李 瑤,廖 霞,鄭少杰,王麗穎,石 芳,左 丹,吳素蕊,明 建,3,*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2. 中華全國供銷合作總社昆明食用菌研究所,云南 昆明 650223;3.重慶市特色食品工程技術(shù)研究中心,重慶 400715)
植物多酚通過MAPK 信號(hào)通路調(diào)控腫瘤作用機(jī)制研究進(jìn)展
李 瑤1,廖 霞1,鄭少杰1,王麗穎1,石 芳1,左 丹1,吳素蕊2,明 建1,3,*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2. 中華全國供銷合作總社昆明食用菌研究所,云南 昆明 650223;3.重慶市特色食品工程技術(shù)研究中心,重慶 400715)
腫瘤細(xì)胞的生物學(xué)過程(增殖、分化、侵襲、遷移)是癌癥發(fā)生的標(biāo)志,絲裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)被證實(shí)是調(diào)節(jié)腫瘤細(xì)胞生物學(xué)過程的至關(guān)重要的信號(hào)通路。大量研究表明,天然植物多酚,如茶多酚、白藜蘆醇、花青素等對(duì)腫瘤細(xì)胞有顯著的調(diào)節(jié)作用,植物多酚介導(dǎo)的MAPK通路對(duì)腫瘤細(xì)胞的調(diào)節(jié)已經(jīng)引起國內(nèi)外學(xué)者的廣泛興趣。文章綜述了植物多酚通過MAPK信號(hào)通路對(duì)腫瘤細(xì)胞的調(diào)控作用,分析了不同多酚對(duì)MAPK信號(hào)通路的4 條途徑(p38、ERK-1/2、ERK5、JNK)的響應(yīng)機(jī)制,旨在為明確植物多酚的抗腫瘤活性及分子機(jī)制、開發(fā)抗腫瘤保健食品或藥物提供參考。
植物多酚;絲裂原活化蛋白激酶;信號(hào)通路;抗腫瘤
癌癥是正常細(xì)胞在腫瘤發(fā)病機(jī)制中產(chǎn)生的惡性致瘤性細(xì)胞的過程[1]。該過程具有維持腫瘤細(xì)胞的增殖信號(hào)、避免生長抑制、抗細(xì)胞凋亡、使細(xì)胞永生、誘導(dǎo)血管生成、激活侵襲和轉(zhuǎn)移、改變能量代謝機(jī)制、防止免疫破壞等特點(diǎn)[2]。腫瘤細(xì)胞在增殖、凋亡、侵襲和轉(zhuǎn)移等方面的發(fā)生機(jī)制各不相同。在腫瘤細(xì)胞增殖方面,增殖信號(hào)對(duì)細(xì)胞表面受體的表達(dá)進(jìn)行調(diào)控以及對(duì)信號(hào)通路元件的激活是細(xì)胞增殖和存活的關(guān)鍵,確定這些途徑的組成至關(guān)重要。在腫瘤細(xì)胞凋亡方面,腫瘤細(xì)胞是由致癌信號(hào)和過度增殖的相關(guān)DNA損傷所造成,其體內(nèi)具有相應(yīng)的機(jī)制防止凋亡,如腫瘤抑制基因p53的缺失或失活、上調(diào)促生存蛋白(B-cell lymphoma-2,Bcl-2)或下調(diào)促凋亡蛋白(Bax和BIM),通過相關(guān)信號(hào)通路對(duì)腫瘤細(xì)胞凋亡進(jìn)行調(diào)節(jié)[3]。在腫瘤細(xì)胞侵襲和轉(zhuǎn)移方面,是腫瘤細(xì)胞發(fā)展為侵襲身體局部組織并轉(zhuǎn)移到末梢位置的過程,激活該過程需要改變腫瘤細(xì)胞形狀,減少腫瘤細(xì)胞在其他細(xì)胞和細(xì)胞外基質(zhì)上的附著并增加其運(yùn)動(dòng)。而在這些腫瘤細(xì)胞在增殖、凋亡、侵襲和轉(zhuǎn)移等過程中,有絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)通路的參與介導(dǎo)[4]。
許多研究證實(shí),植物多酚對(duì)腫瘤細(xì)胞的增殖、凋亡、侵襲和轉(zhuǎn)移等生物學(xué)過程有著廣泛的調(diào)節(jié)作用。本文綜述了近些年來國內(nèi)外關(guān)于植物多酚介導(dǎo)MAPK信號(hào)通路對(duì)腫瘤細(xì)胞的調(diào)控作用機(jī)制,總結(jié)了不同結(jié)構(gòu)植物多酚在MAPK信號(hào)通路相應(yīng)途徑的特點(diǎn)和規(guī)律,旨在為研究植物多酚與抗腫瘤之間的關(guān)系提供參考。
圖1 MAPK信號(hào)級(jí)聯(lián)示意圖[5]Fig. 1 Schematic diagram of MAPK signaling pathways[5]
MAPK信號(hào)通路,又稱有絲分裂原激活蛋白激酶信號(hào)通路[6]。它可以通過多個(gè)底物如磷酸化轉(zhuǎn)錄因子,與細(xì)胞骨架相關(guān)的細(xì)胞和酶來調(diào)節(jié)細(xì)胞各種生理過程,包括炎癥、應(yīng)激、細(xì)胞生長發(fā)育、分化與死亡[7]。MAPK信號(hào)通路主要包括4 種途徑(圖1):細(xì)胞外信號(hào)調(diào)節(jié)的激酶(extracellular regulated protein kinases-1/2,ERK-1/2)、Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)、p38蛋白和細(xì)胞外信號(hào)調(diào)節(jié)的激酶5(extracellular regulated protein kinases 5,ERK5)途徑。完整的MAPK通路作用過程需要通過三級(jí)聯(lián)轉(zhuǎn)導(dǎo)方式依次激活。這4 種途徑需要被具體的MAP2K激活,而MAP2K可以被多種MAP3K所激活,磷酸化MAP3K激活MAP2K,MAP2K進(jìn)一步磷酸化并激活MAPK。
1.1 MAPK信號(hào)通路的主要途徑
1.1.1 ERK-1/2途徑
細(xì)胞外信號(hào)調(diào)節(jié)激酶1和2(ERK-1/2)是MAPK家族的一分子。ERKs是由多種細(xì)胞外因子所激活的,其中包括生長因子、激素和神經(jīng)遞質(zhì)[8]。該細(xì)胞外因子可以通過G蛋白偶聯(lián)受體,氨酸激酶受體或通過離子通道及其他機(jī)制[9],進(jìn)而引發(fā)多種細(xì)胞內(nèi)信號(hào)響應(yīng),導(dǎo)致ERK級(jí)聯(lián)激活。在ERK信號(hào)通路中,ERK1或ERK2(ERK-1/2)是由MEK1/2激活,而MEK1/2又依次由Rafs(如A-Raf、B-Raf或Raf-1)激活。ERK-1/2被激活后,緊接著激活MAPKAPK激酶。蛋白激酶GSK3[10]和LKB1[11]是MAPKAPKs直接底物,如此形成了6 個(gè)層次的MAPK級(jí)聯(lián)。
ERK-1/2途徑對(duì)調(diào)控腫瘤細(xì)胞生長、分化和遷移有一定的作用。通常情況下,促進(jìn)腫瘤細(xì)胞凋亡或抑制細(xì)胞增殖需要下調(diào)ERK信號(hào)通路,如β-欖香烯通過下調(diào)MAPK/ERK和PI3K/Akt/mTOR信號(hào)通路誘導(dǎo)腎癌786-0細(xì)胞的凋亡[12];賴氨酰氧化酶肽通過下調(diào)MAPK/ERK信號(hào)通路抑制肝腫瘤細(xì)胞增殖并誘導(dǎo)其凋亡[13]。然而,并非只有抑制該通路才能促進(jìn)腫瘤細(xì)胞凋亡,如α-干擾素腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TNF related apoptosis inducing ligand,TRAIL)通過下調(diào)c-casitas B細(xì)胞淋巴瘤和上調(diào)MAPK/ERK途徑誘導(dǎo)胃腫瘤細(xì)胞凋亡[14]。
1.1.2 JNK途徑
JNK是由“c-Jun氨基末端激酶”衍生而來。上游的MAP2K和MAP3K被絲氨酸/蘇氨酸磷酸化所激活,JNK及其同系物被蘇氨酸/酪氨酸磷酸化所激活[15-16]。
JNK調(diào)控細(xì)胞死亡、存活、增殖和分化過程主要有3 個(gè)方面的原因:一是激酶的激活或下游目標(biāo)的選擇有助于消除腫瘤細(xì)胞,而腫瘤細(xì)胞死亡往往涉及到JNK的活化。二是一些腫瘤細(xì)胞增殖和轉(zhuǎn)移與JNK的活性有關(guān)[17]。三是神經(jīng)退行性疾病也與JNK介導(dǎo)的細(xì)胞死亡相關(guān)[18]。然而,JNK對(duì)于細(xì)胞的生長作用并非都是一致的。有研究表明,JNK能促進(jìn)人類前列腺癌細(xì)胞增殖,而對(duì)乳腺癌細(xì)胞的影響卻不明顯,這可能是由于JNK底物的異質(zhì)性、酶和調(diào)節(jié)分子的結(jié)合作用影響了JNK的活性[19-20]。
1.1.3 p38途徑
p38參與了細(xì)胞增殖、細(xì)胞分化、細(xì)胞死亡、細(xì)胞遷移和侵襲等一系列復(fù)雜的生理生化過程,同時(shí)也是控制炎癥反應(yīng)的一條重要通路[21]。
p38/MAPK對(duì)調(diào)節(jié)腫瘤細(xì)胞增殖、分化有非常重要的意義。一方面,p38/MAPK的激活可以誘導(dǎo)原發(fā)性腫瘤細(xì)胞產(chǎn)生細(xì)胞上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)導(dǎo)致腫瘤細(xì)胞的外滲,造成遷移腫瘤細(xì)胞的入侵和遷移[22]。另一方面,p38/MAPK的抑制與腫瘤細(xì)胞的抗失巢凋亡特性相關(guān),使得循環(huán)腫瘤細(xì)胞得以存活,增加惡性腫瘤患者死亡風(fēng)險(xiǎn)[23]。p38/MAPK的高活性與ERK-1/2通路的低活性相結(jié)合,可導(dǎo)致腫瘤細(xì)胞休眠。研究發(fā)現(xiàn),p38/MAPK被人乳腺上皮細(xì)胞的突變基因激活,會(huì)導(dǎo)致H-Ras基因特異性細(xì)胞在該細(xì)胞上進(jìn)行侵襲和遷移[24-25]。
1.1.4 ERK5途徑
MAPK途徑中參與細(xì)胞調(diào)節(jié)的激酶ERK5,同其他的激酶一樣,也是由多層級(jí)聯(lián)激活的,其中WNK1充當(dāng)MAP4K激酶,MAP2K主要為MEK5。ERK5能調(diào)控腫瘤細(xì)胞的增殖、凋亡、侵襲和轉(zhuǎn)移。它是第1個(gè)被證明影響HeLa細(xì)胞(宮頸癌)增殖作用的MAPK激酶[26]。同樣,在乳腺癌細(xì)胞CF7和BT474[27]、乳腺上皮細(xì)胞系MCF10A[27]、多發(fā)性骨髓瘤細(xì)胞MM1S[28]的增殖中也有類似作用。MEK5的表達(dá)增加了人胚腎細(xì)胞HEK-293與前列腺癌細(xì)胞LNCaP的增殖[29]。在晚期口腔鱗狀細(xì)胞癌中,淋巴結(jié)的轉(zhuǎn)移也與高水平的MEK5有關(guān)[30]。此外ERK5水平下降也可以減少由肝細(xì)胞生長因子(hepatocyte growth factor,HGF)誘導(dǎo)的乳腺癌細(xì)胞MDA-MB-231遷移[31]。
許多研究證實(shí)MAPK信號(hào)通路是調(diào)節(jié)腫瘤細(xì)胞生物學(xué)過程至關(guān)重要的途徑。而植物多酚如茶多酚、白藜蘆醇、花青素等介導(dǎo)MAPK信號(hào)通路對(duì)腫瘤細(xì)胞的調(diào)控已成為國內(nèi)外研究熱點(diǎn)。但是,不同結(jié)構(gòu)的植物多酚在調(diào)控腫瘤細(xì)胞時(shí)究竟響應(yīng)哪條途徑是否有規(guī)律可循值得進(jìn)一步分析和探討。
表1 植物多酚通過MAPK信號(hào)通路調(diào)控腫瘤細(xì)胞生物學(xué)途徑Table 1 MAPK signaling pathways by which plant polyphenols regulate tumor cells
2.1 白藜蘆醇
白藜蘆醇(resveratrol)是從水果中分離出來的天然多酚類化合物,對(duì)多種惡性腫瘤具有抑制效果。早就有研究指出白藜蘆醇能快速激活MEK-1、稀疏表達(dá)基因(sparse representation-based classif i er,SRC)、基質(zhì)金屬蛋白酶和表皮生長因子受體依賴性模式的MAPK。白藜蘆醇通過MAPK信號(hào)通路抑制腫瘤細(xì)胞增殖的途徑主要有兩種:一種是通過激活p38途徑抑制細(xì)胞增殖,一種是抑制ERK途徑抑制細(xì)胞增殖。
白藜蘆醇抗人結(jié)腸癌細(xì)胞的作用可通過介導(dǎo)上調(diào)骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP9)激活p38/MAPK,從而抑制人結(jié)腸癌細(xì)胞的增殖并促進(jìn)其凋亡[32]。且該途徑對(duì)軟骨肉瘤細(xì)胞的增殖、遷移和凋亡有同樣作用[33]。白藜蘆醇對(duì)結(jié)腸癌細(xì)胞增殖的抑制作用也可以通過ERK-1/2通路來調(diào)節(jié),經(jīng)過RES處理的結(jié)腸癌細(xì)胞,Bax、caspase 3和caspase 9的表達(dá)均顯著升高,而抗凋亡分子Bcl-2的表達(dá)則明顯降低;在ERK途徑中,白藜蘆醇組的RAS、Raf、MEK和ERK-1/2的表達(dá)則明顯降低,表明白藜蘆醇可通過抑制ERK-1/2途徑來抑制腫瘤細(xì)胞增殖[34]。
2.2 表沒食子兒茶素沒食子酸酯
綠茶中表沒食子兒茶素沒食子酸酯(epigallocatechin gallate,EGCG)是茶多酚中含量最豐富、生物學(xué)功能最強(qiáng)的活性成分[35]。由于其安全無毒副作用并且可作用于多個(gè)組織及器官的特點(diǎn),EGCG作為腫瘤抑制藥物一直備受關(guān)注[36]。早期研究發(fā)現(xiàn)EGCG對(duì)丙二醇甲醚醋酸酯(2-acetoxy-1-methoxypropane,PMA)誘導(dǎo)的ERK和JNK激酶的激活起到一定的抑制作用,通過下調(diào)轉(zhuǎn)錄因子(activator protein-1,AP-1),從而防止胃腫瘤細(xì)胞的侵襲[37]。Yamagata等[38]研究發(fā)現(xiàn)結(jié)腸腫瘤細(xì)胞經(jīng)過EGCG處理能增加ERK-1/2、JNK1/2、p38α、p38γ和p38β的磷酸化水平。進(jìn)一步研究發(fā)現(xiàn),使用相應(yīng)的激酶抑制劑處理,EGCG誘導(dǎo)的細(xì)胞凋亡是通過抑制ERK-1/2和Akt或者激活p38/MAPK的活性完成的。還有研究表明EGCG通過介導(dǎo)激活p38/MAPK,下調(diào)基質(zhì)金屬蛋白酶(metalloproteinase,MMP2)的表達(dá)抑制卵巢癌細(xì)胞的增殖和遷移[39]。
2.3 槲皮素
槲皮素(quercetin)是黃酮類化合物,具有抗腫瘤、抗炎和抗氧化等特性[40]。槲皮素可通過產(chǎn)生細(xì)胞內(nèi)活性氧(reactive oxygen species,ROS)和增加sestrin 2表達(dá)來激活p38信號(hào)通路,進(jìn)而誘導(dǎo)結(jié)腸癌細(xì)胞的凋亡[41]。通過誘導(dǎo)體內(nèi)外細(xì)胞的氧化應(yīng)激,槲皮素也能激活ERK途徑,誘導(dǎo)白血病細(xì)胞HL-60的凋亡[42]。抑制Ras/MAPK/ERK信號(hào)通路則能抑制腦膠質(zhì)瘤細(xì)胞活力和遷移,促進(jìn)細(xì)胞的衰老[43]。特別是對(duì)于正常的細(xì)胞,如支氣管上皮細(xì)胞等,槲皮素介導(dǎo)的JNK通路對(duì)其生物學(xué)過程可表現(xiàn)出相應(yīng)的反饋調(diào)節(jié),槲皮素激活JNK并增加c-Jun和p53依賴性Bax的表達(dá)水平誘導(dǎo)支氣管上皮細(xì)胞的凋亡,同時(shí)JNK的失活則會(huì)抑制槲皮素減少p53和Bax的表達(dá),進(jìn)而減輕細(xì)胞的凋亡[44]。
2.4 根皮苷
根皮苷(phlorizin)是廣泛存在于蘋果、梨和各種蔬菜中的植物多酚類物質(zhì),具有抗腫瘤活性。根皮苷可以顯著上調(diào)p53和Bax和多聚ADP核糖聚合酶的裂解,增加caspase-3活性以及活化JNK和p38途徑誘導(dǎo)乳腺癌細(xì)胞的凋亡[45]。研究發(fā)現(xiàn)根皮苷通過p38和JNK1/2途徑均能顯著地誘導(dǎo)非小細(xì)胞性肺癌細(xì)胞系A(chǔ)549細(xì)胞的凋亡,抑制其增殖[46]。同時(shí),根皮苷還能抑制ERK的磷酸化,抑制12-O-十四烷酰佛波醇-13-醋酸酯(12-O-tetradecanoylphorbol 13-acetate,TPA)誘導(dǎo)的NF-κB活化和環(huán)氧化酶(cyclooxygenase,COX-2)表達(dá),而促進(jìn)腫瘤細(xì)胞的凋亡[47]。
2.5 花青素
花青素(anthocyanins)屬于黃酮類化合物,具有重要的抗氧化、抗炎及抗癌作用。花青素通過激活p38/MAPK途徑,下調(diào)抗凋亡蛋白(inhibitor of apoptosis protein,IAPs),促進(jìn)人結(jié)腸癌HCT-116細(xì)胞凋亡[48]?;ㄇ嗨氐目鼓[瘤作用也體現(xiàn)在對(duì)JNK途徑的激活上,如黑米花色苷抑制JNK的活化,下調(diào)基質(zhì)金屬蛋白酶2(matrix metallo proteinase-2,MMP-2)和MMP-9的分泌,從而抑制乳腺癌細(xì)胞的轉(zhuǎn)移。有研究表明矢車菊素-3-O-葡萄糖苷(cyanidin-3-O-glucoside chloride,C3G)可以抑制JNK的活性[49],防止肝細(xì)胞的凋亡,但對(duì)ER K/MA P K和p38/MAPK無抑制作用?;ㄇ嗨爻顺R姷目拱┗钚酝?,其通過MAPK途徑產(chǎn)生的抗炎活性也十分普遍,如紅樹莓花色苷能夠通過抑制MAPK(JNK通路)的活化抑制體外和體內(nèi)的炎癥反應(yīng)[50]。
2.6 姜黃素
姜黃素(curcumin)是香料姜黃中最重要的功能組分,對(duì)于癌癥、動(dòng)脈粥樣硬化和糖尿病等疾病具有一定的治療特性[51]。姜黃素能通過MAPK的ERK-1/2、JNK和p38/MAPK 3 種途徑對(duì)腫瘤細(xì)胞起到調(diào)控作用。研究表明小鼠暴露于煙草煙霧(tobacco smoke,TS)12 周后能激活胃和膀胱的ERK-1/2、ERK5、JNK和p38 4 種MAPK途徑,并且激活活化蛋白1(activator protein 1,AP-1),而姜黃素能有效地消除TS誘導(dǎo)的胃中的ERK-1/2和JNK/ MAPK途徑和膀胱中的ERK-1/2、JNK、p38 MAPK通路的活化,AP-1的活化和EMT的改變,從而對(duì)胃癌和膀胱癌起到一定的預(yù)防作用[52-53]。雖然姜黃素在體內(nèi)具有顯著的抗腫瘤活性,而藥代動(dòng)力學(xué)特征則表明姜黃素的口服生物利用率差,四氫姜黃素(tetra hydro curcuminoids,THC)作為姜黃素的主要代謝產(chǎn)物,能代替p38/MAPK抑制劑有效地扭轉(zhuǎn)MCF-7細(xì)胞線粒體膜電位的耗散,并阻止THC介導(dǎo)的Bax表達(dá)上調(diào)、Bcl-2表達(dá)下調(diào)、caspase-3的激活及p21表達(dá)上調(diào),表明p38/MAPK可能參與THC誘導(dǎo)的MCF-7細(xì)胞凋亡[54]。
2.7 其他
除上述多酚之外,還有很多植物多酚同樣能通過MAPK途徑調(diào)控腫瘤細(xì)胞的生物過程,而達(dá)到防癌抗癌的目的。齊墩果酸和大蒜素可以通過抑制MAPK/ERK信號(hào)通路抑制膠質(zhì)瘤細(xì)胞的增殖[55-56];飛燕草色素抑制血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)誘導(dǎo)的ERK-1/2和p38/MAPK磷酸化并降低轉(zhuǎn)錄因子CREB和ATF1的表達(dá),從而抑制黑色素瘤細(xì)胞的增殖[57]。木犀草素和橄欖葉提取物通過抑制ERK-1/2活性介導(dǎo)的MAPK信號(hào)通路對(duì)乳腺癌細(xì)胞表現(xiàn)出抗增殖活性[58]。間苯三酚通過抑制ERK途徑磷酸化,下調(diào)下游效應(yīng)激酶p70S6和翻譯起始因子RPS6和eIF4b的表達(dá),從而促進(jìn)結(jié)腸癌癌細(xì)胞的凋亡[59]。
本文綜述了天然植物多酚通過MAPK信號(hào)通路對(duì)腫瘤細(xì)胞生物學(xué)過程的調(diào)節(jié)作用,植物多酚抗腫瘤作用的機(jī)制表現(xiàn)為抑制腫瘤細(xì)胞增殖、遷移和侵襲,促進(jìn)腫瘤細(xì)胞的凋亡。MAPK信號(hào)通路的幾條途徑的響應(yīng)則表現(xiàn)為激活p38、JNK途徑和抑制ERK-1/2途徑。在這幾條途徑中,部分多酚可以響應(yīng)多種激酶同時(shí)對(duì)一種腫瘤細(xì)胞發(fā)揮作用,如姜黃素可以同時(shí)激活p38、JNK、ERK-1/2途徑抑制胃癌和膀胱癌細(xì)胞的生長;根皮苷可以同時(shí)激活p38和JNK途徑誘導(dǎo)非小細(xì)胞性肺腫瘤細(xì)胞株A549的凋亡。當(dāng)然,大部分多酚對(duì)于一種腫瘤細(xì)胞只能激活一條途徑,如花青素多通過激活JNK途徑調(diào)節(jié)細(xì)胞的生長、侵襲和遷移。
值得注意的是,本文所總結(jié)的幾類植物多酚在響應(yīng)MAPK信號(hào)通路的不同途徑時(shí)涉及到ERK5的途徑較少,這可能是由于ERK5作為最晚發(fā)現(xiàn)的MAPK家族成員,還未得到科學(xué)界的廣泛重視和應(yīng)用。但ERK5作為能夠調(diào)控腫瘤細(xì)胞的增殖、遷移和侵襲的MAPK激酶其作用是不能被忽視的。
隨著生物學(xué)領(lǐng)域?qū)χ参锒喾油ㄟ^MAPK信號(hào)通路發(fā)揮作用的研究進(jìn)一步深入,MAPK信號(hào)通路的4 條途徑及其作用機(jī)制仍需要進(jìn)一步闡明,不同結(jié)構(gòu)的植物多酚對(duì)這4 種途徑的選擇也需要進(jìn)一步深入研究總結(jié),為探究植物多酚發(fā)揮其抗腫瘤作用的機(jī)制提供參考依據(jù)。
[1] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. DOI:10.1016/ j.cell.2011.02.013.
[2] LOCHHEAD P A, GILLEY R, COOK S J. ERK5 and its role in tumour development[J]. Biochemical Society Transactions, 2012, 40(1): 251-256. DOI:10.1042/BST20110663.
[3] NITHIANANDARAJAH-JONES G N, WILM B, GOLDRING C E P, et al. ERK5: structure, regulation and function[J]. Cellular Signalling, 2012, 24(11): 2187-2196. DOI:10.1016/j.cellsig.2012.07.007.
[4] 陳建勇, 王聰, 王娟, 等. MAPK信號(hào)通路研究進(jìn)展[J]. 中國醫(yī)藥科學(xué), 2011, 1(8): 32-34.
[5] RUBINFELD H, SEGER R. The ERK cascade[J]. Molecular Biotechnology, 2005, 31(2): 151-174. DOI:10.1385/MB:31:2:151.
[6] SEGER R, KREBS E G. The MAPK signaling cascade[J]. The FASEB Journal, 1995, 9(9): 726-735.
[7] BOGOYEVITCH M A, KOBE B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases[J]. Microbiology and Molecular Biology Reviews, 2006, 70(4): 1061-1095. DOI:10.1128/ MMBR.00025-06.
[8] CHUDERLAND D, SEGER R. Protein-protein interactions in the regulation of the extracellular signal-regulated kinase[J]. Molecular Biotechnology, 2005, 29(1): 57-74. DOI:10.1385/MB:29:1:57.
[9] MARMOR M D, SKARIA K B, YARDEN Y. Signal transduction and oncogenesis by ErbB/HER receptors[J]. International Journal of Radiation Oncology Biology Physics, 2004, 58(3): 903-913. DOI:10.1016/j.ijrobp.2003.06.002.
[10] ELDAR-FINKELMAN H, SEGER R, VANDENHEEDE J R, et al. Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells[J]. Journal of Biological Chemistry, 1995, 270(3): 987-990.
[11] SAPKOTA G P, KIELOCH A, LIZCANO J M, et al. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser 431 by p90 RSK and cAMP-dependent protein kinase, but not its farnesylation at Cys 433, is essential for LKB1 to suppress cell growth[J]. Journal of Biological Chemistry, 2001, 276(22): 19469-19482. DOI:10.1074/jbc.M009953200.
[12] ZHAN Y H, LIU J, QU X J, et al. β-Elemene induces apoptosis in human renal-cell carcinoma 786-0 cells through inhibition of MAPK/ ERK and PI3K/Akt/mTOR signalling pathways[J]. Asian Pacific Journal of Cancer Prevention, 2012, 13(6): 2739-2744. DOI:10.7314/ APJCP.2012.13.6.2739.
[13] ZHENG Y, WANG X, WANG H, et al. Expression of the lysyl oxidase propeptide in hepatocellular carcinoma and its clinical relevance[J]. Oncology Reports, 2014, 31(4): 1669-1676. DOI:10.3892/or.2014.3044.
[14] QU J, ZHAO M, TENG Y, et al. Interferon-α sensitizes human gastric cancer cells to TRAIL-induced apoptosis via activation of the c-CBL-dependent MAPK/ERK pathway[J]. Cancer Biology and Therapy, 2011, 12(6): 494-502. DOI:10.4161/cbt.12.6.15973.
[15] GEE K, LIM W, MA W, et al. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-α in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression[J]. The Journal of Immunology, 2002, 169(10): 5660-5672. DOI:10.4049/jimmunol.169.10.5660.
[16] BENNETT B L, SASAKI D T, MURRAY B W, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase[J]. Proceedings of the National Academy of Sciences, 2001, 98(24): 13681-13686. DOI:10.1073/pnas.251194298.
[17] WOO J H, LIM J H, KIM Y H, et al. Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC δ signal transduction[J]. Oncogene, 2004, 23(10): 1845-1853. DOI:10.1038/sj.onc.1207307.
[18] HASHIMOTO Y, TSUJI O, NIIKURA T, et al. Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death[J]. Journal of Neuro Chemistry, 2003, 84(4): 864-877. DOI:10.1046/j.1471-4159.2003.01585.x.
[19] YANG Y M, BOST F, CHARBONO W, et al. C-Jun NH(2)-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma[J]. Clinical Cancer Research, 2003, 9(1): 391-401.
[20] JOHNSON R, SPIEGELMAN B, HANAHAN D, et al. Cellular transformation and malignancy induced by ras require c-Jun[J]. Molecular and Cellular Biology, 1996, 16(8): 4504-4511. DOI:10.1128/MCB.16.8.4504.
[21] 吳向華, 陸云飛. MAPK信號(hào)傳導(dǎo)通路與乳腺癌關(guān)系的研究進(jìn)展[J].廣東醫(yī)學(xué), 2010, 31(4): 526-528.
[22] TAKEISHI Y, ABE J, LEE J D, et al. Differential regulation of p90 ribosomal S6 kinase and big mitogen-activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts[J]. Circulation Research, 1999, 85(12): 1164-1172. DOI:10.1161/01.RES.85.12.1164.
[23] SUN W, WEI X, KESAVAN K, et al. MEK kinase 2 and the adaptor protein Lad regulate extracellular signal-regulated kinase 5 activation by epidermal growth factor via Src[J]. Molecular and Cellular Biology, 2003, 23(7): 2298-2308. DOI:10.1128/MCB.23.7.2298-2308.2003.
[24] KIM M S, LEE E J, KIM H R C, et al. p38 Kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells[J]. Cancer Research, 2003, 63(17): 5454-5461.
[25] KHAJEH M, GHANBARI M. Identif i cation of H-Ras-specif i c motif for the activation of invasive signaling program in human breast epithelial cells[J]. Neoplasia, 2011, 13(2): 98-107. DOI:10.1593/ neo.101088.
[26] KATO Y, TAPPING R I, HUANG S, et al. BMK1/ERK5 is required for cell proliferation induced by epidermal growth factor[J]. Nature, 1998, 395: 713-716. DOI:10.1038/27234.
[27] ESPARíS-OGANDO A, DíAZ-RODRíGUEZ E, MONTERO J C, et al. ERK5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2[J].Molecular and Cellular Biology, 2002, 22(1): 270-285. DOI:10.1128/ MCB.22.1.270-285.2002.
[28] CARVAJAL-VERGARA X, TABERA S, MONTERO J C, et al. Multifunctional role of ERK5 in multiple myeloma[J]. Blood, 2005, 105(11): 4492-4499.
[29] MEHTA P B, JENKINS B L, MCCARTHY L, et al. MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion[J]. Oncogene, 2003, 22(9): 1381-1389. DOI:10.1038/sj.onc.1206154.
[30] STICHT C, FREIER K, KN?PFLE K, et al. Activation of MAP kinase signaling through ERK5 but not ERK1 expression is associated with lymph node metastases in oral squamous cell carcinoma (OSCC) 1, 2, 3[J]. Neoplasia, 2008, 10(5): 462-470. DOI:10.1593/neo.08164.
[31] CASTRO N E, LANGE C A. Breast tumor kinase and extracellular signal-regulated kinase 5 mediate Met receptor signaling to cell migration in breast cancer cells[J]. Breast Cancer Research, 2010, 12(4): R60.
[32] YUAN S X, WANG D X, WU Q X, et al. BMP9/p38 MAPK is essential for the antiproliferative effect of resveratrol on human colon cancer[J]. Oncology Reports, 2016, 35(2): 939-947. DOI:10.3892/ or.2015.4407.
[33] DAI Z, LEI P, XIE J, et al. Antitumor effect of resveratrol on chondrosarcoma cells via phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase pathways[J]. Molecular Medicine Reports, 2015, 12(2): 3151-3155. DOI:10.3892/mmr.2015.3683.
[34] HAO C, JIN Z L, HAI X. MEK/ERK signaling pathway in apoptosis of SW620 cell line and inhibition effect of resveratrol[J]. Asian Pacif i c Journal of Tropical Medicine, 2016, 9(1): 45-48. DOI:10.1016/ j.apjtm.2015.12.010.
[35] WU D, WANG J, PAE M, et al. Green tea EGCG, T cells, and T cellmediated autoimmune diseases[J]. Molecular Aspects of Medicine, 2012, 33(1): 107-118. DOI:10.1016/j.mam.2011.10.001.
[36] 蔣潔琳, 溫旭燁, 胡雅瓊, 等. 表沒食子兒茶素沒食子酸酯(EGCG)對(duì)癌癥細(xì)胞信號(hào)傳導(dǎo)鏈的影響[J]. 食品科學(xué), 2012, 33(9): 319-325.
[37] KIM H S, KIM M I H, JEONG M I N, et al. EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells[J]. Anticancer Research, 2004, 24(2B): 747-754.
[38] YAMAGATA K, XIE Y, SUZUKI S, et al. Epigallocatechin-3-gallate inhibits VCAM-1 expression and apoptosis induction associated with LC3 expressions in TNFα-stimulated human endothelial cells[J]. Phytomedicine, 2015, 22(4): 431-437. DOI:10.1016/ j.phymed.2015.01.011.
[39] WANG F, CHANG Z, FAN Q, et al. Epigallocatechin 3 gallate inhibits the proliferation and migration of human ovarian carcinoma cells by modulating p38 kinase and matrix metalloproteinase 2[J]. Molecular Medicine Reports, 2014, 9(3): 1085-1089. DOI:10.3892/ mmr.2014.1909.
[40] DAJAS F. Life or death: neuroprotective and anticancer effects of quercetin[J]. Journal of Ethnopharmacology, 2012, 143(2): 383-396. DOI:10.1016/j.jep.2012.07.005.
[41] KIM G T, LEE S H, KIM J I, et al. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner[J]. International Journal of Molecular Medicine, 2014, 33(4): 863-869. DOI:10.3892/ijmm.2014.1658.
[42] LEE W J, HSIAO M, CHANG J L, et al. Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenog Raft[J]. Archives of Toxicology, 2015, 89(7): 1103-1117. DOI:10.1007/s00204-014-1300-0.
[43] PAN H C, JIANG Q, YU Y, et al. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fi bronectin via the AKT and ERK signalling pathways in human glioma cells[J]. Neurochemistry International, 2015, 80: 60-71. DOI:10.1016/j.neuint.2014.12.001.
[44] LEE K H, YOO C G. Simultaneous inactivation of GSK-3β suppresses quercetin-induced apoptosis by inhibiting the JNK pathway[J]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2013, 304(11): L782-L789. DOI:10.1152/ ajplung.00348.2012.
[45] KIM M S, KWON J Y, KANG N J, et al. Phloretin induces apoptosis in H-Ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen-activated protein kinase signaling[J]. Annals of the New York Academy of Sciences, 2009, 1171(1): 479-483. DOI:10.1111/j.1749-6632.2009.04692.x.
[46] MIN J, LI X, HUANG K, et al. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways[J]. Oncology Reports, 2015, 34(6): 2871-2879. DOI:10.3892/or.2015.4325.
[47] SHIN J W, KUNDU J K, SURH Y J. Phloretin inhibits phorbol esterinduced tumor promotion and expression of cyclooxygenase-2 in mouse skin: extracellular signal-regulated kinase and nuclear factor-κB as potential targets[J]. Journal of Medicinal Food, 2012, 15(3): 253-257. DOI:10.1089/jmf.2011.1851.
[48] SHIN D Y, LEE W S, LU J N, et al. Induction of apoptosis in human colon cancer HCT-116 cells by anthocyanins through suppression of Akt and activation of p38-MAPK[J]. International Journal of Oncology, 2009, 35(6): 1499-1504. DOI:10.3892/ijo_00000469.
[49] JIANG X, TANG X, ZHANG P, et al. Cyanidin-3-O-β-glucoside protects primary mouse hepatocytes against high glucose-induced apoptosis by modulating mitochondrial dysfunction and the PI3K/ Akt pathway[J]. Biochemical Pharmacology, 2014, 90(2): 135-144. DOI:10.1016/j.bcp.2014.04.018.
[50] LI L, WANG L, WU Z, et al. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis[J]. Scientif i c Reports, 2014, 4: 6234-6234. DOI:10.1038/srep06234.
[51] AHUJA S, SHANKAR P, BOYLAN M. Curcumin’s therapeutic properties in disease prevention[J]. Agro Food Industry Hi-tech, 2011, 22(5): 26-28.
[52] LIANG Z, WU R, XIE W, et al. Curcumin suppresses MAPK pathways to reverse tobacco smoke-induced gastric epithelialmesenchymal transition in mice[J]. Phytotherapy Research, 2015, 29(10): 1665-1671. DOI:10.1002/ptr.5398.
[53] LIANG Z, WU R, XIE W, et al. Inhibition of tobacco smoke-induced bladder MAPK activation and epithelial-mesenchymal transition in mice by curcumin.[J]. International Journal of Clinical & Experimental Pathology, 2014, 8(5): 4503-4513.
[54] KANG N, WANG M M, WANG Y H, et al. Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells[J]. Food and Chemical Toxicology, 2014, 67: 193-200. DOI:10.1016/j.fct.2014.02.024.
[55] GUO G, YAO W, ZHANG Q, et al. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway[J]. PLoS ONE, 2013, 8(8): e72079-e72079. DOI:10.1371/journal.pone.0072079. eCollection 2013.
[56] CHA J H, CHOI Y J, CHA S H, et al. Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway[J]. Oncology Reports, 2012, 28(1): 41-48. DOI:10.3892/or.2012.1772.
[57] KERAVIS T, FAVOT L, ABUSNINA A A, et al. Delphinidin inhibits tumor growth by acting on VEGF signalling in end oihelial cells[J]. PLoS ONE, 2015, 10(12): e0145291. DOI:10.1371/journal. pone.0145291.
[58] BARRAJóN-CATALáN E, TAAMALLI A, QUIRANTESPINé R, et al. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 105: 156-162. DOI:10.1016/j.jpba.2014.11.048.
[59] KANG M H, KIM I H, NAM T J. Phloroglucinol induces apoptosis through the regulation of insulin-like growth factor 1 receptor signaling pathways in human colon cancer HT-29 cells[J]. International Journal of Oncology, 2014, 45(3): 1036-1042. DOI:10.3892/ijo.2014.2521.
Plant Polyphenols Exert Antitumor Effect through MAPK Signaling Pathways: A Review
LI Yao1, LIAO Xia1, ZHENG Shaojie1, WANG Liying1, SHI Fang1, ZUO Dan1, WU Surui2, MING Jian1,3,*
(1. College of Food Science, Southwest University, Chongqing 400715, China; 2. Kunming Research Fungi Institute, All China Federation of Supply and Marketing Cooperatives, Kunming 650223, China; 3. Chongqing Engineering Research Center for Special Foods, Chongqing 400715, China)
The biological processes of tumor cells such as proliferation, differentiation, invasion and migration are the signs of cancer. The mitogen-activated protein kinase (MAPK) signaling pathway has been proved to be an essential pathway that can adjust the biological processes of tumor cells. A number of studies indicate that natural plant polyphenols, such as tea polyphenols, resveratrol and anthocyanins, have a signif i cant regulatory effect on tumor cells. Plant polyphenols can adjust tumor cells through the MAPK signaling pathway, which has attracted widespread research interest worldwide. This article reviews the regulating effect of plant polyphenols on tumor cells through the MAPK signaling pathway and elucidates the response mechanisms of different polyphenols to the four MAPK signaling pathways (p38, ERK-1/2, ERK5 and JNK pathways), aiming to further clarify the antitumor activity of plant polyphenols and the underlying molecular mechanisms and provide a reference for developing anticancer health foods or drugs.
plant polyphenols; mitogen-activated protein kinase; signaling pathway; antitumor
10.7506/spkx1002-6630-201707047
Q964.8;R151.2
A
1002-6630(2017)07-0296-06
李瑤, 廖霞, 鄭少杰, 等. 植物多酚通過MAPK信號(hào)通路調(diào)控腫瘤作用機(jī)制研究進(jìn)展[J]. 食品科學(xué), 2017, 38(7): 296-301. DOI:10.7506/spkx1002-6630-201707047. http://www.spkx.net.cn
LI Yao, LIAO Xia, ZHENG Shaojie, et al. Plant polyphenols exert antitumor effect through MAPK signaling pathways: a review[J]. Food Science, 2017, 38(7): 296-301. (in Chinese with English abstract)
10.7506/spkx1002-6630-201707047. http://www.spkx.net.cn
2016-06-06
國家自然科學(xué)基金面上項(xiàng)目(31471576);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(XDJK2016E113;XDJK2015D035);“十二五”國家科技支撐計(jì)劃項(xiàng)目(2013BAD16B01);重慶市特色食品工程技術(shù)研究中心能力提升項(xiàng)目(cstc2014pt-gc8001)
李瑤(1993—),女,碩士研究生,研究方向?yàn)槭称坊瘜W(xué)與營養(yǎng)學(xué)。E-mail:420660685@qq.com
*通信作者:明建(1972—),男,教授,博士,研究方向?yàn)槭称坊瘜W(xué)與營養(yǎng)學(xué)。E-mail:mingjian1972@163.com