張鶴華 李艷芳 聶佩顯 王紅陽(yáng) 張凌云
(1.北京林業(yè)大學(xué)森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室 北京 100083; 2.山東省農(nóng)業(yè)科學(xué)院果樹研究所 泰安271000)
?
藍(lán)莓果實(shí)同化物韌皮部卸載路徑與糖代謝酶活性*
張鶴華1李艷芳1聶佩顯2王紅陽(yáng)1張凌云1
(1.北京林業(yè)大學(xué)森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室 北京 100083; 2.山東省農(nóng)業(yè)科學(xué)院果樹研究所 泰安271000)
【目的】韌皮部卸載和韌皮部后運(yùn)輸在調(diào)節(jié)蔗糖在庫(kù)器官間的分配、維持果實(shí)的庫(kù)強(qiáng)方面起著至關(guān)重要的作用,而且很大程度上決定著果實(shí)的產(chǎn)量和質(zhì)量。本文研究目的是明確藍(lán)莓同化物韌皮部卸載的機(jī)制與糖代謝機(jī)制?!痉椒ā恳?年生高叢藍(lán)莓品種‘喜來’(‘Sierra’)為研究對(duì)象,對(duì)各個(gè)發(fā)育時(shí)期的藍(lán)莓果實(shí)韌皮部的超微結(jié)構(gòu)進(jìn)行觀察,并綜合運(yùn)用熒光染料活細(xì)胞示蹤與激光共聚焦掃描顯微鏡技術(shù)實(shí)時(shí)觀察果實(shí)內(nèi)韌皮部同化物卸載路徑,運(yùn)用高效液相色譜等技術(shù),測(cè)定分析藍(lán)莓果實(shí)可溶性糖含量及相關(guān)代謝酶的活性變化等。【結(jié)果】對(duì)韌皮部細(xì)胞進(jìn)行的超微結(jié)構(gòu)觀察顯示,在藍(lán)莓果實(shí)整個(gè)發(fā)育期,果實(shí)韌皮部SE/CC(篩管伴胞復(fù)合體)與周圍薄壁細(xì)胞之間均未發(fā)現(xiàn)胞間連絲,從而形成了共質(zhì)體隔離,但在薄壁細(xì)胞之間、薄壁細(xì)胞與果肉細(xì)胞之間存在大量胞間連絲。熒光染料CF[5(6)-羧基熒光素]的活細(xì)胞示蹤試驗(yàn)表明,果實(shí)發(fā)育過程中,CF均被嚴(yán)格限制在韌皮部中,沒有擴(kuò)散到周圍的薄壁細(xì)胞。這些結(jié)果證實(shí)藍(lán)莓果實(shí)同化物以質(zhì)外體卸載途徑為主,韌皮部后運(yùn)輸存在著活躍的共質(zhì)體途徑,大量胞間連絲的存在有利于薄壁細(xì)胞之間以及薄壁細(xì)胞與果肉細(xì)胞之間的物質(zhì)交換。進(jìn)一步酶活性測(cè)定結(jié)果顯示,在藍(lán)莓果實(shí)的整個(gè)發(fā)育期,轉(zhuǎn)化酶活性保持在較高水平,為證實(shí)藍(lán)莓果實(shí)同化物以質(zhì)外體卸載為主提供了證據(jù)。對(duì)糖代謝相關(guān)酶活性分析顯示,在果實(shí)發(fā)育的各個(gè)階段,藍(lán)莓果實(shí)的可溶性糖主要以積累果糖和葡萄糖為主,蔗糖酶的分解活性始終大于合成活性; 在果實(shí)發(fā)育中后期,可溶性酸性轉(zhuǎn)化酶和中性轉(zhuǎn)化酶活性進(jìn)一步升高,顯示果實(shí)發(fā)育后期果肉細(xì)胞內(nèi)進(jìn)行著活躍的蔗糖分解、轉(zhuǎn)化及貯藏過程,且糖積累與轉(zhuǎn)化酶、蔗糖合酶和蔗糖磷酸合酶等酶活性成正相關(guān)。在藍(lán)莓果實(shí)發(fā)育過程中,蔗糖代謝相關(guān)酶的綜合作用是影響藍(lán)莓果實(shí)中可溶性糖積累的重要因子?!窘Y(jié)論】藍(lán)莓果實(shí)同化物以質(zhì)外體卸載途徑為主,韌皮部后運(yùn)輸存在著活躍的共質(zhì)體途徑。藍(lán)莓果實(shí)主要以積累果糖和葡萄糖為主,且糖積累與轉(zhuǎn)化酶、蔗糖合酶和蔗糖磷酸合酶等酶活性成正相關(guān)。
藍(lán)莓; 果實(shí); 同化物; 質(zhì)外體卸載; 糖代謝酶
光合產(chǎn)物在經(jīng)濟(jì)庫(kù)器官如果實(shí)、種子間的分配和運(yùn)輸受到諸多生理過程的調(diào)節(jié),如光合效率、同化物在源葉的裝載、韌皮部長(zhǎng)距離轉(zhuǎn)運(yùn)、庫(kù)器官韌皮部的卸載及韌皮部后運(yùn)輸?shù)?Oparka, 1990; Patrick, 1997; Braunetal., 2014),其中,韌皮部卸載及后運(yùn)輸對(duì)于同化物在各競(jìng)爭(zhēng)庫(kù)之間的分配、維持果實(shí)庫(kù)強(qiáng)起著重要作用,且很大程度上決定著作物的產(chǎn)量和質(zhì)量(Fisheretal., 1996; Patrick, 1997; Violaetal., 2001)。因此研究同化物韌皮部卸載的細(xì)胞學(xué)路徑,對(duì)于提高碳水化合物向果實(shí)中運(yùn)輸、闡明糖積累機(jī)制至關(guān)重要(Clearwateretal., 2012)。
在過去20多年中,對(duì)同化物卸載路徑在多種植物和不同類型庫(kù)器官中進(jìn)行了研究,尤其在營(yíng)養(yǎng)庫(kù)中研究較多。大多數(shù)研究認(rèn)為,在營(yíng)養(yǎng)庫(kù)如莖尖(Patrick, 1997; Imlauetal., 1999)、營(yíng)養(yǎng)葉(Robertsetal., 1997; Hauptetal., 2001)、塊莖(Oparkaetal., 2000; Violaetal., 2001)等器官中,同化物的卸載主要以共質(zhì)體為主。但最近也有相反的報(bào)道,Bihmidine等(2015)發(fā)現(xiàn)高粱(Sorghumbicolor)莖中存在著質(zhì)外體途徑。在生殖貯藏庫(kù)如果實(shí)中,卸載路徑則呈現(xiàn)出多樣性和復(fù)雜性,隨著不同果實(shí)類型及果實(shí)不同發(fā)育時(shí)期而改變。例如,蘋果(Malusdomestica)、桃(Amygdaluspersica)在整個(gè)果實(shí)發(fā)育時(shí)期以質(zhì)外體卸載路徑為主(Zhangetal., 2004; Zanonetal., 2015),柑桔(Citrus)和荔枝(Litchichinensis)韌皮部后運(yùn)輸中存在著質(zhì)外體途徑(Kochetal., 1990; Wangetal., 2015); 而更多種類的果實(shí)在不同發(fā)育時(shí)期經(jīng)歷了卸載路徑的轉(zhuǎn)變,如番茄(Solanumlycopersicum)在發(fā)育早期以共質(zhì)體為主,后期則以質(zhì)外體為主(Ruanetal., 1995; Patricketal., 1996),而葡萄(Vitisvinifera)在始熟期經(jīng)歷了從共質(zhì)體到質(zhì)外體的改變過程(Zhangetal., 2006)。本實(shí)驗(yàn)室在對(duì)棗(Ziziphusjujuba)的研究中也發(fā)現(xiàn)果實(shí)在發(fā)育過程中同化物卸載經(jīng)歷了由質(zhì)外體—共質(zhì)體—質(zhì)外體轉(zhuǎn)變的過程(Nieetal., 2010)。另外,同化物卸載在庫(kù)器官不同組織部位也存在著差異。Wu等(2004)報(bào)道核桃(Juglansregia)果皮是以質(zhì)外體卸載為主,而種子中則以共質(zhì)體為主。這些結(jié)果顯示了果實(shí)韌皮部卸載路徑及機(jī)制的多樣性和復(fù)雜性。此外,果實(shí)中糖積累除了受到卸載路徑影響之外,與蔗糖代謝相關(guān)的酶活性也是決定庫(kù)強(qiáng)大小的關(guān)鍵因子,尤其對(duì)于積累高濃度糖的果實(shí)(Oparka, 1990; Oparkaetal., 2000)。
藍(lán)莓為杜鵑花科(Ericaceae)越橘屬(Vaccinium)植物,是一種營(yíng)養(yǎng)價(jià)值及保健價(jià)值極高的經(jīng)濟(jì)作物,其花青苷含量為眾水果之首(Prioretal., 2005; 顧姻等, 2001)。雖然目前國(guó)內(nèi)外已經(jīng)有大量關(guān)于藍(lán)莓的研究,但是大多集中于其生物學(xué)特性、貯藏加工技術(shù)、營(yíng)養(yǎng)價(jià)值、醫(yī)療功效等方面(Gordilloetal., 2009; Montalbaetal., 2010; 李亞東等, 2014),有關(guān)藍(lán)莓果實(shí)同化物運(yùn)輸及糖積累機(jī)制尚不清楚。為明確藍(lán)莓同化物韌皮部卸載與糖代謝機(jī)制,本研究以高叢藍(lán)莓(Vacciniumcorymbosum)品種‘喜來’(‘Sierra’)為試驗(yàn)材料,對(duì)各個(gè)發(fā)育時(shí)期的藍(lán)莓果實(shí)韌皮部進(jìn)行超微結(jié)構(gòu)觀察,并綜合運(yùn)用熒光染料活細(xì)胞示蹤與激光共聚焦掃描顯微鏡技術(shù)實(shí)時(shí)觀察果實(shí)韌皮部同化物卸載路徑; 運(yùn)用高效液相色譜等技術(shù),測(cè)定分析藍(lán)莓果實(shí)可溶性糖含量及相關(guān)代謝酶的活性變化等。
1.1 試驗(yàn)材料
于2013—2015年生長(zhǎng)季在山東省泰安市圣田農(nóng)林科技開發(fā)有限公司藍(lán)莓基地進(jìn)行處理及取樣。以5年生高叢藍(lán)莓品種‘喜來’(‘Sierra’)為研究對(duì)象,選取生長(zhǎng)健康、長(zhǎng)勢(shì)較為一致的植株為試材。從盛花后第10天開始取材,每隔7天采樣1次,共采樣10次,隨機(jī)自樹體的東、西、南、北4個(gè)方向采集生長(zhǎng)時(shí)期一致的健康果實(shí),裝入自封袋,立即存于冰盒中帶回實(shí)驗(yàn)室。隨機(jī)選取20個(gè),準(zhǔn)確稱量果實(shí)鮮質(zhì)量,繪制果實(shí)發(fā)育動(dòng)態(tài),之后將果實(shí)用液氮速凍,-80 ℃保存?zhèn)溆谩?/p>
1.2 藍(lán)莓果實(shí)韌皮部細(xì)胞超微結(jié)構(gòu)的觀察
參照Nie等(2010)的方法。
1.3 胞間連絲密度的測(cè)定
胞間連絲密度測(cè)定參照Nie等(2010)與Kempers等(1998)的方法。
1.4 CFDA熒光示蹤與Texas-Red標(biāo)記
羧基熒光素酯(carboxyfluorescein-diacetate,CFDA)標(biāo)記參考Zhang等(2004)的方法,略有改動(dòng)。選取健康、向陽(yáng)的果穗,將熒光染料CFDA通過果穗所在的莖引入韌皮部。具體方法為: 將棉線穿過Eppendorf 管底部,用細(xì)針小心穿過莖的韌皮部(注意不要傷到木質(zhì)部),用移液槍取適量的EDTA(2.5 mmol·L-1)溶液滴入傷口處,并涂上凡士林,接著向Eppendorf管中加入200 μL濃度為1 mg·mL-1的CFDA溶液。為防止CFDA見光分解,用錫箔紙將Eppendorf 管包住。48 h或72 h后,采摘果穗并立即置于冰盒中,帶回實(shí)驗(yàn)室進(jìn)行徒手切片,激光共聚焦掃描顯微鏡(CLSM, ZEISS LSM 510 Meta)下觀察。為了區(qū)別韌皮部和木質(zhì)部,將部分被CFDA標(biāo)記過的果實(shí)果柄浸泡于1 mg·mL-1Texas-Red溶液中,避光標(biāo)記40 min左右,立即進(jìn)行徒手切片,置于CLSM下觀察,分別在488 nm、543 nm激發(fā)光下觀察熒光染料5(6)-羧基熒光素(carboxyfluorescein,CF)與Texas-Red的標(biāo)記情況。在本研究中,將CFDA引入藍(lán)莓果實(shí)的韌皮部,標(biāo)記48 h后,激光共聚焦顯微鏡下觀察CF在果實(shí)維管束中的運(yùn)動(dòng)情況。CFDA為CF的酯類形式,引入后在活細(xì)胞內(nèi)降解為CF,在488 nm下激發(fā)產(chǎn)生熒光。
1.5 可溶性糖含量測(cè)定
將1 g藍(lán)莓果實(shí)放入研缽中加入液氮磨碎,置于10 mL的離心管,加入6 mL 80%的乙醇,80 ℃下溫浴30 min,12 000 r·min-1(4 ℃)下離心15 min,取上清液,用0.22 μm過濾膜過濾2次,進(jìn)行HPLC(高效液相色譜法)分析。各個(gè)發(fā)育時(shí)期果實(shí)重復(fù)測(cè)定3次。根據(jù)保留時(shí)間測(cè)定蔗糖、果糖和葡萄糖的含量,重復(fù)3次。利用液相色譜儀(戴安P680測(cè)定系統(tǒng))進(jìn)行測(cè)定,色譜柱采用氨基酸柱。色譜條件: 柱溫35 ℃,檢測(cè)池溫度35 ℃,流速0.8 mL·min-1; 采用Waters 2414示差檢測(cè)器; 檢測(cè)波長(zhǎng)為520 nm; 流動(dòng)相為乙腈∶重蒸水=80∶20(V∶V); 每次進(jìn)樣為30 μL。
1.6 糖類代謝相關(guān)酶活性測(cè)定
將5 g藍(lán)莓果實(shí)放入研缽中加入液氮磨碎,加入3倍樣品體積的10%的TCA溶液,置于-20 ℃過夜; 8 000 r·min-1(4 ℃)離心30 min,棄掉上清,收集沉淀; 將沉淀溶于等體積的預(yù)冷丙酮,混勻,4 ℃離心(8 000 r·min-1,15 min),棄上清液,并真空干燥,保存?zhèn)溆茫?使用ELISA試劑盒上樣前,加入裂解液(2.7 g 尿素,0.2 g CHAPS,溶于去離子水中至終體積5 mL),混勻后室溫放置30 min,然后4 ℃ 離心(8 000 r·min-1,15 min),取上清液并暫時(shí)保存于4 ℃ 備用。分別利用不同的ELISA檢測(cè)試劑盒提取相應(yīng)的酶,分別設(shè)空白孔(不加樣品及酶標(biāo)試劑,其余各步操作相同)、標(biāo)準(zhǔn)孔、待測(cè)樣品孔,所有的酶待測(cè)樣品孔先加10 μL樣本提取液(樣本研磨液上清),再加40 μL樣本稀釋液,標(biāo)準(zhǔn)孔加標(biāo)準(zhǔn)樣50 μL,經(jīng)過溫浴、配液、洗滌、顯色等步驟,37 ℃下反應(yīng)60 min,加入終止液50 μL,終止反應(yīng)(此時(shí)藍(lán)色立即轉(zhuǎn)為黃色)。用酶標(biāo)儀在450 nm下測(cè)定吸光度OD值(加終止液后15 min之內(nèi)測(cè)定)。各個(gè)發(fā)育時(shí)期酶活性的測(cè)定均重復(fù)4次。
測(cè)定不同濃度梯度的標(biāo)準(zhǔn)品溶液的OD值,利用EXCEL軟件繪制標(biāo)準(zhǔn)曲線,通過標(biāo)準(zhǔn)溶液的標(biāo)準(zhǔn)曲線得到標(biāo)準(zhǔn)曲線方程,再根據(jù)曲線方程與測(cè)定溶液的OD值計(jì)算得到各樣品的濃度,從而得到各個(gè)酶的活性。
1.7 數(shù)據(jù)處理
用 SPSS 統(tǒng)計(jì)分析軟件對(duì)數(shù)據(jù)進(jìn)行分析,采用 SIGMAPLOT 10.0軟件進(jìn)行制圖。
2.1 果實(shí)生長(zhǎng)發(fā)育動(dòng)態(tài)
準(zhǔn)確稱量不同發(fā)育時(shí)期藍(lán)莓果實(shí)鮮質(zhì)量,繪制生長(zhǎng)發(fā)育曲線(圖1)。藍(lán)莓果實(shí)的生長(zhǎng)發(fā)育曲線為雙S型,發(fā)育周期約為75天。大致可以分為以下4個(gè)時(shí)期: 緩慢生長(zhǎng)期,即花后10~30天左右; 迅速生長(zhǎng)期,即花后30~50天左右; 減緩生長(zhǎng)期,為花后50~65天左右; 成熟前增長(zhǎng)期,為花后65~75 天左右。為方便后續(xù)試驗(yàn)的進(jìn)行,試驗(yàn)取材為3個(gè)時(shí)期,果實(shí)發(fā)育早期(即緩慢生長(zhǎng)期)、發(fā)育中期(即迅速生長(zhǎng)期)和發(fā)育后期(包括減緩生長(zhǎng)期和成熟前增長(zhǎng)期)。
圖1 果實(shí)生長(zhǎng)發(fā)育曲線Fig.1 The development curve of fruits
2.2 藍(lán)莓果實(shí)韌皮部的超微結(jié)構(gòu)觀察
圖3 果實(shí)不同發(fā)育時(shí)期的CF熒光示蹤Fig.3 The CF fluorescent tracing in different developmental stages of blueberry fruits將羧基熒光素酯(CFDA)引入果柄韌皮部,處理48 h后,取果實(shí)進(jìn)行徒手切片后在激光共聚焦掃描顯微鏡(CLSM, ZEISS LSM 510 Meta)下觀察。ai, ci, di分別為果實(shí)發(fā)育早期、中期和后期維管束縱切熒光圖; aii, cii為對(duì)應(yīng)的ai, ci在明視野下的透射圖; aiii, ciii, dii是對(duì)應(yīng)的熒光圖和明視野的疊加圖。bi為果柄部位的橫切圖; bii為明視野圖; biii為二者疊加圖。e為引入的Texas-red(紅色)和CF熒光在維管束中的分布。木質(zhì)部為圖中Texas-Red標(biāo)記的紅色熒光,韌皮部為CF標(biāo)記的綠色熒光。Carboxyfluorescein-diacetate(CFDA) was introduced into the phloem of fruit pedicel. After treatment with 48 h, the sample was sliced freehand and observed under CLSM. ai, ci and di show bundle fluorography at the early, middle and late developmental stages, respectively. aii and cii represent the corresponding bright field in ai and ci. aiii, ciii and dii are the overlaid pictures from fluorescence and bright field. bi is the cross section of fruit pedicel and bii is the bright field picture; biii shows the two superimposed picture from bi and bii. e shows the distribution of Texas-red (red) and CF fluorescence in vascular bundle. Red fluorescence shows the xylem and green fluorescence shows the phloem.
藍(lán)莓果實(shí)為肉質(zhì)漿果,在結(jié)構(gòu)上屬于假果(李亞東等, 2014),其可食用的中果皮部分發(fā)育所需碳水化合物主要通過萼片心皮維管束運(yùn)輸。為了研究不同發(fā)育時(shí)期果實(shí)中篩管伴胞復(fù)合體同周圍細(xì)胞如韌皮薄壁細(xì)胞及果肉細(xì)胞之間胞間連絲情況,取果肉中多個(gè)維管組織部位進(jìn)行包埋、超薄切片,并進(jìn)行超微結(jié)構(gòu)觀察,統(tǒng)計(jì)不同類型細(xì)胞間胞間連絲密度。如圖2所示,在藍(lán)莓果實(shí)不同發(fā)育時(shí)期,果實(shí)中篩管伴胞復(fù)合體與周圍薄壁細(xì)胞間均未發(fā)現(xiàn)胞間連絲,從而形成共質(zhì)體隔離(圖2 A,B,G)。相反,韌皮薄壁細(xì)胞之間則存在豐富的胞間連絲(圖2 C,D,E)。其中,在果實(shí)發(fā)育早期,韌皮薄壁細(xì)胞之間胞間連絲最為豐富,約為1 μm 2.3個(gè),隨著果實(shí)發(fā)育,胞間連絲密度略有下降,中后期分別為1 μm 1.5個(gè)和1.8個(gè); 在韌皮薄壁細(xì)胞與果肉細(xì)胞之間的胞間連絲亦存在同樣的變化趨勢(shì)(表1)。在果實(shí)發(fā)育后期,篩管伴胞復(fù)合體之間觀察到少量胞間連絲的存在(圖2H)。在結(jié)構(gòu)上,在果實(shí)各個(gè)發(fā)育時(shí)期,相對(duì)于篩分子中缺少細(xì)胞器、只存在一些不定型的絲狀物質(zhì),伴胞中則胞質(zhì)致密、染色較深,其中富含線粒體、高爾基體、葉綠體和內(nèi)質(zhì)網(wǎng)等細(xì)胞器,液泡化程度不同,有的存在中央大液泡且有的伴胞細(xì)胞壁內(nèi)陷產(chǎn)生多泡體。在韌皮薄壁細(xì)胞中則存在豐富的線粒體和囊泡,顯示細(xì)胞中活躍的合成和代謝活動(dòng)。
表1 果實(shí)不同發(fā)育時(shí)期胞間連絲密度①
①SE: 篩分子; CC: 伴胞; PP: 韌皮薄壁細(xì)胞; FP: 果肉細(xì)胞。SE: Sieve element; CC: Companion cells; PP: Phloem parenchyma cells; FP: Flesh cell.
2.3 熒光染料CF在果實(shí)內(nèi)運(yùn)輸及Texas-Red標(biāo)記情況
圖3為藍(lán)莓果實(shí)不同發(fā)育時(shí)期,熒光染料CF在果實(shí)不同部位及不同類型維管束中的分布與卸載情況。在果實(shí)不同發(fā)育時(shí)期,CF均被嚴(yán)格地限制在果實(shí)韌皮部中,沒有卸出到周圍的薄壁細(xì)胞中,無論是在果柄中(圖3bi, bii, biii)還是在發(fā)育早期的果實(shí)維管束(圖3ai, aii, aiii),抑或在果肉主脈維管束(圖3di, dii)還是細(xì)脈維管束中(圖3ci, cii, ciii),說明果實(shí)韌皮部同周圍的薄壁細(xì)胞之間存在共質(zhì)體隔離,在果實(shí)整個(gè)發(fā)育過程中,同化物的卸載采用質(zhì)外體卸載方式,且沒有發(fā)生卸載路徑的轉(zhuǎn)變,這個(gè)結(jié)果與超微結(jié)構(gòu)觀察到的結(jié)果是一致的。
為了進(jìn)一步驗(yàn)證以上試驗(yàn)結(jié)果的可靠性,在將CFDA引入果實(shí)韌皮部的同時(shí),用木質(zhì)部導(dǎo)管示蹤劑Texas-Red對(duì)CFDA標(biāo)記過的維管束進(jìn)行了標(biāo)記。如圖3e所示,木質(zhì)部為圖中Texas-Red標(biāo)記的紅色熒光,韌皮部為CF標(biāo)記的綠色熒光,結(jié)果顯示引入的CF是在韌皮部中運(yùn)輸,從而說明本研究的試驗(yàn)方法及結(jié)果是可靠的。
2.4 糖代謝相關(guān)酶活性分析
蔗糖合成酶類的凈活性是反映代謝酶綜合作用的重要指標(biāo)。蔗糖合成酶類的活性為蔗糖合成酶與蔗糖磷酸化酶活性之和,蔗糖分解酶類的活性為3種轉(zhuǎn)化酶[可溶性酸性轉(zhuǎn)化酶(SAI)、細(xì)胞壁結(jié)合酸性轉(zhuǎn)化酶(CWI)與中性轉(zhuǎn)化酶(NI)]活性之和,蔗糖代謝酶的凈活性為前者的活性之和減去后者的活性之和。從圖4A可知,在藍(lán)莓整個(gè)果實(shí)發(fā)育期,蔗糖酶的分解活性始終大于其合成活性,酶的凈活性為負(fù)值; 從圖4B可知,果實(shí)發(fā)育的各個(gè)時(shí)期,果實(shí)內(nèi)蔗糖酶在盛花后17天時(shí)分解活性最高,為11.964 U·g-1FW; 從圖4C可知,合成酶的活性變化的總趨勢(shì)是上升的,但是一直低于分解酶類的活性。這些結(jié)果說明在果實(shí)發(fā)育各個(gè)階段,蔗糖酶的分解活性大于合成活性,主要以積累果糖和葡萄糖為主。
對(duì)果實(shí)代謝關(guān)鍵酶進(jìn)行分析(圖4D)表明,蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性的變化趨勢(shì)表現(xiàn)為早期活性較低,花后18天至果實(shí)成熟,其活性持續(xù)升高,到果實(shí)成熟時(shí)達(dá)到最大值0.258 U·g-1FW和0.069 U·g-1FW。整個(gè)發(fā)育過程中,SS的活性始終高于SPS活性。
轉(zhuǎn)化酶,又名蔗糖酶或β-呋喃果糖苷酶,可以催化蔗糖代謝中的蔗糖不可逆地分解為果糖與葡萄糖。轉(zhuǎn)化酶包括可溶性酸性轉(zhuǎn)化酶(SAI)、細(xì)胞壁結(jié)合酸性轉(zhuǎn)化酶(CWI)與中性轉(zhuǎn)化酶(NI)。對(duì)SAI、CWI與NI的活性測(cè)定結(jié)果如圖4E顯示,在果實(shí)發(fā)育過程中,3種酶活性變化趨勢(shì)較為一致。果實(shí)發(fā)育早期,3種酶活性均略有下降,至花后25天左右,降至最低值,之后大幅升高。其中SAI,CWI,NI的活性在花后30天時(shí)達(dá)到最大值,分別為6.37,2.21,4.23 U·g-1FW,之后略有下降后維持在較為穩(wěn)定的水平,直到果實(shí)成熟。
圖4 果實(shí)不同發(fā)育時(shí)期關(guān)鍵代謝酶活性變化Fig.4 The changes of metabolic enzymes activities during fruit developmentSS: 蔗糖合成酶; SPS: 蔗糖磷酸合成酶; SAI: 可溶性酸性轉(zhuǎn)化酶; CWI: 細(xì)胞壁結(jié)合酸性轉(zhuǎn)化酶; NI: 中性轉(zhuǎn)化酶SS: Sucrose synthase;SPS: Sucrose phosphate synthase;SAI: Soluble acid invertase; CWI: Cell wall bound invertase; NI: Neutral invertase.
2.5 藍(lán)莓果實(shí)發(fā)育過程中可溶性糖含量與糖代謝相關(guān)酶活性的相關(guān)性分析
由圖5可知,果實(shí)發(fā)育早期,果糖和葡萄糖含量均較低,但果糖含量明顯高于葡萄糖含量,約為葡萄糖含量的4.3倍。隨著果實(shí)發(fā)育,到花后30天時(shí),2種糖含量急劇增加,到果實(shí)成熟時(shí)(花后73天),果糖與葡萄糖的含量均達(dá)到最大,分別為43.64,39.99 mg·g-1FW。相對(duì)地,果實(shí)發(fā)育過程中,蔗糖含量變化較小,在盛花后66天時(shí)出現(xiàn)1個(gè)含量高峰,為3.92 mg·g-1FW。由此可見,藍(lán)莓果實(shí)中可溶性糖主要以積累果糖和葡萄糖為主。
藍(lán)莓果實(shí)發(fā)育的10個(gè)不同時(shí)期可溶性糖含量與糖代謝相關(guān)酶活性的Pearson相關(guān)性分析(表2)表明,果糖和葡萄糖含量與蔗糖合成酶、蔗糖磷酸合成酶、轉(zhuǎn)化酶等酶活性呈現(xiàn)正相關(guān)關(guān)系,其中與蔗糖合成酶、蔗糖磷酸合成酶活性達(dá)到顯著水平(P<0.01)。這些結(jié)果說明,在藍(lán)莓果實(shí)發(fā)育過程中,蔗糖代謝相關(guān)酶的綜合作用是影響藍(lán)莓果實(shí)中可溶性糖積累的重要因子。
圖5 果實(shí)不同發(fā)育時(shí)期可溶性糖含量變化Fig.5 The changes of soluble sugar content during fruit development
表2 藍(lán)莓果實(shí)發(fā)育過程中可溶性糖含量與糖代謝相關(guān)酶活性的相關(guān)性分析①
①SS: 蔗糖合成酶; SPS: 蔗糖磷酸合成酶; SAI: 可溶性酸性轉(zhuǎn)化酶; CWI: 細(xì)胞壁結(jié)合酸性轉(zhuǎn)化酶; NI: 中性轉(zhuǎn)化酶。**表示在0.01水平上顯著相關(guān)。SS: Sucrose synthase;SPS: Sucrose phosphate synthase;SAI: Soluble acid invertase; CWI: Cell wall bound invertase; NI: Neutral invertase. ** indicates significance at the 0.01 level.
在本研究中,超微結(jié)構(gòu)觀察提供的細(xì)胞學(xué)證據(jù)顯示,在藍(lán)莓果實(shí)發(fā)育的整個(gè)時(shí)期,果實(shí)韌皮部篩管伴胞(SE/CC)復(fù)合體與周圍薄壁細(xì)胞之間均未發(fā)現(xiàn)胞間連絲,從而形成了共質(zhì)體隔離。目前,研究認(rèn)為韌皮部SE/CC復(fù)合體包括中間細(xì)胞、轉(zhuǎn)移細(xì)胞和普通細(xì)胞3種類型的伴胞,其中中間細(xì)胞是特化為適于共質(zhì)體卸出的標(biāo)志結(jié)構(gòu),而轉(zhuǎn)移細(xì)胞和普通細(xì)胞是適于質(zhì)外體卸出的標(biāo)志性結(jié)構(gòu)。對(duì)藍(lán)莓的觀察發(fā)現(xiàn)伴胞的胞質(zhì)濃密、染色較深,在韌皮薄壁細(xì)胞與SE/CC復(fù)合體相鄰的部位,細(xì)胞間隙較大且伴胞質(zhì)膜內(nèi)陷形成囊泡,從而說明藍(lán)莓果實(shí)韌皮部的伴胞屬于普通細(xì)胞,這種結(jié)構(gòu)與篩管伴胞復(fù)合體到薄壁細(xì)胞的質(zhì)外體運(yùn)輸相呼應(yīng)。CF是一種“膜不透性”的熒光指示劑,被廣泛用于韌皮部運(yùn)轉(zhuǎn)及卸載路徑的標(biāo)記(Robertsetal., 1997),通過放射性自顯影技術(shù),已經(jīng)證實(shí)CF的運(yùn)輸方式與同化物的卸載運(yùn)輸方式相似(Violaetal., 2001)。本試驗(yàn)中進(jìn)一步用熒光染料CF的活細(xì)胞示蹤結(jié)果表明,在藍(lán)莓果實(shí)發(fā)育過程中,CF均被嚴(yán)格地限制在果實(shí)韌皮部中,沒有擴(kuò)散到周圍的薄壁細(xì)胞,無論是在CFDA引入后的48 h或72 h,CF始終被限制在韌皮部中,沒有發(fā)生卸出,這與超微結(jié)構(gòu)觀察結(jié)果一致。這些結(jié)果表明藍(lán)莓果實(shí)發(fā)育過程中,篩管伴胞復(fù)合體同周圍薄壁細(xì)胞存在共質(zhì)體隔離,同化物主要以質(zhì)外體形式卸載。這與作者在蘋果果實(shí)中觀察到的結(jié)果類似,即蘋果果實(shí)整個(gè)發(fā)育時(shí)期均采取質(zhì)外體卸載方式(Zhangetal., 2004)。鄭國(guó)琦等(2015)在寧夏枸杞(Lyciumbarbarum)中也發(fā)現(xiàn)同樣現(xiàn)象,其他報(bào)道也顯示部分果實(shí)中存在著隨果實(shí)發(fā)育卸載路徑發(fā)生轉(zhuǎn)變,如核桃(Wuetal., 2004)、冬棗(Ziziphusjujubacv. Dongzao)(Nieetal., 2010)、葡萄(Zhangetal., 2006)、黃瓜(Cucumissativus)(Huetal., 2011)、梨(Pyrusspp.)(Zhangetal., 2014)、甜高粱(Sorghumbicolor)(Bihmidineetal., 2015; Milneetal., 2015)等。
另外,值得注意的是,在整個(gè)果實(shí)發(fā)育過程中,雖然篩管伴胞復(fù)合體同周圍薄壁細(xì)胞存在共質(zhì)體隔離,但韌皮薄壁細(xì)胞之間以及韌皮薄壁細(xì)胞與果肉細(xì)胞之間則存在豐富的胞間連絲,尤其在果實(shí)發(fā)育早期最為豐富。以往研究發(fā)現(xiàn),韌皮部卸載途徑的改變可能會(huì)導(dǎo)致胞間連絲的數(shù)量和密度的變化,這對(duì)于庫(kù)組織的發(fā)育和功能研究是非常重要的(Patrick, 1997; Oparkaetal., 1999)。胞間連絲在胚胎、營(yíng)養(yǎng)生長(zhǎng)和生殖發(fā)育等植物發(fā)育的各個(gè)階段是必不可少的(Burch-Smithetal., 2016),本文研究結(jié)果表明藍(lán)莓果實(shí)同化物的韌皮部后運(yùn)輸存在著活躍的共質(zhì)體途徑,大量胞間連絲的存在有利于薄壁細(xì)胞之間以及薄壁細(xì)胞與果肉細(xì)胞之間的物質(zhì)交換。藍(lán)莓果實(shí)韌皮部薄壁細(xì)胞和果肉薄壁細(xì)胞的細(xì)胞質(zhì)中均有線粒體、內(nèi)質(zhì)網(wǎng)、高爾基體、葉綠體、液泡的存在,說明這些細(xì)胞中具有旺盛的物質(zhì)代謝和運(yùn)轉(zhuǎn)過程,與寧夏枸杞一致(鄭國(guó)琦等, 2015)。蔗糖是同化物在韌皮部中運(yùn)輸?shù)闹饕镔|(zhì)形式,植物果實(shí)蔗糖積累受到蔗糖的合成、運(yùn)輸、分配和在果實(shí)中的代謝等過程的共同作用,蔗糖代謝與積累涉及到的關(guān)鍵酶包括轉(zhuǎn)化酶、蔗糖磷酸合成酶和蔗糖合成酶,它們對(duì)于果實(shí)內(nèi)糖分的積累具有重要的作用(張中霞等, 2011),蔗糖在果實(shí)中的分解強(qiáng)度是增強(qiáng)庫(kù)強(qiáng)、提高糖卸載能力、保證新合成的蔗糖由源到庫(kù)不斷運(yùn)輸?shù)闹匾h(huán)節(jié)(Rotundoetal., 2009; 齊紅巖等, 2012)。其中,細(xì)胞壁酸性轉(zhuǎn)化酶被認(rèn)為與同化物的質(zhì)外體卸載相關(guān),主要負(fù)責(zé)質(zhì)外空間蔗糖的分解(Zhangetal., 2001),對(duì)維持蔗糖濃度梯度、保持庫(kù)強(qiáng)起到重要作用(Chandraetal., 2012)。在藍(lán)莓中,在果實(shí)整個(gè)發(fā)育期,轉(zhuǎn)化酶活性保持在較高水平,支持了質(zhì)外體卸載的證據(jù)。蔗糖合成酶在蔗糖代謝過程中,既可以催化蔗糖分解又可以催化蔗糖的合成,蔗糖磷酸合成酶可以催化蔗糖的合成,以促進(jìn)蔗糖的積累。同葡萄(閆梅玲等, 2010)類似,本研究發(fā)現(xiàn)藍(lán)莓果實(shí)可溶性糖主要以積累果糖和葡萄糖為主。相對(duì)于藍(lán)莓果實(shí)發(fā)育過程中轉(zhuǎn)化酶較高的活性,蔗糖合成酶和蔗糖磷酸合成酶活性較低。酶凈活性分析顯示,蔗糖酶的分解活性始終大于合成活性。在果實(shí)發(fā)育中后期,可溶性酸性轉(zhuǎn)化酶和中性轉(zhuǎn)化酶活性進(jìn)一步升高,顯示果實(shí)發(fā)育后期果肉細(xì)胞內(nèi)進(jìn)行著活躍的蔗糖分解、轉(zhuǎn)化及貯藏過程。與葡萄(閆梅玲等, 2010)中略有不同的是,藍(lán)莓果糖和葡萄糖的積累與蔗糖合成酶、蔗糖磷酸合成酶及轉(zhuǎn)化酶等酶活性均成正相關(guān)。
在藍(lán)莓果實(shí)發(fā)育過程中,藍(lán)莓果實(shí)同化物以質(zhì)外體卸載途徑為主,同化物的韌皮部后運(yùn)輸存在著活躍的共質(zhì)體途徑,蔗糖酶的分解活性大于合成活性,主要以積累果糖和葡萄糖為主,且可溶性糖的積累與轉(zhuǎn)化酶、蔗糖合成酶及蔗糖磷酸合成酶等酶活性均成正相關(guān)。該結(jié)論為藍(lán)莓果實(shí)的發(fā)育及品質(zhì)形成的研究提供理論依據(jù)。
顧 姻, 賀善安.2001. 藍(lán)漿果與蔓越橘.北京:中國(guó)農(nóng)業(yè)出版社.
(Gu Y, He S A. 2001. Blue berries and cranberry. Beijing: China Agriculture Press.[in Chinese])
李亞東,劉海廣,唐雪東. 2014. 藍(lán)莓栽培圖解手冊(cè).北京:中國(guó)農(nóng)業(yè)出版社.
(Li Y D,Liu H G,Tang X D. 2014. Illustrated handbook of blueberry cultivation. Beijing: China Agriculture Press.[in Chinese])
齊紅巖,姜巖巖,華利靜. 2012. 短期夜間低溫對(duì)栽培番茄和野生番茄果實(shí)蔗糖代謝的影響. 園藝學(xué)報(bào),39(12):281-288.
(Qi H Y, Jiang Y Y, Hua L J. 2012. Responses to short-term low night temperature of sucrose-metabolizing in domesticated tomato and wild relative. Acta Horticulturae Sinica,39(12): 281-288. [in Chinese])
閆梅玲, 王振平, 范 永, 等. 2010. 蔗糖代謝相關(guān)酶在赤霞珠葡萄果實(shí)糖積累中的作用. 果樹學(xué)報(bào), 27(5): 703-707.
(Yan M L,Wang Z P,Fan Y,etal. 2010.Roles of sucrose-metabolizing enzymes in accumulation of sugars in Cabernet Sauvignon grape fruit. Journal of Fruit Science, 27(5):703-707. [in Chinese])
張中霞,劉 艷,白立華, 等. 2011. 河套蜜瓜果實(shí)發(fā)育過程中糖積累與蔗糖代謝相關(guān)酶的關(guān)系.西北植物學(xué)報(bào),(1):123-129.
(Zhang Z X, Liu Y, Bai L H,etal. 2011. Relationship between sugar accumulation and its metabolizing enzymes during muskmelon fruit development. Acta Botanica Boreali-Occidentalia Sinica, (1):123-129. [in Chinese])
鄭國(guó)琦,包 晗,楊 涓, 等. 2015.寧夏枸杞果實(shí)韌皮部及其周圍細(xì)胞超微結(jié)構(gòu)研究. 西北植物學(xué)報(bào),35 (11): 2211-2218.
(Zheng G Q,Bao H,Yang J,etal. 2015. Ultrastructure of phloem and the flesh sink-cells during fruit development ofLyciumbarbarum. Acta Botanica Boreali-Occidentalia Sinica, 35 (11):2211-2218. [in Chinese])
Bihmidine S, Baker R F, Hoffner C,etal. 2015.Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential sucrose transporter expression. BMC Plant Biology, 15(1):1-22.
Braun D M, Wang L, Ruan Y L. 2014.Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot, 65 (7): 1713-1735.
Burch-Smith T M, Zambryski P C. 2016. Regulation of plasmodesmal transport and modification of plasmodesmata during development and following infection by viruses and viral proteins//Tatjana Kleinow. Plant-virus interactions: Molecular biology, intra- and intercellular transport. Switzerland: Springer International Publishing, 87-122.
Chandra A, Jain R, Solomon S. 2012. Complexities of invertases controlling sucrose accumulation and retention in sugarcane. Current Science, 102(6): 857-866.
Clearwater M J, Luo Z, Ong S E,etal. 2012.Vascular functioning and the water balance of ripening kiwifruit (Actinidiachinensis) berries. Journal of Experimental Botany, 63 (5):1835-1847.
Fisher D B, Oparka K J.1996. Post-phloem transport: principles and problems. Journal of Experimental Botany, 47 (Suppl 1): 1141-1154.
Gordillo G, Fang H, Khanna S,etal. 2009.Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm. Antioxid Redox Signal,11 (1): 47-58.
Haupt S, Duncan G H, Holzberg S,etal. 2001.Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiology,125 (1): 209-218.
Hu L P, Sun H H, Li R F,etal.2011.Phloem unloading follows an extensive apoplasmic pathway in cucumber (CucumissativusL.) fruit from anthesis to marketable maturing stage. Plant Cell and Environment, 34 (11): 1835-1848.
Imlau A, Truernit E, Sauer N.1999. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. The Plant Cell, 11 (3):309-322.
Kempers R, Ammerlaan A, van Bel A J E,etal. 1998. Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol, 116(1): 271-278.
Koch K E, Avigne W T.1990. Postphloem, nonvascular transfer in citrus: kinetics, metabolism, and sugar gradients. Plant Physiol, 93: 1405-1416.
Milne R J, Offler C E, Patrick J W,etal. 2015. Cellular pathways of source leaf phloem loading and phloem unloading in developing stems ofSorghumbicolorin relation to stem sucrose storage. Functional Plant Biology, 42(10): 957-970.
Montalba R, Arriagada C, Alvear M,etal. 2010.Effects of conventional and organic nitrogen fertilizers on soil microbial activity, mycorrhizal colonization, leaf antioxidant content, andFusariumwilt in highbush blueberry (VacciniumcorymbosumL.). Sci Hortic-Amsterdam, 125 (4): 775-778.
Nie P X, Wang X Y, Hu L P,etal. 2010.The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development. Plant and Cell Physiology, 51 (6): 1007-1018.
Oparka K J. 1990.What is phloem unloading? Plant Physiology, 94 (2): 393-396.
Oparka K J, Cruz S S. 2000.THE GREAT ESCAPE: Phloem transport and unloading of macromolecules1. Annual Review of Plant Physiology and Plant Molecular Biology, 51(4):323-347.
Oparka K J, Turgeon R. 1999.Sieve elements and companion cells-traffic control centers of the phloem. The Plant Cell,11 (4): 739-750.
Patrick J W.1997. Phloem unloading: sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology, 48(4):191-222.
Patrick J W,Offler C E.1996.Post-sieve element transport of photoassimilates in sink regions. Journal of Experimental Botany, 47(Special Issue): 165-1177.
Prior R L, Gu L. 2005. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry, 66 (18): 2264-2280.
Roberts A G, Cruz S S, Roberts I M,etal. 1997. Phloem unloading in sink leaves ofNicotianabenthamiana: Comparison of a fluorescent solute with a fluorescent virus. The Plant Cell, 9 (8): 1381-1396.
Rotundo J L, Borr S L,Westgate M E,etal.2009. Relationship between assimilate supply per seed during seed filling and soybean seed composition. Field Crops Research,112(1): 90-96.
Ruan Y L, Patrick J W. 1995.The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta, 196(3): 434-444.
Viola R, Roberts A G, Haupt S,etal. 2001.Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell, 13 (2): 385-398.
Wang T D, Zhang H F, Wu Z C,etal. 2015. Sugar uptake in the aril of litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4. Plant & Cell Physiology, 56 (2): 377-387.
Wu G L, Zhang X Y, Zhang L Y,etal. 2004. Phloem unloading in developing walnut fruit is symplasmic in the seed pericarp and apoplasmic in the fleshy pericarp. Plant & Cell Physiology, 45 (10): 1461-1470.
Zanon L, Falchi R, Santi S,etal. 2015.Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types. Physiologia Plantarum, 154 (2):179-193.
Zhang D P, Lu Y M, Wang Y Z. 2001. Acid invertase is predominantly localized to cell walls of both the practically symplasmically isolated sieve element/companion cell complex and parenchyma cells in developing apple fruits. Plant, Cell and Environment, 24(7): 691-702.
Zhang H P, Wu J Y, Tao S T,etal. 2014.Evidence for apoplasmic phloem unloading in pear fruit. Plant Mol Biol Rep, 32(4):931-939.
Zhang L Y, Peng Y B, Pelleschi-Travier S,etal.2004. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiology, 135 (1): 574-586.
Zhang X Y, Wang X L, Wang X F,etal. 2006. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiology, 142 (1): 220-232.
(責(zé)任編輯 徐 紅)
Phloem Unloading Pathway of Photosynthates and Sucrose-Metabolizing Enzymes Activities inVacciniumcorymbosumFruit
Zhang Hehua1Li Yanfang1Nie Peixian2Wang Hongyang1Zhang Lingyun1
(1.KeyLaboratoryofForestSilvicultureandConservationofMinistryofEducation,BeijingForestryUniversityBeijing100083; 2.TheInstituteofPomology,ShandongAcademyofAgriculturalSciencesTai’an271000)
【Objective】 Phloem unloading and postphloem transport play pivotal parts in the regulation of the distribution of sucrose in the storage organs and maintenance the sink of fruit, and largely determine the yield and quality of the crop. The objective of this study was to clarify the mechanism of phloem unloading and glucose metabolism in the phloem of blueberry.【 Method】Vacciniumcorymbosum‘Sierra’(5-year-old Highbush blueberry) was used for observation of the ultrastructure of the phloem of blueberry in each development period. Fluorescent dye tracer and laser scanning confocal microscopy were used to observe the unloading path of the phloem in the fruit timely. Determination of soluble sugar content and related metabolic enzyme activity in blueberry fruit by HPLC. 【Result】 An ultrastructural investigation of phloem tissue in blueberry fruit showed that the fruit phloem SE/CC complex is symplasmically isolated from surrounding parenchyma cells over fruit development, whereas a large number of piasmodesma exist between parenchyma cells and pulp cells. Confocal laser scanning images of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands,not spread to the surrounding parenchyma cells, during the whole fruit development.These results provided a clear evidence for the predominance method of the assimilation of blueberry fruit is the unloading pathway over blueberry fruit development and symplasmic pathway present in postphloem transport. A large number of cells are beneficial to the material exchange between parenchyma cells,parenchyma cells and flesh cells. Activity assay showed that,invertase activity remained at a high level, it provides evidence to confirm the apoplasmic phloem unloading pathway at blueberry fruit development. In addition,carbohydrate metabolism related enzyme activity assay shows that a great amount of glucose and fructose primarily accumulated during blueberry ripening and sucrose enzyme decomposition activity was always greater than synthetic activity. During the late stage of fruit development, the activity of soluble acid invertase and neutral invertase was increased, the activity of sucrose decomposition, transformation and storage in the fruit pulp cell was revealed,the accumulation process is positively correlated with the activities of invertase, sucrose synthase and sucrose phosphate synthase enzymes. In the process of fruit development, the comprehensive effect of sucrose metabolism related enzymes is an important factor affecting the accumulation of soluble sugar in blueberry fruit.【Conclusion】 These results provided clear evidence for the predominance method of the assimilation of blueberry fruit is the unloading pathway over blueberry fruit development and symplasmic pathway present in postphloem transport. A large amount of glucose and fructose primarily accumulated in blueberry and sugar accumulation was positively correlated with invertase, sucrose synthase and sucrose phosphate synthase.
Vacciniumcorymbosum; fruit; photosynthate; apoplasmic unloading; sucrose-metabolizing enzymes
10.11707/j.1001-7488.20170305
2016-04-15;
2016-07-28。
教育部全國(guó)百篇優(yōu)秀博士學(xué)位論文基金(200771)。
S718.43
A
1001-7488(2017)03-0040-09
*張凌云為通訊作者。