亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A New Negative Discrete Hierarchy and Its N-Fold Darboux Transformation?

        2017-05-09 11:46:04NingZhang張寧andTieChengXia夏鐵成
        Communications in Theoretical Physics 2017年12期
        關(guān)鍵詞:張寧

        Ning Zhang(張寧) and Tie-Cheng Xia(夏鐵成)

        1Department of Basical Courses,Shandong University of Science and Technology,Taian 271019,China

        2Department of Mathematics,Shanghai University,Shanghai 200444,China

        1 Introduction

        Itis an importanttask in soliton theory to find integrable lattice system such as those connecting with well-known physical meaning equations. In past decades,lots of nonlinear integrable lattice soliton systems have been obtained and discussed successfully,e.g. the Ablowitz–Ladik lattice,[1]the Toda lattice,[2]the differential-difference KdV equation,[3]the Blaszakl–Marciniak lattice,[4?5]and so on.[6?10]It is well known,there are many systematic approaches to obtain explicit solutions of lattice soliton systems,such as the inverse scattering transformation,[11]the Hirota technique,[12]the algebra-geometric method,[13]the Darboux transformation,[14?15]etc.Among them,it has been proved that Darboux transformation is one of the most fruitful algorithmic procedures to get explicit solutions of nonlinear partial differential equations from a trivial seed.[16?22]

        In this paper,we consider a discrete spectral problem

        whereqn=q(n,t),pn=p(n,t)are potentials,andλis the spectral parameter andλt=0.For a lattice functionfn=f(n),the shift operatorE,the inverse ofEand difference operatorDare de fined as follows

        If letpn→qn/λ,qn→λpn,then the spctral problem(1)can be changed into the spectral problem

        which was considered by Dinget al.,where only a positive discrete hierarchy and 1-fold Darboux transformation were obtained.[23]So in this paper,we would like to further consider a negative discrete hierarchy and its properties associated with spectral problem(1).

        The organization of this paper is as follows.In Sec.2,we first establish a negative discrete hierarchy related to the spectral problem(1).In Sec.3,it is shown that the hierarchy is integrable in Liouville sense and possesses bi-Hamiltonian structure.In Sec.4,anN-fold Darboux transformation for negative discrete hierarchy is established with the help of gauge transformations of Lax pair.As an application,some exact solutions for a discrete equation in the negative hierarchy are given in Sec.5.

        2 A New Negative Discrete Hierarchy

        In order to get the discrete integrable system,we first proceed to solve the stationary discrete zero curvature equation

        From Eq.(5),it is easy to obtain the following recursion relations

        then compatibility condition between Eqs.(1)and(12)gives zero curvature equation

        We can give the first two discrete integrable systems in the hierarchy:

        Whenm=0,the hierarchy(13)gives

        Eq.(14)is a new negative discrete system,whose time part of the Lax pairs is

        V(n)=V(0)(n)

        3 Bi-Hamiltonian Structures of the Hierarchy

        De fine

        By implying the discrete trace identity

        withεto be determined later.Substituting expressions

        into Eq.(20)and comparing the coefficient ofλm?1,we obtain

        Takingm=1 in Eq.(21),a direct calculation shows thatε=0,so we get

        It is easy to verify thatJandKare all skew-symmetric operators,i.e.J=?J?,K=?K?.Then substituting Eq.(22)into Eq.(23)gives the bi-Hamitonian structure for the hierarchy(13)

        We can further prove the following theorem:

        4N-Fold Darboux Transformation

        As an illustrative example,we construct theN-fold Darboux transformation for the system(14)based on its Lax pair

        In fact,the Darboux transformation of the system(14)is a special gauge transformation of Lax pair(26)and(27).Consider the following gauge transformation

        whereφin=(φi1n(λj),φi2n(λj))T(i=1,2)are two basic solutions of Lax pair(26)and(27),andλj(j=1,2,...,2N)are 2Nparameters suitably chosen so that the determinant of the coefficients of the system(31)is nonzero.According to Eqs.(30)–(32),we can show that detTnis a(2N)-th order polynomial ofλ

        By using above fact,we can prove the following proposition.

        It is easy to see thatf11(λ,n)andf22(λ,n)are(2N+1)-th order polynomials inλ,f12(λ,n),andf21(λ,n)are(2N)-th order polynomials inλ,respectively.From Eqs.(26)and(32),we can get

        Moreover,by virtue of Eqs.(33)and(36),it can be proved thatλj(j= 1,2,...,2N)are roots offk,l(λ,n)(k,l=1,2),which together with Eq.(33)imply thatfk,l(λ,n)(k,l=1,2)may be divided by detTn.Therefore,we have

        By comparing the coefficients ofλN+1,λNin Eq.(37),we obtain

        Proposition 2Under the Darboux transformation(28),the matrix?V(n)de fined by Eq.(29)has the same form as

        It is obvious thatg11(λ,n),g22(λ,n)org12(λ,n),g21(λ,n)are(2N+1)-th or(2N)-th polynomials inλ,respectively.It can be checked thatλj(j=1,2,...,2N)are roots ofgk,l(λ,n)(k,l=1,2). Therefore,the matrix(Tn,t+TnVn)T?nis written as

        whererl ij(i,j=1,2;l=0,1)are independent ofλ.Comparing the coefficients ofλi(i=N+1,N,N?1)in Eq.(38),we obtain

        which leads to the relations(35)between old potential functions(pn,qn)and new potential functions(?pn,?qn).

        By using above facts,we can obtain the following theorem:

        5 The Exact Solutions

        In this section,we will give some exact solutions of system(14)via Darboux transformation(39).Taking the trivial solutionqn=0,pn=0,we obtain two kinds of exact solutions of the Lax pair(26)and(27)withλ=λj(j=1,2,...,2N)as follow

        According to Eqs.(32)and(36),we have

        By use of Cramer’s rule,the linear algebraic system(41)leads to

        Next,we give some exact solutions of the system(14)via Darboux transformation(39)for two cases whenN=1 andN=2 respectively.

        Case 1WhenN=1,formula(42)leads to

        Therefore,by using the Darboux transformation(39),we obtain new solutions of the system(14)as follows

        [1]M.J.Ablowitz and J.F.Ladik,J.Math.Phys.16(1975)598.

        [2]Gui-Zhang Tu,J.Phys.A:Math.Gen.23(1990)3903.

        [3]K.M.Tamizhmani an M.Lakshmana,J.Phys.A:Math.Gen.16(1983)3773.

        [4]M.Blaszak and K.Marciniak,J.Math.Phys.35(1994)4661.

        [5]Fa-Jun Yu and Li Li,J.Modern Phys.B 25(2011)3371.

        [6]Xin-Yue Li,Qiu-lan Zhao,Yu-Xia Li,and Huan-He Dong,J.Nonl.Sci.Appl.8(2015)496.

        [7]Xiang-Rong Wang,Xiao-En Zhang,and Pei-Yi Zhao,Abst.Appl.Anal.ID253102(2014)1.

        [8]Xi-Xiang Xu,Appl.Math.Comput.216(1)(2010)344.

        [9]Ning Zhang and Huan-He Dong,Modern Phys.Lett.B 23(2009)3491.

        [10]Ning Zhang and Tie-Cheng Xia,Int.J.Nonl.Sci.Num.Simulat.16(2015)301.

        [11]M.J.Ablowitz and H.Segur,Solitons and the Inverse Scattering Transform,SIAM,Philadelphia(1981).

        [12]Hirota Ryogo and Satsuma Junkichi,Progr.Theoret.Phys.Suppl.59(1976)64.

        [13]Yu-Qing Li,Huan-He Dong,and Bao-Shu Yin,J.Appl.Math.ID416472(2014)1.

        [14]V.B.Matveev and M.A.Salle,Darboux Transformations and Solitons,Springer-Verlag,Berlin(1991).

        [15]Chao-Hao Gu,He-Sheng Hu,and Zi-Xiang Zhou,Darboux Transformation in Soliton Theory and Its Geometric Applications,Shanghai Scienti fic and Technical Publishers,Shanghai(1999).

        [16]Yong Zhang,Huan-He Dong,Xiao-En Zhang,and Hong-Wei Yang,Comput.Math.Appl.73(2017)246.

        [17]Yu-Feng Zhang,Hong-Qing Zhang,and Xin-Bo Gong,Gongcheng Shuxue Xuebao 18(2001)93(in Chinese).

        [18]Wen-Xiu Ma and Xian-Guo Geng,Centrc de Recherches Mathematiques CMR Proceedings and Lecture Notes 29(2001)313.

        [19]En-Gui Fan,J.Phys.A 38(2005)1063.

        [20]Sen-Yue Lou,Man Jia,Xiao-Yan Tang,and Fei Huang,Phys.Rev.E 75(2007)056318.

        [21]En-Gui Fan,Commun.Theor.Phys.37(2002)145.

        [22]Sen-Yue Lou,Man Jia,Fei Huang,and Xiao-Yan Tang,Int.J.Theor.Phys.46(2007)2082.

        [23]Hai-Yong Ding,Xi-Xiang Xu,and Xiang-Dong Zhao,Chin.Phys.13(2004)0125.

        [24]Huan-He Dong,Yong Zhang,and Xiao-En Zhang,Commun.Nonl.Sci.Numer.Simulat.36(2016)354.

        猜你喜歡
        張寧
        一杯茶
        Fishing釣魚
        Go to School 上學
        樂普 《欣忭》
        The Rainbow Bridge/by Cynthia L00mis Gurin彩虹橋
        Umbrella Day傘日
        There
        Cross the River 過河
        張寧作品選登
        我愛我的母親——中國
        av人妻在线一区二区三区| 亚洲国产精品综合福利专区 | 亚洲成Av人片不卡无码观看| 国产精品女同久久久久久| 日本高清二区视频久二区| 女同在线视频一区二区| 大屁股流白浆一区二区三区| 亚洲av综合色区在线观看| 国产一区二区中文字幕在线观看| 成人偷拍自拍视频在线观看| 在厨房被c到高潮a毛片奶水| 久久久久国产综合av天堂| 真实国产老熟女粗口对白| 精品一区二区三区在线观看视频| 人妻无码中文专区久久综合| 亚洲精品国产福利在线观看| 一区二区三区视频免费观看在线| 中文字幕一区二区三区日日骚| 男人扒开添女人下部免费视频| 国产精品无码成人午夜电影| 色综合无码av网站| 中文人妻无码一区二区三区| 日本最新一区二区三区免费看| 一区二区激情偷拍老牛视频av| 一区二区黄色在线观看| 欧美老熟妇乱xxxxx| 熟女体下毛毛黑森林| 色妺妺视频网| 欧美日韩国产在线成人网| 亚洲一区二区三区国产精品| 日韩在线观看入口一二三四| 国产精品精品自在线拍| 一本大道久久东京热无码av| 国产精品主播视频| 国产午夜av一区二区三区| 亚洲日本人妻少妇中文字幕| 人妻精品久久久久中文字幕| 玩弄放荡人妻少妇系列| 久久久久久99精品| 99精品又硬又爽又粗少妇毛片| 国产精品成人av大片|