劉慧慧 張永安 王玉珠 曾寶勝 劉 群 張 真
(1. 國(guó)家林業(yè)局森林保護(hù)重點(diǎn)實(shí)驗(yàn)室 中國(guó)林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護(hù)研究所 北京 100091; 2.中國(guó)林業(yè)科學(xué)研究院華北林業(yè)
?
美國(guó)白蛾Wnt-1基因的基因組編輯*
劉慧慧1,2張永安1,2王玉珠1曾寶勝3劉 群3張 真1
(1. 國(guó)家林業(yè)局森林保護(hù)重點(diǎn)實(shí)驗(yàn)室 中國(guó)林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護(hù)研究所 北京 100091; 2.中國(guó)林業(yè)科學(xué)研究院華北林業(yè)
實(shí)驗(yàn)中心 北京 102300;3.中國(guó)科學(xué)院上海生命科學(xué)研究院植物生理生態(tài)研究所 昆蟲發(fā)育與進(jìn)化生物學(xué)重點(diǎn)實(shí)驗(yàn)室 上海 200032)
【目的】為了從分子水平上揭示美國(guó)白蛾飛行能力的機(jī)制,利用基因組編輯技術(shù)對(duì)翅形成相關(guān)基因Wnt-1進(jìn)行功能研究?!痉椒ā扛鶕?jù)美國(guó)白蛾的基因組和轉(zhuǎn)錄組信息設(shè)計(jì)引物,克隆得到HcWnt-1基因CDS區(qū)全長(zhǎng),利用在線軟件分析HcWNT-1蛋白的結(jié)構(gòu)特征; 通過RT-PCR確定該基因在其生長(zhǎng)發(fā)育過程中的時(shí)間表達(dá)模式,并通過免疫組化方法確定HcWNT-1蛋白的時(shí)空表達(dá)模式; 通過CRISPR/Cas9技術(shù)對(duì)HcWnt-1基因進(jìn)行編輯,觀察胚胎期突變體表型和基因型特點(diǎn),利用直接PCR和陽(yáng)性克隆測(cè)序檢測(cè)HcWnt-1基因突變?!窘Y(jié)果】HcWnt-1基因核苷酸序列大小為1 221 bp,編碼407個(gè)氨基酸,HcWNT-1蛋白含有螺旋-轉(zhuǎn)角-螺旋DNA結(jié)合基序和24個(gè)保守的半胱氨酸殘基,并且高度保守的Motif分散分布于整個(gè)序列。 轉(zhuǎn)錄水平和翻譯水平驗(yàn)證表明: 美國(guó)白蛾HcWnt-1基因在胚胎早期高表達(dá),且其表達(dá)水平隨著體節(jié)分化和附肢發(fā)育而呈時(shí)序性變化; 24 h時(shí),早期胚帶形成,轉(zhuǎn)錄水平出現(xiàn)第1個(gè)表達(dá)高峰,HcWNT-1蛋白表達(dá)主要集中于原頭區(qū); 隨著胚胎的發(fā)育,HcWnt-1基因表達(dá)水平逐漸下降,HcWNT-1蛋白表達(dá)沿著前后體軸由頭部向尾部逐漸延伸; 在144 h,轉(zhuǎn)錄水平出現(xiàn)第2個(gè)表達(dá)高峰,HcWNT-1蛋白表達(dá)主要集中于附肢。美國(guó)白蛾HcWnt-1基因的突變?cè)斐闪伺咛テ?9.8%的個(gè)體死亡(注射1 000頭),突變率為62.5%,PCR測(cè)序結(jié)果顯示2個(gè)靶點(diǎn)之間存在片段刪除,最大刪除片段為423 bp; 大部分突變體不能形成胚胎,少數(shù)能形成胚胎的個(gè)體體節(jié)形成異常和附肢發(fā)育受阻。【結(jié)論】美國(guó)白蛾胚胎發(fā)育類型符合短胚帶和中間胚帶型; CRISPR/Cas9基因組編輯技術(shù)可以對(duì)美國(guó)白蛾基因組進(jìn)行高效編輯,可為林業(yè)以及非模式害蟲基因功能研究提供理論支持;HcWnt-1基因敲除影響美國(guó)白蛾體節(jié)分化和附肢形成,說明該基因?qū)τ诿绹?guó)白蛾胚胎發(fā)育至關(guān)重要。此外,HcWnt-1突變?cè)斐擅绹?guó)白蛾胚胎期死亡,可作為未來美國(guó)白蛾遺傳防治的靶標(biāo)基因。關(guān)鍵詞: 美國(guó)白蛾; CRISPR/Cas9;Wnt-1; 基因組編輯; 免疫組化; 體節(jié)形成; 附肢發(fā)育
美國(guó)白蛾(Hyphantriacunea)屬鱗翅目燈蛾科(Lepidoptera: Arctiidae),是世界性檢疫害蟲,原產(chǎn)北美洲,現(xiàn)已廣泛分布于歐亞地區(qū)。自1979年傳入遼寧丹東以來,美國(guó)白蛾迅速在我國(guó)擴(kuò)散蔓延。目前,在山東、河北、天津、北京、陜西等地危害嚴(yán)重,河南、江蘇、安徽、吉林等地成為新的入侵區(qū),給我國(guó)林業(yè)生產(chǎn)和生態(tài)安全帶來巨大危害,每年造成巨大的經(jīng)濟(jì)損失(季榮等, 2003; 趙鐵珍等, 2007; 張俊杰等, 2013; 夏劍萍等, 2015; 劉俊等, 2016)。目前為止,對(duì)美國(guó)白蛾的防治主要依賴于化學(xué)藥劑,大量使用將導(dǎo)致其抗藥性增強(qiáng),不利于長(zhǎng)效控制,同時(shí)給生態(tài)環(huán)境帶來巨大壓力,因此尋求環(huán)境友好型的害蟲控制方法成為未來美國(guó)白蛾防治工作的重點(diǎn)。雖已有報(bào)道采用生物防治的方法,如利用天敵昆蟲周氏嚙小蜂(Chouioiacunea)和病原微生物美國(guó)白蛾NPV病毒(楊忠岐等, 2007),但因其見效慢,需要尋找其他更高效的無公害防治方法共同防治美國(guó)白蛾。近年來,釋放攜帶顯性致死基因(release of insects carrying a dominant lethal strategy)的RIDL技術(shù)作為新興的無公害防治技術(shù)引起人們的關(guān)注,該技術(shù)通過遺傳操作手段對(duì)昆蟲進(jìn)行改造獲得不育雄蟲,大量釋放這些不育雄蟲使其產(chǎn)生無生殖能力的后代,連續(xù)釋放幾代后,能有效控制害蟲。此技術(shù)已在小菜蛾(Plutellaxylostella)、棉紅鈴蟲(Pectinophoragossypiella)、地中海實(shí)蠅(Ceratitiscapitata)、橄欖實(shí)蠅(Bactroceraoleae)和墨西哥實(shí)蠅(Anastrephaludens)等物種中應(yīng)用(Thomasetal., 2000; Alpheyetal., 2010; Martinsetal., 2012; Jinetal., 2013; Antetal., 2012)。目前此技術(shù)尚未應(yīng)用于美國(guó)白蛾。
CRISPR/Cas系統(tǒng)作為新興的基因組編輯工具,由sgRNA和Cas9蛋白組成,sgRNA可特異性識(shí)別基因序列,引導(dǎo)Cas蛋白對(duì)靶標(biāo)基因的DNA雙鏈進(jìn)行定點(diǎn)切割(Hsuetal., 2014)。該技術(shù)已成功應(yīng)用于一些鱗翅目昆蟲,如家蠶(Bombyxmori)(Wangetal., 2013)、柑橘鳳蝶(Papilioxuthus)和金鳳蝶(Papiliomachaon)(Lietal., 2015)、斜紋夜蛾(Spodopteralitura)(Bietal., 2016)、小菜蛾(Huangetal., 2016)、棉鈴蟲(Helicoverpaarmigera)(Wangetal., 2016)、馬尾松毛蟲(Dendrolimuspunctatus)(Liuetal., 2016)。為驗(yàn)證CRISPR/Cas9系統(tǒng)在美國(guó)白蛾中應(yīng)用的可行性,選擇昆蟲翅發(fā)育相關(guān)的Wnt-1基因作為標(biāo)記基因進(jìn)行試驗(yàn)。果蠅(Drosophilamelanogaster)的Wnt信號(hào)途徑的研究比較透徹,wingless(Wnt-1)對(duì)于果蠅翅的發(fā)育起著重要作用(Sharmaetal., 1976),其作為體節(jié)極性基因也參與一系列重要生命過程,包括體節(jié)分化(Bolognesietal., 2008; Fuetal., 2012; Petersenetal., 2009)、體軸發(fā)育(Hikasaetal., 2013)、表皮的形成(Sahai-Hernandezetal., 2012)、腦的發(fā)育(Kobayashietal., 2007)和長(zhǎng)期記憶的形成(Tanetal., 2013)等。在赤擬谷盜(Triboliumcastaneum)中,Wntsignaling對(duì)于胚胎期足的發(fā)育,以及幼蟲到成蟲期的足與翅的重生、昆蟲的變態(tài)等方面均發(fā)揮著重要功能(Oberetal., 2006;Shahetal., 2011)。在家蠶中,Wnt-1在腹節(jié)發(fā)育和色斑形成中發(fā)揮作用(Zhangetal., 2015)。
本研究利用CRISPR/Cas9系統(tǒng)對(duì)Wnt-1基因進(jìn)行了初步的功能研究,同時(shí)結(jié)合胚胎期Wnt-1基因轉(zhuǎn)錄水平和翻譯水平表達(dá)模式初步推斷美國(guó)白蛾胚胎發(fā)育為短胚帶型和中胚帶型。通過在胚胎期注射體外合成的Cas9 mRNA和Wnt-sgRNAs,檢測(cè)Wnt-1基因敲除事件,統(tǒng)計(jì)美國(guó)白蛾的死亡率,觀察對(duì)美國(guó)白蛾體節(jié)分化和附肢發(fā)育等的影響。本文首次利用CRISPR/Cas9基因組編輯技術(shù)對(duì)美國(guó)白蛾進(jìn)行遺傳操作,為林業(yè)害蟲基因功能研究提供新的思路,同時(shí)Wnt-1基因可作為致死基因應(yīng)用于美國(guó)白蛾未來的遺傳防治。
1.1 昆蟲飼養(yǎng)
美國(guó)白蛾和人工飼料由中國(guó)林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護(hù)研究所昆蟲病原微生物學(xué)科組提供。在人工培養(yǎng)箱內(nèi)飼養(yǎng)美國(guó)白蛾,飼養(yǎng)溫度為(25±1) ℃,光周期為16 h光照∶8 h黑暗,相對(duì)濕度為75%。
1.2 RNA提取及cDNA合成
收集產(chǎn)卵后4,8,12,16,18, 20,24 h及2~8天的美國(guó)白蛾卵,液氮速凍后-80 ℃保存。Trizol(Invitrogen)提取各樣品的總RNA,經(jīng)DNase I(Takara)消化去除DNA后,以1 μg總RNA為模板,利用Protoscript M-MuLV First Strand cDNA Synthesis Kit(Thermo)合成cDNA,-20 ℃保存?zhèn)溆谩?/p>
1.3 基因克隆和蛋白質(zhì)特征預(yù)測(cè)
根據(jù)美國(guó)白蛾Wnt-1的轉(zhuǎn)錄組數(shù)據(jù)設(shè)計(jì)引物并對(duì)該基因CDS區(qū)域進(jìn)行克隆,正向引物為Wnt-1-ORF-F: ATGATTGCGGCCATGTTGCGGAGC,反向引物為Wnt-1-ORF-R: CTATAAACACGTGTGCAC AAC。使用KOD-Plus(Toyobo)DNA聚合酶進(jìn)行基因擴(kuò)增,PCR擴(kuò)增程序: 94 ℃預(yù)變性3 min; 94 ℃,15 s; 58 ℃,15 s; 68 ℃,1 min 30 s,35個(gè)循環(huán); 4 ℃保持10 min。將PCR產(chǎn)物連入pCR-Blunt進(jìn)行測(cè)序。
利用NCBI在線網(wǎng)站預(yù)測(cè)該基因的開放閱讀框(http://www.ncbi.nlm.nih.gov/ gorf/gorf.html),利用ExPASy在線分析軟件的Compute pI/Mw tool功能預(yù)測(cè)蛋白特點(diǎn)(http://web.expasy.org/compute_pi/)。并利用在線網(wǎng)站預(yù)測(cè)蛋白結(jié)構(gòu)(https://www. predictprotein.org/home,http://meme-suite.org/tools/meme和http://www.ncbi.nlm. nih.gov/ Structure/cdd/wrpsb.cgi)。
1.4 實(shí)時(shí)熒光定量PCR
各個(gè)時(shí)期反轉(zhuǎn)錄的cDNA產(chǎn)物作為Real-time PCR檢測(cè)的模板,利用SYBR Green Realtime PCR Master Mix(Toyobo)進(jìn)行擴(kuò)增,正向引物: ATGGTA TGTCTGGCTCGT,反向引物: CTGGTGATTTATGG TCTGG。核糖體蛋白基因rp32作為內(nèi)參,正向引物: GCCCAGCATTGGTTATGGA,反向引物CGCTTC TTTGATGAGACACCG。反應(yīng)總體系20 μL: 10 μL SYBR mix,8 μL RNA-free water,0.5 μL F/R 引物,1 μL DNA。反應(yīng)程序?yàn)椋?95 ℃,10 s; 然后95 ℃,15 s; 60 ℃,30 s,40個(gè)循環(huán),最后加溶解曲線。
1.5 WNT-1的免疫組化
在家蠶免疫組化方法基礎(chǔ)上進(jìn)行改進(jìn)(Sweeneyetal., 2012)。收集1~8天的美國(guó)白蛾卵,用固定液A(1∶1 99%正庚烷heptan和10.8%甲醛formaldehyde)固定,4 ℃保存?zhèn)溆谩?.3%的次氯酸鈉溶液處理收集的卵5~10 min,去除卵殼,PBS洗去多余的次氯酸鈉; permeabilizing buffer(1×PBS,4%多聚甲醛paraformaldehyde,0.1% Triton X-100,0.1%脫氧膽酸鹽deoxycholate)固定30 min,室溫下PBT洗3次; 加入1×PBS,0.1% Triton X-100,0.5%牛血清蛋白bovine serum albumin,5%普通血清normal serum和1 mmol·L-1疊氮化鈉sodium azide)室溫封閉1 h后加入一抗(家蠶WNT-1抗體1∶1 000),不加抗體作為對(duì)照,4 ℃冰箱孵育48 h; PBT(PBS+0.1%Triton X-100)清洗12 h,加入封閉液室溫孵育1 h后加入異硫氰酸熒光素(FITC)直接染色,室溫孵育2 h; PBT洗3 h,olympus IX71S8F-3熒光顯微鏡觀察并拍照。
1.6 胚胎期顯微注射
使用顯微注射平臺(tái)對(duì)美國(guó)白蛾卵進(jìn)行注射。將產(chǎn)卵2 h內(nèi)的卵豎排排列到載玻片上,每列約50粒卵,卵孔朝上(卵呈球形,卵孔位于胚胎正中間),用少量膠水固定。將注射體系裝入顯微注射儀的毛細(xì)玻璃管,用氣泵直接注射,注射2次,注射后用膠水將注射孔封住,后用甲醛消毒,之后將載玻片放入培養(yǎng)皿,25 ℃黑暗培養(yǎng),數(shù)天后解剖發(fā)育至黑頭期的胚胎,并在顯微鏡下觀察表型,拍照記錄。
1.7 sgRNA和Cas9 mRNA的體外轉(zhuǎn)錄
通過引物Wnt-1-sgRNA1-F1: TAATACGACTCA CTATAGGAACGACGCGGTACCGCACGTTTTAGAGCT AGAAATAGCAAGTTAA,Wnt-1-sgRNA1-F2:TAATAC GACTCACTATAGGTGCAACTGTACGTTTCACGTTTTA GAGCTAGAAATAGCAAGTTAA,分別與R-AAAAGC ACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGA CTAGCCTTATTTTAACTTGCTATT進(jìn)行PCR。對(duì)照組EGFP-sgRNA1: TAATACGACTCACTATAGGGCG AGGAGCTGTTCACCGGTTTTAGAGCTAGAAATAGCA AGTTAAAA,EGFP-sgRNA2: TAATACGACTCACTAT AGGCCACAAGTTCAGCGTGTCGTTTTAGAGCTAGAA ATAGCA AGTTAAAA同時(shí)與上述R引物進(jìn)行PCR,將PCR產(chǎn)物連入pCR-Blunt載體,通過F-500:TTTGAGTGAGCTGATACCGCTCGC和sgRNA-R20:AAAAGCACCGACTCGGTGCC進(jìn)行PCR驗(yàn)證,以反向插入無堿基錯(cuò)配質(zhì)粒為模板,利用同樣引物對(duì)sgRNAs序列進(jìn)行擴(kuò)增,將純化后的PCR產(chǎn)物作為合成sgRNAs的原始模板,使用MEGAscript? T7 kit(Ambion)試劑盒體外轉(zhuǎn)錄sgRNAs。Cas9質(zhì)粒PTD1-Cas9由上海植生所昆蟲分子實(shí)驗(yàn)室黃勇平課題組提供,使用mMESSAGE mMACHINETMT7 kit(Ambion)進(jìn)行體外轉(zhuǎn)錄,合成Cas9 mRNA(Wangetal., 2013)。
1.8 基因敲除檢測(cè)
為檢驗(yàn)Cas9/sgRNA對(duì)Wnt-1基因的切割效率,收集注射后第8天G0代未發(fā)育的卵以及突變體樣品,利用DNA提取試劑盒(康為)對(duì)收集的樣品抽提基因組DNA,PCR檢測(cè)和鑒定。擴(kuò)增引物在靶點(diǎn)兩側(cè)設(shè)計(jì),引物F: CAAACCGAGATGCGGCAG GAGTGCAA和R: GCATAGTTTGCACTTAACTTCG CAGC擴(kuò)增目的序列(圖1),PCR產(chǎn)物連到pCR-Blunt載體上,陽(yáng)性克隆測(cè)序鑒定。將測(cè)序結(jié)果和基因組序列進(jìn)行比對(duì),觀察是否有突變,找出突變堿基和突變類型。
2.1 美國(guó)白蛾Wnt-1基因的克隆及序列結(jié)構(gòu)分析
為了獲得美國(guó)白蛾Wnt-1基因信息,利用NCBI已公布的美國(guó)白蛾Wingless(Genbank登陸號(hào)EU333645.1)部分序列作為參考基因與美國(guó)白蛾轉(zhuǎn)錄組和基因組數(shù)據(jù)進(jìn)行本地blast比對(duì),獲得接近完全匹配的基因即Wnt-1,命名為HcWnt-1。以美國(guó)白蛾蛹cDNA為模板,通過PCR直接擴(kuò)增獲得Wnt-1基因ORF序列,測(cè)序分析結(jié)果表明該基因核苷酸序列大小為1 221 bp,將其ORF序列與美國(guó)白蛾基因組數(shù)據(jù)進(jìn)行比對(duì),發(fā)現(xiàn)該基因含有4個(gè)內(nèi)含子,編碼407個(gè)氨基酸,預(yù)測(cè)蛋白大小為45.6 kDa,等電點(diǎn)為9.69。HcWNT-1蛋白結(jié)構(gòu)分析表明,該基因含有Wnt家族保守結(jié)構(gòu)域(217~1 218 bp),含有螺旋-轉(zhuǎn)角-螺旋DNA結(jié)合基序(homeodomain,HD),并且高度保守的Motif分散分布于整個(gè)序列; 具有Wnt家族典型特征——富含23個(gè)以上的半胱氨酸殘基,HcWNT-1蛋白含24個(gè)保守的半胱氨酸殘基(圖1),結(jié)構(gòu)預(yù)測(cè)結(jié)果表明這些半胱氨酸之間可以形成二硫鍵,進(jìn)一步形成短的發(fā)夾結(jié)構(gòu),可能與蛋白活性相關(guān)。
圖1 美國(guó)白蛾HcWnt-1基因核苷酸和氨基酸序列分析Fig.1 Nucleic acid and deduced amino acid sequences analysis of the HcWnt-1 gene of H. cunea星號(hào)表示終止密碼子Asterisk indicates the stop codon; 方框表示半胱氨酸殘基Boxed sequences show the conserved cysteine residues; 紅色區(qū)域表示sgRNA的靶點(diǎn),綠色區(qū)域表示PAM結(jié)構(gòu)Sequences labeled in red color represent sgRNAs targets and PAM region labeled in green color; 藍(lán)色下劃線表示靶點(diǎn)序列的檢測(cè)引物F和R Sequences underlined are the test primers F(Forward primer)and R(Reverse primer).
2.2 胚胎期Wnt-1基因及其蛋白的表達(dá)譜
為了解胚胎期Wnt-1的表達(dá)模式,對(duì)不同時(shí)期的胚胎進(jìn)行取樣,并進(jìn)行相對(duì)定量分析。結(jié)果表明,Wnt-1在胚胎早期表達(dá)量迅速提高,24 h表達(dá)水平達(dá)到峰值,隨后逐漸下降,144 h出現(xiàn)另一個(gè)峰值,隨后又迅速下降(圖2)。
圖2 HcWnt-1在美國(guó)白蛾胚胎不同發(fā)育時(shí)期的表達(dá)模式Fig.2 Expression of HcWnt-1 during embryonic development in H. cunea
利用家蠶WNT-1蛋白多克隆抗體分別對(duì)美國(guó)白蛾24~192 h胚胎進(jìn)行免疫染色,觀察HcWNT-1蛋白胚胎期表達(dá)模式。對(duì)照不能觀察到胚胎,說明異硫氰酸熒光素(FITC)對(duì)胚胎染色無影響(圖3H)。免疫組化結(jié)果表明,24 h時(shí),美國(guó)白蛾已形成早期胚帶,HcWNT-1蛋白主要集中于前端區(qū)域即原頭區(qū)(圖3I); 隨著胚胎的發(fā)育,HcWNT-1蛋白表達(dá)沿著前后體軸由頭部向尾部逐漸延伸,此時(shí)體節(jié)從前端往腹部逐漸增加,且體節(jié)分化不明顯; 48 h,HcWNT-1蛋白主要集中于尾部的端部表達(dá),除端部外其他部位可觀察到微弱表達(dá)(圖3J); 隨著胚胎的分化,頭和胸部體節(jié)的附肢原基出現(xiàn),而腹部尚未出現(xiàn)附肢原基,72 h為原足期。HcWNT-1蛋白沿著附肢近遠(yuǎn)端軸向端部延伸,同時(shí)在尾部高表達(dá)(圖3K); 隨著附肢的分化,頭、胸和腹部的附肢原基增長(zhǎng),體節(jié)分化完成,為多足期; 96 h,HcWNT-1蛋白主要集中在附肢端部表達(dá)(圖3L); 144 h HcWNT-1蛋白表達(dá)主要集中附肢和體節(jié)處表達(dá),該時(shí)期附肢發(fā)育快速完成,身體開始反轉(zhuǎn)(圖3M); 192 h,胚胎發(fā)育完成,形成成熟的頭、胸和腹節(jié),而HcWNT-1蛋白表達(dá)也消失殆盡(圖3N)。
圖3 免疫組化驗(yàn)證美國(guó)白蛾HcWNT-1蛋白胚胎時(shí)期表達(dá)模式Fig.3 Expression pattern of HcWNT-1 at early embryonic stages as revealed by immunohistochemistryA-G:白光White light; H-N:綠光Green light; A,H: 對(duì)照Control, B-G, I-N:胚胎發(fā)育不同時(shí)間點(diǎn)WNT-1抗體免疫染色WNT-1 immunostaining in embryos at different times after fertilization showing FITC fluorescence in embryos.
2.3 美國(guó)白蛾Wnt-1基因胚胎期突變體表型
為檢驗(yàn)CRISPR/Cas9系統(tǒng)對(duì)美國(guó)白蛾的基因編輯效率,胚胎期直接注射HcWnt-1-sgRNAs和Cas9 mRNA。當(dāng)注射300 ng·μL-1EGFP sgRNA/Cas9 mRNA和水作為對(duì)照,1 000顆卵的孵化率均達(dá)85%以上,無表型變化。注射300 ng·μL-1HcWnt-1-sgRNAs和300 ng·μL-1Cas9 mRNA,1 000顆卵的胚胎死亡率高達(dá)99.8%,大部分個(gè)體不能發(fā)育至黑頭期,解剖結(jié)果顯示未發(fā)育至黑頭期的個(gè)體不能完成胚胎發(fā)育,個(gè)別能夠發(fā)育至黑頭期的胚胎出現(xiàn)體節(jié)缺失(5頭)、足缺失(6頭)、頭部畸形(3頭)等表型(圖4,表1),這表明CRISPR/Cas9系統(tǒng)可以對(duì)美國(guó)白蛾進(jìn)行高效基因組編輯,同時(shí)也表明HcWnt-1基因在美國(guó)白蛾胚胎發(fā)育階段,尤其在早期胚胎發(fā)育和分化中起著決定性作用。2.4Wnt-1基因突變體類型檢測(cè)
為檢驗(yàn)Wnt-1基因敲除效率,對(duì)對(duì)照(EGFP),(圖5B 1-2)、美國(guó)白蛾40頭未發(fā)育胚胎(第8天)(圖5B 3-6)和突變體胚胎(圖5B 7-10)進(jìn)行PCR檢測(cè),選擇菌落PCR陽(yáng)性克隆直接測(cè)序,每組送樣2個(gè)。結(jié)果表明8組克隆中有5組檢測(cè)到突變,突變率為62.5%。Wnt-1基因敲除會(huì)造成該基因片段刪除,最大刪除片斷為423 bp,除了主帶以外可以同時(shí)觀察到其他短片段,并且出現(xiàn)條帶彌散現(xiàn)象。將PCR產(chǎn)物連入T載體進(jìn)行測(cè)序,發(fā)現(xiàn)Wnt-1基因在2個(gè)靶點(diǎn)處均存在片段刪除,證明該基因被成功敲除(圖5C,D)。
圖4 Wnt-1-sgRNAs/Cas9 mRNA誘導(dǎo)美國(guó)白蛾Wnt-1突變的胚胎期表型Fig.4 Embryonic phenotypes in H.cunea resulting from Wnt-1-sgRNAs/Cas9 mRNA injectionA:注射EGFP sgRNAs和Cas9 mRNA Control injected with EGFP-sgRNAs/Cas9 mRNA; B-D:胚胎期突變體表型Severely affected embryo resulting from Wnt-1-sgRNA/Cas9 mRNA injection(B:足缺失,胸節(jié)聚合Compacted thoracic segments with thoracic legs missing; C:頭畸形,第8-12腹節(jié)缺失Deformed head, missing A8-A12 abdominal segments; D:頭畸形,胸足缺失Malformed head,missing thoracic legs).
表1 Cas9/sgRNA誘導(dǎo)美國(guó)白蛾胚胎期Wnt-1基因突變
圖5 HcWnt-1靶點(diǎn)設(shè)計(jì)圖及突變檢測(cè)Fig.5 Schematic diagram of HcWnt-1 sgRNA targets and mutation eventsA:在HcWnt-1第4個(gè)外顯子處設(shè)計(jì)2個(gè)靶點(diǎn)Schematic representation of Wnt-1 sgRNAs targeting sites; B: PCR產(chǎn)物電泳圖 Representative electrophoretogram of PCR products sequencing(1,2:對(duì)照Control,注射EGFP sgRNA/Cas9 mRNA Injection of EGFP sgRNA/Cas9 mRNA; 4-10: HcWnt-1突變體 HcWnt-1 mutants); C: Cas9誘導(dǎo)的嵌合體色譜圖 Representative chromatograms of chimera individual induced by sgRNA/Cas9; D: HcWnt-1 G0代胚胎突變體突變類型 Various deletion genotypes in G0 injected embryos.
昆蟲翅是昆蟲分類學(xué)上一個(gè)重要進(jìn)化特征,昆蟲翅的進(jìn)化有助于其擴(kuò)散,并且極大地提高了昆蟲的生存和繁衍的能力,在遷飛昆蟲的研究中尤其重要,同時(shí)翅斑的進(jìn)化與昆蟲生物學(xué)行為相關(guān),對(duì)于昆蟲翅的研究一直以來是科學(xué)家們關(guān)注的焦點(diǎn)(Allenetal., 2011; Derksetal., 2015; Linetal., 2016; Nishikawaetal., 2015; Oliveretal., 2011)。美國(guó)白蛾具有強(qiáng)大的飛行能力,Wnt-1基因的研究可以拓展人們對(duì)于Wnt-1信號(hào)途徑的認(rèn)識(shí),同時(shí)對(duì)美國(guó)白蛾飛行機(jī)制也有更深入了解。本試驗(yàn)在美國(guó)白蛾胚胎期直接注射Cas9 mRNA與sgRNA靶向敲除Wnt-1,測(cè)序檢驗(yàn)發(fā)現(xiàn)突變體的Wnt-1基因存在定點(diǎn)突變,說明CRISPR/Cas9系統(tǒng)可對(duì)美國(guó)白蛾進(jìn)行高效基因組編輯。同樣,CRISPR/Cas9體系在其他鱗翅目昆蟲中也可以進(jìn)行基因的高效編輯,如家蠶、柑橘鳳蝶和金鳳蝶、斜紋夜蛾、小菜蛾和馬尾松毛蟲,G0代突變率均高達(dá)90%(Lietal., 2015a; Wangetal., 2013; Bietal., 2016; Huangetal., 2016; Liuetal., 2017)。因此,CRISPR/Cas9體系可以普遍適用于非模式物種特定基因的基因組編輯。敲除Wnt-1導(dǎo)致美國(guó)白蛾胚胎期致死,致死率高達(dá)99.8%,該結(jié)果與家蠶和馬尾松毛蟲Wnt-1基因功能缺失的表型一致(Zhangetal., 2015; Liuetal., 2017),并且在這2個(gè)物種中驗(yàn)證該基因?qū)е碌呐咛テ谥滤缹儆趧┝恳蕾囆偷呐咛ニ劳?,這些結(jié)果說明在鱗翅目中Wnt-1基因功能保守,并且在胚胎的發(fā)育和分化過程中發(fā)揮重要作用。由于突變體不能發(fā)育至成蟲階段,Wnt-1基因參與美國(guó)白蛾翅形成機(jī)制以及其參與美國(guó)白蛾其他生命活動(dòng)的分子機(jī)制尚不清楚,需要對(duì)該信號(hào)途徑及機(jī)制進(jìn)行進(jìn)一步的探索,該通路的研究將為美國(guó)白蛾致死品系的獲得奠定基礎(chǔ),并為美國(guó)白蛾遺傳防治提供新的思路。
HcWnt-1基因在美國(guó)白蛾胚胎發(fā)育過程中扮演著重要的角色。RT-PCR和免疫組化可以直觀反映美國(guó)白蛾的Wnt-1基因和WNT-1蛋白時(shí)空表達(dá)模式,有利于揭示美國(guó)白蛾的胚胎發(fā)育類型。RT-PCR結(jié)果表明HcWnt-1基因在美國(guó)白蛾胚胎早期大量表達(dá),24 h達(dá)到第1個(gè)峰值,免疫組化結(jié)果表明HcWNT-1蛋白在整個(gè)胚帶,特別是在原頭區(qū)高表達(dá),說明Wnt-1基因在早期胚帶形成,尤其在胚帶前端發(fā)育發(fā)揮關(guān)鍵作用; 隨后HcWnt-1 mRNA表達(dá)量水平逐漸降低,而HcWNT-1蛋白的表達(dá)沿著前后體軸逐漸向尾部延伸,并且在尾部高表達(dá),說明HcWnt-1對(duì)美國(guó)白蛾體節(jié)形成起著關(guān)鍵作用; 隨著附肢和體節(jié)的形成,HcWNT-1蛋白沿著附肢的近遠(yuǎn)端軸逐漸向端部延伸,mRNA表達(dá)水平該時(shí)期出現(xiàn)第2個(gè)峰值,說明HcWnt-1在附肢的發(fā)育進(jìn)程中發(fā)揮重要功能; 隨后胚胎形成逐漸成熟,mRNA表達(dá)水平和WNT-1蛋白表達(dá)水平降低。美國(guó)白蛾HcWnt-1基因表達(dá)模式與短胚帶型和中間胚胎型昆蟲類似。在短胚帶型模式赤擬谷盜中,胚盤階段首次檢測(cè)到Wnt-1(wg)基因表達(dá),隨著胚盤從前往后延伸,在胚胎晚期階段,可以在腹部檢測(cè)到表達(dá)(Nagyetal., 1994)。在中間胚胎型昆蟲中,胚盤中部可以檢測(cè)到Wnt-1/wg轉(zhuǎn)錄本,隨著體節(jié)分化逐漸向腹后延伸(Nakao, 2010)。初步推斷美國(guó)白蛾胚胎發(fā)育類型符合短胚帶型和中間胚帶型特征。
Wnt-1基因在美國(guó)白蛾體節(jié)分割和附肢發(fā)育過程中發(fā)揮重要功能。Wnt-1基因敲除會(huì)導(dǎo)致多元的表型,如頭部畸形、體節(jié)缺失、附肢缺失等,與RT-PCR結(jié)果和免疫組化結(jié)果一致,與馬尾松毛蟲和家蠶Wnt-1基因敲除表型一致,推測(cè)Wnt-1基因在鱗翅目昆蟲中參與的信號(hào)通路途徑相似(Zhangetal., 2015; Liuetal., 2017)。Wnt-1基因敲除會(huì)導(dǎo)致頭部畸形的突變體表型,在昆蟲和動(dòng)物中也可見Wnt-1參與頭部形成過程的報(bào)道,比如眼的發(fā)育,端腦和間腦發(fā)育等(Rossietal., 2007; Fridrichetal., 2003; Bally-Cuifetal., 1995; Lekvenetal., 2003)。在果蠅中,時(shí)序性調(diào)節(jié)Wingless(Wnt-1)signalling 對(duì)于觸角和上頜骨分化起決定性作用(Lebretonetal., 2008)。在赤擬谷盜中,Wnt/β-cateninsignalling對(duì)于頭部發(fā)育發(fā)揮重要功能(Bentonetal., 2013; Bolognesietal., 2008; Fuetal., 2012),說明Wnt-1基因在美國(guó)白蛾頭部分化中發(fā)揮重要功能。Wnt-1基因敲除同樣會(huì)影響美國(guó)白蛾腹部體節(jié)的形成,該表型與家蠶、果蠅和馬尾松毛蟲的結(jié)果一致(Zhangetal., 2015; Larsenetal., 2003; Liuetal., 2017); 然而,在其他昆蟲如雙蟋蟀(Gryllusbimaculatus)、乳草長(zhǎng)蝽(Oncopeltusfasciatus)和赤擬谷盜中,敲除Wnt-1并不會(huì)造成體節(jié)數(shù)量的減少,但是敲除Wnt信號(hào)通路其他基因,如雙蟋蟀中敲除Arm,乳草長(zhǎng)蝽中敲除Pan,赤擬谷盜中敲除Wnt-8均會(huì)造成體節(jié)缺失和體節(jié)轉(zhuǎn)換(Angelinietal., 2005; Miyawakietal., 2004; Bolognesietal., 2008)。同樣,Wnt-1在動(dòng)物附肢進(jìn)化的多元化上至關(guān)重要,Wnt-1敲除會(huì)導(dǎo)致美國(guó)白蛾胸足和腹足缺失,該基因在全變態(tài)類昆蟲中發(fā)揮相似功能,如Wnt-1參與鞘翅目(Coleoptera),鱗翅目(Lepidoptera),膜翅目(Hymynoptera)和雙翅目(Diptera)的胚胎后期附肢發(fā)育(Siegfriedetal., 1994; Satoetal., 2008; Shahetal., 2011; Zhangetal., 2015)。然而在一些不完全變態(tài)昆蟲中,Wnt-1并不會(huì)影響昆蟲附肢發(fā)育,如雙蟋蟀(Angelinietal., 2005)和美洲大蠊(Periplanetaamericana)(Chesebroetal., 2013)。美國(guó)白蛾的Wnt-1基因由407個(gè)氨基酸組成,具有Wnt信號(hào)通路家族的典型特征——富含24個(gè)半胱氨酸殘基,與已報(bào)道各物種WNT-1功能肽序列特征一致,筆者推測(cè)Wnt信號(hào)通路在昆蟲中相對(duì)保守,但在功能上存在差異,這些結(jié)果支持上述猜測(cè),即Wntsignalling決定美國(guó)白蛾等后生動(dòng)物的分節(jié)機(jī)制。
美國(guó)白蛾符合短胚帶型和中間胚帶型的胚胎發(fā)育類型,其中HcWnt-1基因在其胚胎發(fā)育過程中發(fā)揮重要功能,為美國(guó)白蛾未來遺傳防治提供候選基因。同時(shí)CRISPR/Cas9體系成功在美國(guó)白蛾中實(shí)現(xiàn),為該害蟲功能基因研究奠定基礎(chǔ),也為其他林業(yè)害蟲的功能基因研究提供重要的參考依據(jù)。
季 榮, 謝寶瑜, 李欣海, 等. 2003. 外來入侵種——美國(guó)白蛾的研究進(jìn)展. 昆蟲知識(shí), 40 (1):13-18.
(Ji R, Xie B Y, Li X H,etal. 2003.Research progress on the invasive species,Hyphantriacunea. Eentomological Knowledge, 40 (1):13-18. [in Chinese])
劉 俊, 葉利芹, 成 聰, 等. 2016. 江蘇省2015年林業(yè)有害生物發(fā)生情況及2016年發(fā)生趨勢(shì)預(yù)測(cè). 金陵科技學(xué)院學(xué)報(bào), 32 (1): 64-67.
(Liu J, Ye L Q, Cheng C,etal. 2016. The occurrence of forestry pests in 2015 and its occurrence trend prediction in 2016 in Jiangsu Province. Journal of Jinling Institute of Technology, 32 (1): 64-67. [in Chinese])
夏劍萍,梅愛華, 陳 亮, 等. 2015. 美國(guó)白蛾入侵湖北省的危險(xiǎn)性分析.湖北林業(yè)科技, 44 (1): 28-40.
(Xia J P, Mei A H,Chen L,etal. 2015. Risk analysis ofHyphantriacuneainvasion in Hubei Province. Hubei Forestry Science and Technology, 44(1): 28-40. [in Chinese])
楊忠岐, 張永安. 2007. 重大外來入侵害蟲——美國(guó)白蛾生物防治技術(shù)研究. 昆蟲知識(shí), 44 (4): 465-471.
(Yang Z Q, Zhang Y A. 2007. Researches on techniques for biocontrol of the fall webworm,Hyphantriacunea, a severe invasive insect pest to China. Chinese Bulletin of Entomology, 44 (4): 465-471. [in Chinese])
張俊杰, 董 琴, 趙涵博, 等. 2013. 中國(guó)大陸美國(guó)白蛾的侵入分布、危害與防治概述.吉林林業(yè)科技, 42 (3): 27-47.
(Zhang J J, Dong Q, Zhao H B,etal. 2013. A summary of distribution,harm and control measures ofHyphantriacuneain mainland China. Journal of Jilin Forestry Science and Technology, 42 (3): 27-47. [in Chinese])
趙鐵珍, 高 嵐, 柯水發(fā), 等. 2007. 美國(guó)白蛾入侵部分非經(jīng)濟(jì)損失評(píng)估案例分析. 北京林業(yè)大學(xué)學(xué)報(bào), 29 (3): 171-177.
(Zhao T Z, Gao L, Ke S F,etal. 2007. Case study on the evaluation of non-economic loss afterHyphantriacunea’s invading China. Journal of Beijing Forestry University, 29 (3): 171-177. [in Chinese])
Allen C E, Zwaan B J, Brakefield P M. 2011. Evolution of sexual dimorphism in the Lepidoptera. Annu Rev Entomol, 56: 445-464.
Alphey L, Benedict M, Bellini R,etal. 2010. Sterile-insect methods for control of mosquito-borne diseases:an analysis. Vector Borne Zoonotic Dis, 10 (3): 295-311.
Angelini D R, Kaufman T C. 2005. Functional analyses in the milkweed bugOncopeltusfasciatus(Hemiptera) support a role forWntsignaling in body segmentation but not appendage development. Dev Biol, 283 (2): 409-423.
Ant T, Koukidou M, Rempoulakis P. 2012. Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol, 10: (51): 1-8.
Bally-Cuif L, Cholley B, Wassef M. 1995. Involvement of WNT-1 in the formation of the mes/metencephalic boundary. Mechanisms of Development, 53 (1): 23-34.
Benton M A, Akam M, Pavlopoulos A. 2013. Cell and tissue dynamics duringTriboliumembryogenesis revealed by versatile fluorescence labeling approaches. Development, 140 (15): 3210-3220.
Bi H L, Xu J, Tan A J,etal. 2016. CRISPR/Cas9-mediated targeted gene mutagenesis inSpodopteralitura. Insect Sci, 23 (3): 469-77.
Bolognesi R, Farzana L, Fischer T D. 2008. MultipleWntgenes are required for segmentation in the short-germ embryo ofTriboliumcastaneum. Curr Biol, 18 (20): 1624-1629.
Brisson J A. 2010. Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Philos Trans R Soc Lond B Biol Sci, 365 (1540): 605-616.
Chesebro J E, Pueyo J I, Couso J P. 2013. Interplay between aWnt-dependentorganiser and the Notch segmentation clock regulates posterior development inPeriplanetaamericana. Biol Open, 2 (2): 227-237.
Derks M F, Smit S, Salis L,etal. 2015. The genome of Winter Moth (Operophterabrumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biol Evol, 7 (8): 2321-2332.
Fridrich M. 2003. Evolution of insect eye development first insights from fruit fly, grasshopper and flour beetle. Integr Comp Biol, 43 (4): 508-521.
Fu G, Condon K C, Epton M J. 2007. Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol, 25 (3): 353-357.
Fu J, Posnien N, Bolognesi R. 2012. Asymmetrically expressed axin required for anterior development inTribolium. PNAS, 109 (20): 7782-7786.
Hikasa H, Sokol S Y. 2013.Wntsignaling in vertebrate axis specification. Cold Spring Harb Perspect Biol, 5 (1): a007955.
Hsu P D, Lander E S, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157 (6): 1262-1278.
Huang Y P, Chen Y, Zeng B,etal. 2016. CRISPR/Cas9 mediated knockout of theabdominal-Ahomeotic gene in the global pest, diamondback moth (Plutellaxylostella). Insect Biochem Mol Biol, 75: 98-106. doi: 10.1016/j.ibmb.2016.06.004
Ian M Slaymaker L G, Bernd Z. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science, 351 (6268): 84-88.
Jin L, Walker A S, Fu G,etal. 2013. Engineered female-specific lethality for control of pest Lepidoptera. ACS Synth Biol, 2 (3): 160-166.
Kobayashi C, Saito Y, Ogawa K. 2007.Wntsignaling is required for antero-posterior patterning of the planarian brain. Dev Biol, 306 (2): 714-724.
Larsen C W, Hirst E, Alexandre C. 2003. Segment boundary formation inDrosophilaembryos. Development, 130 (23): 5625-5635.
Lebreton G, Faucher C, Cribbs D L. 2008. Timing ofWinglesssignalling distinguishes maxillary and antennal identities inDrosophilamelanogaster. Development, 135 (13): 2301-2309.
Lekven A C, Buckles G R, Kostakis N. 2003.Wnt1 andWnt10bfunction redundantly at the zebrafish midbrain-hindbrain boundary. Dev Biol, 254 (2): 172-187.
Li X, Fan D, Zhang W. 2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat Commun, 6(8212):1-10.
Lin X, Xu Y, Yao Y,etal. 2016. JNK signaling mediates wing form polymorphism in brown planthoppers (Nilaparvatalugens). Insect Biochem Mol Biol, 73: 55-61.
Liu H, Liu Q, Zhou X,etal. 2017. Genome editing ofWnt-1, a gene associated with segmentation, via CRISPR/Cas9 in the Pine Caterpillar Moth,Dendrolimuspunctatus. Front Physiol, 7(666):1-7. doi: 10.3389/fphys.2016.00666.
Martins S, Naish N, Walker A,etal. 2012. Germline transformation of the diamondback moth,PlutellaxylostellaL., using the piggyBac transposable element. Insect Mol Biol, 21 (4): 414-421.
Miyawaki K, Mito T, Sarashina I. 2004. Involvement ofWingless/Armadillosignaling in the posterior sequential segmentation in the cricket,Gryllusbimaculatus(Orthoptera), as revealed by RNAi analysis. Mech Dev, 121 (2): 119-130.
Nagy L M, Carroll S. 1994. Conservation ofwinglesspatterning functions in the short-germ embryos ofTriboliumcastaneum. Nature, 367 (3): 460-463.
Nakao H. 2010. Characterization ofBombyxembryo segmentation process: expression profiles of engrailed, even-skipped, caudal, andWnt1/winglesshomologues. J Exp Zool B Mol Dev Evol, 314 (3): 224-231.
Nishikawa H, Iijima T, Kajitani R,etal. 2015. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat Genet, 47 (4): 405-409.
Ober K A, Jockusch E L. 2006. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle,Triboliumcastaneum. Dev Biol, 294 (2): 391-405.
Oliver J C, Monteiro A. 2011. On the origins of sexual dimorphism in butterflies. Proc Biol Sci, 278 (1714): 1981-1988.
Petersen C P, Reddien P W. 2009.Wntsignaling and the polarity of the primary body axis. Cell, 139 (6): 1056-1068.
Rogers B T, Kaufman T C. 1996. Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development, 122 (11): 3419-3432.
Rossi E, Siwiec F, Yan C Y. 2007. Pattern ofWntligand expression during chick eye development. Braz J Med Biol Res, 40 (10): 1333-1338.
Sahai-Hernandez P, Castanieto A, Nystul T G. 2012.Drosophilamodels of epithelial stem cells and their niches. Wiley Interdiscip Rev Dev Biol, 1 (3): 447-457.
Sato K, Matsunaga T M, Futahashi R. 2008. Positional cloning of aBombyxwinglesslocusflugellos(fl) reveals a crucial role for fringe that is specific for wing morphogenesis. Genetics, 179 (2): 875-885.
Shah M, Namigai E K, Suzuki Y. 2011. The role of canonicalWntsignaling in leg regeneration and metamorphosis in the red flour beetleTriboliumcastaneum. Mech Dev, 128 (7-10): 342-358.
Sharma R P, Chopra V L. 1976. Effect of theWingless(wg1) mutation on wing and haltere development inDrosophilamelanogaster. Dev Biol, 48 (2): 461-465.
Siegfried E, Wilder E L, Perrimon N. 1994. Components ofwinglesssignaling inDrosophila. Nature, 367 (6458): 76-80.
Sweeney S T, Hidalgo A, de Belle J S,etal. 2012. Antibody staining of the central nervous system in adult Drosophila. Cold Spring Harb Protoc, (2): 235-238.
Tan Y, Yu D, Busto G U. 2013.Wntsignaling is required for long-term memory formation. Cell Reports, 4 (6): 1082-1089.
Thomas D D, Donnelly C A, Wood R J,etal. 2000. Insect population control using adominant, repressible, lethal genetic system. Science, 287 (5462): 2474-2476.
Wang Y, Li Z, Xu J. 2013. The CRISPR/Cas system mediates efficient genome engineering inBombyxmori. Cell Res, 23 (12): 1414-1416.
Wang J, Zhang H, Wang H,etal. 2016. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac inHelicoverpaarmigerautilizing the CRISPR/Cas9 system. Insect Biochem Mol Biol, 76: 11-17. doi: 10.1016/j.ibmb.2016.06.008.
Zhang Z, Aslam A F, Liu X,etal. 2015. Functional analysis ofBombyxWnt1 during embryogenesis using the CRISPR/Cas9 system. J Insect Physiol, 79: 73-79.
(責(zé)任編輯 朱乾坤)
Genome Editing ofWnt-1 in Fall Webworm (Hyphantriacunea)
Liu Huihui1,2Zhang Yong’an1,2Wang Yuzhu1Zeng Baosheng3Liu Qun3Zhang Zhen1
(1.KeyLaboratoryofForestProtectionofStateForestryAdministrationResearchInstituteofForestEcology,EnvironmentandProtection,CAFBeijing100091; 2.ExperimentalCenterofForestryinNorthChina,CAFBeijing102300; 3.KeyLaboratoryofInsectDevelopmentalandEvolutionaryBiologyInstituteofPlantPhysiologyandEcology,ShanghaiInstitutesforBiologicalSciences,CASShanghai200032)
【Objective】 The fall webworm (Hyphantriacunea) is an invasive species, and has been causing severe damage to forestry and agricultural production. It is urgently needed to effectively control the pest population by an environmentally-benign technique. To reveal the mechanism of its strong migration capability which plays an important for its spreading, we analyzed the function ofWnt-1, an essential gene in wing development, by using the genome editing method. 【Method】The full length cDNAs ofHcWnt-1 were obtained by using the primers designed based on the genome data and transcriptome data ofH.cunea. Online softwares was used to predict the structure characteristics of HcWNT-1 protein. RT-PCR and Immunohistochemistry were used to explore the expression pattern ofHcWnt-1. The CRISPR/Cas9 was applied to induce mutations ofHcWnt-1, the phenotypic and genotypic characteristics of embryonic mutants were observed, and further direct sequencing were used to detect the mutation events. 【Result】The complete coding sequence ofHcWnt-1 is 1 221 bp, which encodes a protein of 407 amino acids, characterized by helix-turn-helix DNA binding motif and 24 cysteine residues, and the highly conserved motifs are scattered throughout the sequence. During the embryogenesis stages,HcWnt-1 mRNA was highly expressed at early stage, WNT-1 protein expression showed sequential change during the embryonic development stages. The early embryos formation was completed in 24 h, at which the first peak was detected at transcriptional level and the HcWNT-1 expression was mainly concentrated in acron. The expression ofHcWnt-1 declined as development progressed and the expression of HcWNT-1 elongated from head to tail along the anterior-posterior body axis.HcWnt-1 expression presented the second peak at 144 h, which occured in the appendages. CRISPR/Cas9-based mutagenesis ofHcWnt-1 led to a high mortality rate (99.8%) and a mutation efficiency of 62.5% at embryonic stages following injection of Cas9 mRNA and sgRNAs with 1 000 eggs. Defective phenotypes as missing segments and appendages were observed in unhatched larvae. 【Conclusion】 The results have revealed that the segmentation model ofH.cuneabelongs to short and intermediate germ band. CRISPR/Cas9 system is a powerful genome manipulation tool in the invasive pest, and would be a promising tool for gene functional research in forestry and non-model insects. Loss-of-function ofHcWnt-1 inhibited the segmentation and appendage development, demonstrating thatHcWnt-1 plays an important role in embryonic development ofH.cunea. Furthermore,HcWnt-1 was proved as a lethal gene, and it could be used as an appropriate target for future genetic control ofH.cunea.
Hyphantriacunea; CRISPR/Cas9;Wnt-1; genome editing; immunohistochemistry;segmentation; appendage development
10.11707/j.1001-7488.20170313
2016-06-14;
2016-10-12。
林業(yè)公益性行業(yè)科研專項(xiàng)(201504302)。
S763.3
A
1001-7488(2017)03-0119-09
* 張真為通訊作者。