2;l=0,1)are independent ofλ.Comparing the coefficients ofλi(i=N+1,N,N?1)in Eq.(38),we obtain

        which leads to the relations(35)between old potential functions(pn,qn)and new potential functions(?pn,?qn).

        By using above facts,we can obtain the following theorem:

        5 The Exact Solutions

        In this section,we will give some exact solutions of system(14)via Darboux transformation(39).Taking the trivial solutionqn=0,pn=0,we obtain two kinds of exact solutions of the Lax pair(26)and(27)withλ=λj(j=1,2,...,2N)as follow

        According to Eqs.(32)and(36),we have

        By use of Cramer’s rule,the linear algebraic system(41)leads to

        Next,we give some exact solutions of the system(14)via Darboux transformation(39)for two cases whenN=1 andN=2 respectively.

        Case 1WhenN=1,formula(42)leads to

        Therefore,by using the Darboux transformation(39),we obtain new solutions of the system(14)as follows

        [1]M.J.Ablowitz and J.F.Ladik,J.Math.Phys.16(1975)598.

        [2]Gui-Zhang Tu,J.Phys.A:Math.Gen.23(1990)3903.

        [3]K.M.Tamizhmani an M.Lakshmana,J.Phys.A:Math.Gen.16(1983)3773.

        [4]M.Blaszak and K.Marciniak,J.Math.Phys.35(1994)4661.

        [5]Fa-Jun Yu and Li Li,J.Modern Phys.B 25(2011)3371.

        [6]Xin-Yue Li,Qiu-lan Zhao,Yu-Xia Li,and Huan-He Dong,J.Nonl.Sci.Appl.8(2015)496.

        [7]Xiang-Rong Wang,Xiao-En Zhang,and Pei-Yi Zhao,Abst.Appl.Anal.ID253102(2014)1.

        [8]Xi-Xiang Xu,Appl.Math.Comput.216(1)(2010)344.

        [9]Ning Zhang and Huan-He Dong,Modern Phys.Lett.B 23(2009)3491.

        [10]Ning Zhang and Tie-Cheng Xia,Int.J.Nonl.Sci.Num.Simulat.16(2015)301.

        [11]M.J.Ablowitz and H.Segur,Solitons and the Inverse Scattering Transform,SIAM,Philadelphia(1981).

        [12]Hirota Ryogo and Satsuma Junkichi,Progr.Theoret.Phys.Suppl.59(1976)64.

        [13]Yu-Qing Li,Huan-He Dong,and Bao-Shu Yin,J.Appl.Math.ID416472(2014)1.

        [14]V.B.Matveev and M.A.Salle,Darboux Transformations and Solitons,Springer-Verlag,Berlin(1991).

        [15]Chao-Hao Gu,He-Sheng Hu,and Zi-Xiang Zhou,Darboux Transformation in Soliton Theory and Its Geometric Applications,Shanghai Scienti fic and Technical Publishers,Shanghai(1999).

        [16]Yong Zhang,Huan-He Dong,Xiao-En Zhang,and Hong-Wei Yang,Comput.Math.Appl.73(2017)246.

        [17]Yu-Feng Zhang,Hong-Qing Zhang,and Xin-Bo Gong,Gongcheng Shuxue Xuebao 18(2001)93(in Chinese).

        [18]Wen-Xiu Ma and Xian-Guo Geng,Centrc de Recherches Mathematiques CMR Proceedings and Lecture Notes 29(2001)313.

        [19]En-Gui Fan,J.Phys.A 38(2005)1063.

        [20]Sen-Yue Lou,Man Jia,Xiao-Yan Tang,and Fei Huang,Phys.Rev.E 75(2007)056318.

        [21]En-Gui Fan,Commun.Theor.Phys.37(2002)145.

        [22]Sen-Yue Lou,Man Jia,Fei Huang,and Xiao-Yan Tang,Int.J.Theor.Phys.46(2007)2082.

        [23]Hai-Yong Ding,Xi-Xiang Xu,and Xiang-Dong Zhao,Chin.Phys.13(2004)0125.

        [24]Huan-He Dong,Yong Zhang,and Xiao-En Zhang,Commun.Nonl.Sci.Numer.Simulat.36(2016)354.

        猜你喜歡
        張寧
        一杯茶
        Fishing釣魚
        Go to School 上學
        樂普 《欣忭》
        The Rainbow Bridge/by Cynthia L00mis Gurin彩虹橋
        Umbrella Day傘日
        There
        Cross the River 過河
        張寧作品選登
        我愛我的母親——中國
        91久久青青草原线免费| 亚洲一区二区av免费观看| 精品国产麻豆免费人成网站| 国产亚洲av成人噜噜噜他| 免费人成视频网站网址| 国产网红主播无码精品| 99精品欧美一区二区三区| 欧美 国产 日产 韩国 在线 | 国产成人久久综合第一区| 中文字幕有码手机视频| 国产精品亚洲一区二区三区在线| 激情五月婷婷一区二区| 特黄熟妇丰满人妻无码| 特级做a爰片毛片免费看108| 亚洲av理论在线电影网| 中文字幕亚洲精品第1页| 无码流畅无码福利午夜| 国产高清自产拍av在线| 狠狠综合久久av一区二区蜜桃| 天天躁夜夜躁狠狠躁2021a2| 76少妇精品导航| 久久亚洲中文字幕精品一区四| 中文字幕综合一区二区三区| 中文字幕乱码无码人妻系列蜜桃| 无码不卡高清毛片免费 | 日韩精品无码区免费专区| 国产亚洲午夜精品| 和少妇人妻邻居做爰完整版| 国产午夜亚洲精品国产成人av | 亚洲AV无码日韩一区二区乱| 亚洲sm另类一区二区三区| 天天躁夜夜躁狠狠是什么心态| 日韩中文字幕免费视频| 亚洲精品国偷拍自产在线观看蜜臀| 日韩av无码午夜福利电影| 国产一区二区亚洲一区| 日本激情网站中文字幕| 国产免费一区二区三区免费视频| 国产一品道av在线一二三区| 丰满少妇棚拍无码视频| 丝袜人妻中文字幕首页|