亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        南海東北部巖芯沉積物磁性特征及對(duì)甲烷事件的指示

        2017-04-14 11:54:24林榮驍王家生蘇丕波林杞孫飛楊軍霞
        沉積學(xué)報(bào) 2017年2期
        關(guān)鍵詞:磁化率水合物站位

        林榮驍,王家生,蘇丕波,林杞,孫飛,楊軍霞

        1. 生物地質(zhì)與環(huán)境地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,武漢 430074 2. 中國地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢 430074 3. 福州市海洋與漁業(yè)技術(shù)中心,福州 350026 4. 廣州海洋地質(zhì)調(diào)查局,廣州 510075

        南海東北部巖芯沉積物磁性特征及對(duì)甲烷事件的指示

        林榮驍1,2,3,王家生1,2,蘇丕波4,林杞2,孫飛2,楊軍霞2

        1. 生物地質(zhì)與環(huán)境地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,武漢 430074 2. 中國地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢 430074 3. 福州市海洋與漁業(yè)技術(shù)中心,福州 350026 4. 廣州海洋地質(zhì)調(diào)查局,廣州 510075

        在甲烷滲漏海域,沉積物磁化率通常表現(xiàn)出異常的低值特征,這與硫酸鹽—甲烷轉(zhuǎn)換帶(SMTZ)內(nèi)甲烷厭氧氧化反應(yīng)(AOM)的發(fā)育而導(dǎo)致的自生礦物的形成作用有關(guān)。通過測(cè)定南海東北部Site DH-CL11、Site 973-2、Site 973-4三個(gè)站位400個(gè)巖芯沉積物樣品的磁化率,并結(jié)合三個(gè)站位自生黃鐵礦豐度和硫同位素等數(shù)據(jù)探討了南海北部天然氣水合物潛在區(qū)沉積物磁化率的變化特征及其對(duì)甲烷滲漏事件的指示意義。結(jié)果表明:在甲烷異常滲漏海域,上涌甲烷與下滲硫酸鹽在SMTZ內(nèi)發(fā)生AOM反應(yīng)生成了大量的HS-,造成亞鐵磁性礦物大量溶解,同時(shí)生成大量順磁性自生黃鐵礦,導(dǎo)致沉積物磁化率的異常降低;但是,在HS-不足時(shí),鐵硫化物黃鐵礦化不充分,會(huì)優(yōu)先生成膠黃鐵礦,進(jìn)而出現(xiàn)二次磁信號(hào)。在天然氣水合物潛在海域,沉積物磁化率的異常特征可以反映下部甲烷通量的變化,從而指示下伏天然氣水合物藏演化,因此能夠成為探測(cè)天然氣水合物藏的一種間接有效的手段,將有助于我國南海北部海域天然氣水合物的勘探。

        磁化率;自生黃鐵礦;甲烷滲漏事件;南海東北部;沉積物

        0 引言

        1 區(qū)域地質(zhì)概況

        南海地處歐亞板塊、澳大利亞板塊以及太平洋板塊交界處,北部陸緣屬于華南地塊,西部為印支地塊,南接加里曼丹島和蘇門答臘島,東鄰臺(tái)灣—菲律賓島弧[8]。Site DH-CL11、Site 973-2和Site 973-4均位于南海北部被動(dòng)大陸邊緣和臺(tái)灣西南部活動(dòng)大陸邊緣過渡帶的九龍甲烷礁(Jiulong Methane Reef)海域分布區(qū)內(nèi)(圖1)。九龍甲烷礁總面積約430 km2,是目前世界上發(fā)現(xiàn)的面積最大的自生碳酸鹽巖出露區(qū)[9]。ODP 184航次在九龍甲烷礁海域西南部的鉆井資料顯示,該海域沉積速率高達(dá)370~870 m/Ma[10]并且地震剖面上存在較強(qiáng)的似海底反射(BSR)[11],暗示下伏可能存在天然氣水合物。

        圖1 研究站位分布圖(修改自文獻(xiàn)[12])Fig.1 Location of the study sites(modified from reference[12])

        2 材料與方法

        Site DH-CL11(21°57′ N,118°54′ E)巖芯沉積物樣品來自2012年廣州海洋地質(zhì)調(diào)查局“海洋四號(hào)”利用大型重力活塞取樣器采集的淺表層柱狀樣,站位水深約1 684 m,巖芯長(zhǎng)7.67 m。Site 973-2(21°59′ N,118°46′ E)和Site 973-4(21°54′ N,118°49′ E)沉積物巖芯樣品是2014年4月廣州海洋地質(zhì)調(diào)查局 “海洋六號(hào)”通過大型重力活塞取樣器獲取。其中,Site 973-2站位水深約1 120 m,巖芯長(zhǎng)6.73 m;Site 973-4站位水深約1 666 m,巖芯長(zhǎng)13.85 m。沉積物巖芯采集過程中,沉積物及其沉積組構(gòu)未破壞。

        沉積物樣品采集于廣州海洋地質(zhì)調(diào)查局巖芯庫,樣品間距為2~5 cm,隨后以錫箔紙包裹并轉(zhuǎn)移到中國地質(zhì)大學(xué)(武漢)生物地質(zhì)與環(huán)境地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室(BGEG)內(nèi)置于冰箱中冷凍保存,樣品室內(nèi)預(yù)處理工作在BGEG完成,部分樣品測(cè)試在東華理工大學(xué)核資源與環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室完成,過程如下:

        (1) 采用取樣器對(duì)巖芯柱沉積物樣品進(jìn)行定體積(約15 mL)取樣并稱量,隨后置于陰涼處自然風(fēng)干;

        (2) 將風(fēng)干后的樣品進(jìn)行稱量,得到干樣重(M干樣),之后送至BGEG進(jìn)行磁化率測(cè)試,首先稱取約1~10 g樣品,裝入無磁性樣品盒(2 cm×2 cm×2 cm),然后采用MFK1-FA多功能磁化率儀對(duì)研究區(qū)400個(gè)樣品進(jìn)行低場(chǎng)體積磁化率測(cè)量,并轉(zhuǎn)換為質(zhì)量磁化率χ。最后,使用MFK1-FA多功能磁化率儀完成Site 973-2樣品κ/T曲線的測(cè)量;

        (3) 將測(cè)試后樣品用去離子水浸泡24 h,然后用直徑分別為65 μm和30.8 μm的篩子對(duì)浸泡后的樣品進(jìn)行篩洗,篩洗過程中先在去離子水水流下用刷子輕刷,然后放入超聲波清洗儀震蕩5~10 s并倒回篩子中,再加入適量去離子水,重復(fù)以上步驟直至沖洗干凈為止;

        (4) 將沖洗干凈的樣品放入50°C恒溫箱中烘干,待樣品完全干燥后取出并分別稱量粒徑65 μm及以上的顆粒組分質(zhì)量(M≥65μm)以及粒徑在30.8~65 μm的顆粒組分質(zhì)量(M30.8~65μm),分別計(jì)算出各組分質(zhì)量百分比W≥65 μm,W30.8~65 μm(式1,2),然后轉(zhuǎn)入容器中存放:

        W≥65 μm(%)=100×M≥65 μm/M干樣

        (1)

        W30.8~65 μm(%)=100×M30.8~65 μm/M干樣

        (2)

        (5) 利用體視鏡對(duì)粒徑65 μm及以上的顆粒組分進(jìn)行觀察和自生礦物鑒定,隨后挑選出自生黃鐵礦集合體并進(jìn)行稱量,得到粒徑65 μm及以上顆粒組分中自生黃鐵礦的質(zhì)量(MPy),并計(jì)算自生黃鐵礦相對(duì)含量(式3):

        Py(%)=100×MPy/M≥65μm

        (3)

        (6) 將挑選出的自生黃鐵礦樣品送到中國地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點(diǎn)實(shí)驗(yàn)室進(jìn)行掃描電子顯微鏡(Scanning Electron Microscope,SEM)觀察和能譜分析(Energy Dispersive Spectrum,EDS),儀器型號(hào)為FEI Quanta 450 FEG,再從能譜分析結(jié)果中得到各深度樣品中自生黃鐵礦Fe/S元素的原子比(Fe∶S);

        (7) 對(duì)挑選出的自生黃鐵礦樣品進(jìn)行硫同位素組成測(cè)試。其中Site 973-2黃鐵礦硫同位素組成的測(cè)試工作在東華理工大學(xué)核資源與環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室進(jìn)行,測(cè)試儀器為FLASH EA和MAT 253,所有硫同位素?cái)?shù)據(jù)均采用CDT(Canyon Diablo Troilite)標(biāo)準(zhǔn),測(cè)試誤差<0.2‰。Site 973-4和Site DH-CL11黃鐵礦硫同位素組成的測(cè)試工作完成于BGEG,測(cè)試儀器為元素分析—同位素比值質(zhì)譜儀(Delta V Plus)。數(shù)據(jù)經(jīng)國際標(biāo)準(zhǔn)物質(zhì)(IAEA-S1,IAEA-S2,IAEA-S3)校正VCDT(Viennadefined Canyon Diablo Troilite)標(biāo)準(zhǔn),測(cè)試標(biāo)準(zhǔn)偏差<0.2‰。

        3 結(jié)果

        3.1 沉積物磁化率

        磁化率是表征物質(zhì)在外磁場(chǎng)中被磁化程度的物理量,磁化率的數(shù)值大小主要由沉積物中磁性礦物種類、含量和磁性顆粒的粒徑組成等決定,它們?cè)谝欢ǔ潭壬夏軌蚍从澄镔|(zhì)來源、搬運(yùn)過程、成巖作用等信息。在不同的沉積環(huán)境中,沉積物中磁性礦物的組合特征往往并不相同,主要受物質(zhì)來源、沉積動(dòng)力條件(如風(fēng)化強(qiáng)度、搬運(yùn)能量強(qiáng)弱等)以及沉積物在沉積后發(fā)生的物化反應(yīng)這三個(gè)因素影響[13]。因此,不同沉積環(huán)境中磁性礦物組合特征的差異可以用于研究不同時(shí)空尺度下環(huán)境的變化過程及其機(jī)制。

        Site DH-CL11站位的沉積物磁化率變化范圍為12.78~46.27×10-8m3/kg,平均為27.90×10-8m3/kg(圖2)。其中,在725.5~745.5 cmbsf(centimeters below sea floor,海底以下厘米)深度磁化率大幅降低,平均磁化率為13.24×10-8m3/kg;Site 973-2站位的沉積物磁化率變化范圍為14.87~29.98×10-8m3/kg,平均為21.62×10-8m3/kg(圖3)。其中,在547~667 cmbsf深度磁化率大幅降低,平均磁化率為15.48×10-8m3/kg;Site 973-4站位的沉積物磁化率變化范圍為8.63~34.62×10-8m3/kg,平均為21.35×10-8m3/kg(圖4)。其中,在570.5~896.5 cmbsf深度磁化率大幅降低,平均磁化率為14.43×10-8m3/kg。

        3.2 自生黃鐵礦的相對(duì)豐度及硫同位素

        自生黃鐵礦的相對(duì)含量及其硫同位素組成特征可以用于指示硫酸鹽—甲烷轉(zhuǎn)換帶(SMTZ)的相對(duì)位置[14],在硫酸鹽—甲烷轉(zhuǎn)換帶及其附近層位沉積物中,自生黃鐵礦的相對(duì)含量增多并且硫同位素值往往有正偏趨勢(shì)[14-17];從沉積物磁化率角度出發(fā),黃鐵礦屬于順磁性礦物,其正極磁化率近乎為零[13],若沉積物中出現(xiàn)大量黃鐵礦,將對(duì)沉積物磁化率產(chǎn)生巨大影響。

        圖2 Site DH-CL11沉積物≥65 μm和30.8~65 μm粒度組分質(zhì)量百分比、磁化率、自生黃鐵礦豐度、硫同位素、Fe/S原子比隨深度變化Fig.2 Mass percent of sediments with grain size ≥65 μm and 30.8~65 μm, magnetic susceptibility of sediments, authigenic pyrite abundance, sulfur isotope, Fe/S ratio variability with depths in Site DH-CL11

        圖3 Site 973-2沉積物≥65 μm和30.8~65 μm粒度組分質(zhì)量百分比、磁化率、自生黃鐵礦豐度、硫同位素隨深度變化Fig.3 Mass percent of sediments with grain size ≥65 μm and 30.8~65 μm, magnetic susceptibility of sediments, authigenic pyrite abundance, sulfur isotope variability with depths in Site 973-2

        圖4 Site 973-4沉積物≥65 μm和30.8~65 μm粒度組分質(zhì)量百分比、磁化率、黃鐵礦豐度、硫同位素隨深度變化Fig.4 Mass percent of sediments with grain size ≥65 μm and 30.8~65 μm, magnetic susceptibility of sediments, authigenic pyrite abundance, sulfur isotope variability with depths in Site 973-4

        Site DH-CL11沉積物中自生黃鐵礦豐度變化范圍為0~15.506%,在745.5~765.5 cmbsf深度黃鐵礦豐度顯著增加;硫同位素變化范圍為-50.246~-13.44‰V-CDT,在705.5~765.5 cmbsf深度存在明顯正偏(圖2)。Site 973-2沉積物中自生黃鐵礦豐度整體較小,變化范圍為0~0.917%;硫同位素變化范圍為-50.48~+15.54‰CDT,在453~492.5 cmbsf深度存在明顯正偏(圖3)。Site 973-4沉積物中自生黃鐵礦豐度變化范圍為0~61.455%,在605.5~878 cmbsf深度黃鐵礦豐度顯著增加;硫同位素變化范圍為-50.3~+37.2‰V-CDT,在584.5~878 cmbsf深度存在明顯正偏(圖4)。

        4 討論

        4.1 甲烷滲漏背景下沉積物的磁化率變化機(jī)理

        (4)

        Fe2O3+ HS-+ 5H+→ 2Fe2++ S0+3H2O

        (5)

        Fe3O4+ HS-+ 7H+→ 3Fe2++ S0+ 4H2O

        (6)

        (7)

        FeS + H2S → FeS2+ H2

        (8)

        3FeS + S0→ Fe3S4+ 2S0→ 3FeS2

        (9)

        3FeS + HS-→ Fe3S4+ 2HS-+ 2H+→ 3FeS2+ 4H+

        (10)

        在海洋環(huán)境中,HS-的生成速率和活性鐵的含量共同控制著黃鐵礦化過程[22]。在HS-過量且有足量活性鐵的情況下黃鐵礦化會(huì)充分進(jìn)行,鐵硫化物最終轉(zhuǎn)化為穩(wěn)定態(tài)的黃鐵礦(FeS2)[28-29]。然而,HS-供應(yīng)不足將導(dǎo)致部分黃鐵礦化。因此,在低HS-濃度情況下,膠黃鐵礦(Fe3S4)會(huì)先于黃鐵礦沉淀(式9,10)并保存在海洋沉積物中。由于膠黃鐵礦是亞鐵磁性礦物,其磁化率值較大,這也導(dǎo)致沉積物磁化率在快速降低后的一定深度還會(huì)呈現(xiàn)第二次磁信號(hào)[7,30-31]。

        4.2 沉積物磁化率特征對(duì)甲烷滲漏事件的指示

        根據(jù)Linetal.[17]提出的識(shí)別paleo-SMTZ位置的經(jīng)驗(yàn)?zāi)P?,可以推斷Site DH-CL11的paleo-SMTZ位于705.5~765.5 cmbsf深度;Site 973-2的paleo-SMTZ大概位于453~492.5 cmbsf深度;Site 973-4的paleo-SMTZ位于584.5~878 cmbsf深度。研究區(qū)三個(gè)站位的paleo-SMTZ位置均比神狐—東沙海域現(xiàn)今的SMI(Sulfate-Methane Interface)深度7.7~87.9 mbsf相對(duì)較淺[32]。由此可知,研究區(qū)深部上涌的含甲烷流體的通量曾經(jīng)相當(dāng)充足,硫酸鹽—甲烷轉(zhuǎn)換帶位置的變遷以及甲烷厭氧氧化反應(yīng)的速率主要受深部上涌的甲烷通量控制[33-34]。

        從圖2可以看出,Site DH-CL11在paleo-SMTZ內(nèi)(705.5~765.5 cmbsf)沉積物磁化率先呈現(xiàn)出大幅度降低,而后呈現(xiàn)出異常增加,在765.5 cmbsf深度出現(xiàn)二次磁信號(hào),自生黃鐵礦豐度也出現(xiàn)異常高值,并且在705.5 cmbsf深度上下沉積物≥65 μm和30.8~65 μm粒度組分質(zhì)量百分比并沒有出現(xiàn)明顯變化,表明該層位物源輸入并未發(fā)生明顯變化。此外在705.5 cmbsf以上層位自生黃鐵礦Fe/S元素原子比(Fe∶S)接近1/2,但在Paleo-SMTZ內(nèi),F(xiàn)e∶S均大于1/2,并且在745.5 cmbsf深度有樣品Fe∶S接近3/4,表明paleo-SMTZ內(nèi)很可能存在強(qiáng)磁性礦物膠黃鐵礦。綜上所述,推測(cè)Site DH-CL11沉積物磁化率變化原因可能與SMTZ位置變遷有關(guān),即該站位在地史時(shí)期發(fā)生了持續(xù)時(shí)間較長(zhǎng)的甲烷滲漏事件,長(zhǎng)時(shí)間的AOM反應(yīng)導(dǎo)致大量自生黃鐵礦的生成,造成沉積物磁化率降低(705.5~745.5 cmbsf)。隨著上涌甲烷通量減小,AOM反應(yīng)強(qiáng)度減小,導(dǎo)致生成的HS-不足,后續(xù)鐵硫化物的黃鐵礦化停留在強(qiáng)磁性的膠黃鐵礦階段,導(dǎo)致沉積物磁化率在下降后出現(xiàn)二次磁信號(hào)。由于AOM反應(yīng)強(qiáng)度減弱,硫酸鹽還原速率降低,造成硫同位素的分餾增大[35-37],此時(shí)生成的自生黃鐵礦以及膠黃鐵礦的δ34S相對(duì)AOM反應(yīng)強(qiáng)烈時(shí)期減小,745.5 cmbsf深度δ34SV-CDT的負(fù)偏趨勢(shì)也證明這點(diǎn)。

        由于缺乏440~540 cmbsf深度沉積物磁化率數(shù)據(jù),無法確定Site 973-2在paleo-SMTZ內(nèi)(453~492.5 cmbsf)沉積物磁化率具體變化,但根據(jù)整體磁化率變化趨勢(shì):在440 cmbsf以上層位沉積物磁化率呈現(xiàn)較高值,在540 cmbsf以下層位沉積物磁化率呈現(xiàn)低值,同時(shí)前人研究表明[31,38],在世界不同海洋環(huán)境中,沉積物對(duì)早期成巖作用的響應(yīng)具有相似的磁性特征,在結(jié)構(gòu)上普遍表現(xiàn)為上部高值帶、中間下降帶、底部最低帶的三層結(jié)構(gòu)。由此推測(cè)paleo-SMTZ內(nèi)沉積物磁化率應(yīng)呈降低趨勢(shì)。從圖3中可以看出453 cmbsf深度上下沉積物≥65 μm和30.8~65 μm粒度組分質(zhì)量百分比并沒有出現(xiàn)明顯變化,表明該層位物源輸入并未發(fā)生明顯變化,物源輸入對(duì)沉積物磁化率的影響較小,paleo-SMTZ內(nèi)沉積物磁化率的降低可能與甲烷事件有關(guān)。此外,圖5中在545~549、577~581和668~669 cmbsf深度,沉積物的κ-T升溫曲線在240 ~360℃間形成平臺(tái)形狀的高值區(qū),說明樣品中存在膠黃鐵礦[39-43]。280℃附近磁化率值的增高是膠黃鐵礦的典型特征[39],樣品在加熱至240℃時(shí)磁化率值就出現(xiàn)小幅度的增大,可能是樣品中含有其他居里溫度較低的磁性礦物雜質(zhì)所致,加熱至360℃以后磁化率值的增大更為明顯,表明樣品中膠黃鐵礦含量遠(yuǎn)小于黃鐵礦含量[43],因此這三個(gè)深度中膠黃鐵礦的出現(xiàn)并沒有導(dǎo)致沉積物磁化率上升。

        paleo-SMTZ之下的膠黃鐵礦可能是通過以下兩種機(jī)制形成:一是深部上涌甲烷通量不穩(wěn)定導(dǎo)致短期內(nèi)SMTZ頻繁變遷,造成AOM反應(yīng)生成的HS-無法儲(chǔ)集下來,在HS-不足的情況下,鐵硫化物的黃鐵礦化停留在膠黃鐵礦階段,短期內(nèi)SMTZ頻繁變遷也造成該站位自生黃鐵礦豐度整體較小;此外,也可能是paleo-SMTZ深度之下的自生黃鐵礦厭氧氧化導(dǎo)致[44-46],具體反應(yīng)如下:

        (11)

        從圖4可以看出,Site 973-4在paleo-SMTZ內(nèi)(584.5~878 cmbsf),沉積物磁化率的降低與自生黃鐵礦豐度的增大耦合明顯,但是在454.5~584.5 cmbsf深度,沉積物≥65 μm和30.8~65 μm粒度組分質(zhì)量百分比均出現(xiàn)大幅增加,表明該層位物源輸入可能發(fā)生了改變。前人研究表明[47],Site 973-4在該深度可能發(fā)生了重力流沉積,重力流沉積攜帶有大量陸源碎屑,本應(yīng)導(dǎo)致沉積物磁化率上升,但該深度磁化率值卻不斷減小,說明Site 973-4巖芯雖然在584.5 cmbsf深度物源雖發(fā)生了改變,但并非是影響該處沉積物磁化率變化的主要原因。此外,王長(zhǎng)昆[47]對(duì)該站位沉積物磁性特征的研究發(fā)現(xiàn),在584.5~878 cmbsf深度,SIRM/χ異常增加,較大SIRM/χ是典型的膠黃鐵礦特征[48],因此,推測(cè)該站位paleo-SMTZ深度內(nèi)可能存在膠黃鐵礦。但是,paleo-SMTZ內(nèi)的強(qiáng)磁性膠黃鐵礦并未導(dǎo)致沉積物磁化率上升,說明膠黃鐵礦含量相對(duì)順磁性的黃鐵礦含量很小,并且是在黃鐵礦沉淀之后生成。Site 973-4沉積物磁化率變化機(jī)理與Site DH-CL11相似:該站位曾在地史時(shí)期發(fā)生了持續(xù)時(shí)間較長(zhǎng)的甲烷滲漏事件,長(zhǎng)時(shí)間的AOM反應(yīng)生成了大量自生黃鐵礦,造成沉積物磁化率降低。之后,隨著上涌甲烷通量減小,AOM反應(yīng)強(qiáng)度減弱,生成的HS-不足,后續(xù)鐵硫化物的黃鐵礦化停留在膠黃鐵礦階段,但生成的膠黃鐵礦含量相對(duì)黃鐵礦含量很小,并未造成沉積物磁化率升高。

        圖5 Site 973-2沉積物κ-T曲線圖其中a~f分別代表171~175 cmbsf、355~359 cmbsf、435~439 cmbsf、545~549 cmbsf、577~581 cmbsf、665~669 cmbsf深度沉積物к-T曲線Fig.5 κ-T curve of Site 973-2 sediments The alphabets a~f refer to sediments in 171~175 cmbsf,355~359 cmbsf,435~439 cmbsf,545~549 cmbsf,577~581 cmbsf,665~669 cmbsf water depth, respectively

        4.3 沉積物的磁化率特征與水合物藏演化關(guān)系討論

        研究區(qū)三個(gè)站位在相對(duì)應(yīng)的paleo-SMTZ深度內(nèi),沉積物磁化率均呈不同程度降低,二者間耦合性良好,這種突變式變化顯然用物質(zhì)來源、搬運(yùn)過程和古氣候變化無法解釋。因此,我們認(rèn)為在甲烷滲漏海域,深部上涌的甲烷與下滲的硫酸鹽在SMTZ內(nèi)發(fā)生AOM反應(yīng),生成大量的HS-,造成亞鐵磁性礦物大量溶解同時(shí)大量順磁性自生黃鐵礦,導(dǎo)致沉積物磁化率的異常降低;但是,當(dāng)HS-不足時(shí),鐵硫化物黃鐵礦化不充分,優(yōu)先生成強(qiáng)磁性的膠黃鐵礦,出現(xiàn)二次磁信號(hào)。

        在天然氣水合物潛在區(qū),上涌甲烷極有可能來自下伏天然氣水合物藏失穩(wěn)分解,因此,通過沉積物磁化率特征的變化能夠反映下方甲烷通量的變化,指示下伏天然氣水合物藏演化,進(jìn)而為探測(cè)天然氣水合物藏提供一種間接有效的手段。

        5 結(jié)論

        海洋環(huán)境中,沉積物磁化率特征的變化與甲烷滲漏事件關(guān)系密切,可以作為探測(cè)天然氣水合物藏的間接手段。本文對(duì)南海東北部陸坡Site DH-CL11、Site 973-2、Site 973-4三個(gè)站位巖芯沉積物的磁化率特征進(jìn)行測(cè)試和分析,表明Site DH-CL11在paleo-SMTZ深度內(nèi)沉積物磁化率先大幅度降低而后異常增加,Site 973-2在paleo-SMTZ深度內(nèi)沉積物磁化率呈現(xiàn)降低趨勢(shì),Site 973-4在paleo-SMTZ深度內(nèi)沉積物磁化率大幅降低。

        海底甲烷滲漏是研究區(qū)三個(gè)站位巖芯沉積物磁化率異常變化的主要原因。深部上涌甲烷與下滲硫酸鹽在SMTZ內(nèi)發(fā)生AOM反應(yīng),生成大量的HS-,造成亞鐵磁性礦物大量溶解同時(shí)生成大量順磁性黃鐵礦,導(dǎo)致沉積物磁化率異常降低;當(dāng)HS-不足時(shí),鐵硫化物的黃鐵礦化不充分,優(yōu)先生成強(qiáng)磁性膠黃鐵礦,出現(xiàn)二次磁信號(hào)。

        在天然氣水合物潛在海域,上涌甲烷極有可能來自下伏天然氣水合物藏失穩(wěn)分解,通過測(cè)試沉積物磁化率特征可以快速指示下伏天然氣水合物藏演化,有助于我國南海北部海域天然氣水合物的勘探。

        致謝 感謝中國地質(zhì)大學(xué)(武漢)生物地質(zhì)與環(huán)境地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室的朱宗敏老師和鄧玉珍碩士在樣品磁化率測(cè)試中的幫助。

        References)

        [1] Saunders D F, Burson K R, Thompson C K. Observed relation of soil magnetic susceptibility and soil gas hydrocarbon analyses to subsurface hydrocarbon accumulations[J]. AAPG Bulletin, 1991, 75(3): 389-408.

        [2] Novosel I, Spence G D, Hyndman R D. Reduced magnetization produced by increased methane flux at a gas hydrate vent[J]. Marine Geology, 2005, 216(4): 265-274.

        [3] 姚伯初,楊木壯,吳時(shí)國,等. 中國海域的天然氣水合物資源[J]. 現(xiàn)代地質(zhì),2008,22(3):333-341. [Yao Bochu, Yang Muzhuang, Wu Shiguo, et al. The gas hydrate resources in the China seas[J]. Geoscience, 2008, 22(3): 333-341.]

        [4] Ellwood B B, Balsam W L, Roberts H H. Gulf of Mexico sediment sources and sediment transport trends from magnetic susceptibility measurements of surface samples[J]. Marine Geology, 2006, 230(3/4): 237-248.

        [5] Riedel M, Novosel I, Spence G D, et al. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin[J]. Geological Society of America Bulletin, 2006, 118(1/2): 23-38.

        [6] Usapkar A, Dewangan P, Kocherla M, et al. Enhanced methane flux event and sediment dispersal pattern in the Krishna-Godavari offshore basin: evidences from rock magnetic techniques[J]. Marine and Petroleum Geology, 2014, 58: 461-475.

        [7] Dewangan P, Basavaiah N, Badesab F K, et al. Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna-Godavari basin, Bay of Bengal[J]. Marine Geology, 2013, 340: 57-70.

        [8] 劉昭蜀,趙煥庭,范時(shí)清,等. 南海地質(zhì)[M]. 北京:科學(xué)出版社,2002. [Liu Zhaoshu, Zhao Huanting, Fan Shiqing, et al. Geology of the South China Sea[M]. Beijing: Science Press, 2002.]

        [9] Han Xiqiu, Suess E, Huang Yongyang, et al. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3/4): 243-256.

        [10] Shipboard Scientific Party. Leg 184 Summary: exploring the Asian monsoon through drilling in the South China sea[C]//Wang P, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports. College Station TX: Ocean Drilling Program, 2000, 184: 1-77.

        [11] 宋海斌,耿建華,Wang H K,等. 南海北部東沙海域天然氣水合物的初步研究[J]. 地球物理學(xué)報(bào),2001,44(5):687-695. [Song Haibin, Geng Jianhua, Wang H K, et al. A preliminary study of gas hydrates in Dongsha region north of South China Sea[J]. Chinese Journal of Geophysics, 2001, 44(5): 687-695.]

        [12] 張劼,雷懷彥,歐文佳,等. 南海北部陸坡973-4柱沉積物中硫酸鹽——甲烷轉(zhuǎn)換帶(SMTZ)研究及其對(duì)水合物的指示意義[J]. 天然氣地球科學(xué),2014,25(11):1811-1820. [Zhang Jie, Lei Huaiyan, Ou Wenjia, et al. Research of the sulfate-methane transition zone (SMTZ) in sediments of 973-4 column in continental slope of northern South China Sea[J]. Natural Gas Geoscience, 2014, 25(11): 1811-1820.]

        [13] Thompson R, Oldfield F. Environmental Magnetism[M]. London: Allen & Unwin, 1986.

        [14] Borowski W S, Rodriguez N M, Paull C K, et al. Are34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43: 381-395.

        [15] PeketiA, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: an application of C-S-Mo systematics[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.

        [16] J?rgensen B B, B?ttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118.

        [17] Lin Qi, Wang Jiasheng, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences, 2016, 115: 547-556.

        [18] J?rgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine Geochemistry. 2nd ed. Berlin: Springer, 2006.

        [20] Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1): 1-23.

        [21] Sweeney R E, Kaplan I R. Pyrite framboid formation: laboratory synthesis and marine sediments[J]. Economic Geology, 1973, 68(5): 618-634.

        [22] Berner R A. Sedimentary pyrite formation: an update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615.

        [23] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.

        [24] Hurtgen M T, Lyons T W, Ingall E D, et al. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: examples from Effingham Inlet, Orca Basin, and the Black Sea[J]. American Journal of Science, 1999, 299(7/8/9): 556-588.

        [25] Poulton S W, Krom M D, Raiswell R. A revised scheme for the reactivity of iron (oxyhydr) oxide minerals towards dissolved sulfide[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3703-3715.

        [26] Shen Yanan, Buick R. The antiquity of microbial sulfate reduction[J]. Earth-Science Reviews, 2004, 64(3/4): 243-272.

        [27] Hunger S, Benning L G. Greigite: a true intermediate on the polysulfide pathway to pyrite[J]. Geochemical Transactions, 2007, 8: 1.

        [28] Berner R A. Thermodynamic stability of sedimentary iron sulfides[J]. American Journal of Science, 1967, 265(9): 773-785.

        [29] Mazumdar A, Peketi A, Joao H, et al. Sulfidization in a shallow coastal depositional setting: diagenetic and palaeoclimatic implications[J]. Chemical Geology, 2012, 322-323: 68-78.

        [30] Rowan C J, Roberts A P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unravelling complex magnetizations in Neogene marine sediments from New Zealand[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 119-137.

        [31] Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: a new view[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 223-235.

        [32] 吳廬山,楊勝雄,梁金強(qiáng),等. 南海北部神狐海域沉積物中孔隙水硫酸鹽梯度變化特征及其對(duì)天然氣水合物的指示意義[J]. 中國科學(xué)(D輯):地球科學(xué),2013,43(3):339-350. [Wu Lushan, Yang Shengxiong, Liang Jinqiang, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea[J]. Science China(Seri.D): Earth Sciences, 2013, 43(3): 339-350.]

        [33] Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655-658.

        [34] Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1/2/3/4): 131-154.

        [35] Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(24): 5351-5361.

        [36] Habicht K S, Canfield D E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments[J]. Geology, 2001, 29(6): 555-558.

        [37] Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124.

        [38] Mohamed K J, Rey D, Rubio B, et al. Onshore-offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, Northwest Iberian Peninsula[J]. Continental Shelf Research, 2011, 31(5): 433-447.

        [39] Roberts A P. Magnetic properties of sedimentary greigite (Fe3S4)[J]. Earth and Planetary Science Letters, 1995, 134(3/4): 227-236.

        [40] Skinner B J, Erd R C, Grimaldi F S. Greigite, the thio-spinel of iron: a new mineral[J]. American Mineralogist, 1964, 49: 543-555.

        [41] Dekkers M J. Magnetic properties of natural pyrrhotite. II. High-and low-temperature behaviour of Jrsand TRM as function of grain size[J]. Physics of the Earth and Planetary Interiors, 1989, 57(3/4): 266-283.

        [42] Torii M, Fukuma K, Horng C S, et al. Magnetic discrimination of pyrrhotite-and greigite-bearing sediment samples[J]. Geophysical Research Letters, 1996, 23(14): 1813-1816.

        [43] 汪衛(wèi)國,戴霜,陳莉莉,等. 白令海和西北冰洋表層沉積物磁化率特征初步研究[J]. 海洋學(xué)報(bào),2014,36(9):121-131. [Wang Weiguo, Dai Shuang, Chen Lili, et al. Magnetic susceptibility characteristics of surface sediments in Bering Sea and western Arctic Ocean: preliminary results[J]. Acta Oceanologica Sinica, 2014, 36(9): 121-131.]

        [44] Bottrell S H, Parkes R J, Cragg B A, et al. Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments[J]. Journal of the Geological Society, 2000, 157(4): 711-714.

        [45] Jiang W T, Horng C S, Roberts A P, et al. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite[J]. Earth and Planetary Science Letters, 2001, 193(1/2): 1-12.

        [47] 王長(zhǎng)昆. 南海東沙晚更新世深水沉積物的磁性特征及其環(huán)境意義[D]. 北京:中國地質(zhì)大學(xué)(北京),2013. [Wang Changkun. The magnetic parameters and its environmental implications in sediments since Late Pleistocene from Dongsha area, South China Sea[D]. Beijing: China University of Geosciences (Beijing), 2013.]

        [48] Roberts A P, Reynolds R L, Verosub K L, et al. Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m.y. lake sediment record from Butte Valley, northern California[J]. Geophysical Research Letters, 1996, 23(20): 2859-2862.

        Characteristics of Magnetic Susceptibility of Cored Sediments and Their Implications for the Potential Methane Events in Northern South China Sea

        LIN RongXiao1,2,3,WANG JiaSheng1,2,SU PiBo4,LIN Qi2,SUN Fei2,YANGJunXia2

        1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China 2. Faculty of Earth Science, China University of Geosciences, Wuhan 430074, China 3. Fuzhou Ocean and Fisheries Technology Center, Fuzhou 350026, China 4. Guangzhou Marine Geological Survey, Guangzhou 510075, China

        In marine methane seepage areas, sedimentary magnetic susceptibility was characterized by abnormally low values, which was related to the formation of authigenic minerals resulted from the anaerobic methane oxidation (AOM) within the sulfate-methane transition zone (SMTZ). In this study, 400 sedimentary core samples from Site DH-CL11, Site973-2 and Site973-4 drilled in the northern South China Sea were measured. In connection with the relative content and the sulfur isotopic values of the authigenic pyrites handpicked from the aforementioned 3 sites, the variation characteristics of sedimentary magnetic susceptibility and its indication for methane seep events at the potential gas hydrate areas in the northern South China Sea were discussed. At Site DH-CL11, sedimentary magnetic susceptibility first significantly decreased and then abnormally increased within the paleo-SMTZ (705.5~765.5 cmbsf), which is probably related to the depth change of the SMTZ. At Site 973-2, sedimentary magnetic susceptibility showed a decreasing trend within the paleo-SMTZ (453~492.5 cmbsf). Greigites were discovered under the SMTZ, which may be related to frequent changes of the SMTZ or the anaerobic oxidation of authigenic pyrites. At Site 973-4, sedimentary magnetic susceptibility significantly decreased within the paleo-SMTZ (584.5~878 cmbsf), which was considered to be resulted from methane seep events. In general, these results show that under the methane seepage environments, HS-produced by AOM reacts with magnetic minerals in sediments, resulting in the dissolution of magnetic minerals coupled with precipitation of paramagnetic pyrite, both of which will make an anomalously low MS value in the SMTZ; However, with low HS-concentration, insufficient supply of HS-will lead to partial pyritization, which will result in the preferential formation of greigites followed by secondary magnetic susceptibility signals. Therefore, in gas hydrate prospecting areas, abnormal characteristics of the sedimentary magnetic susceptibility are feasible to indicate deep methane flux variation, thus to show a further indication for the evolution of the underlying gas hydrate occurrence. The abnormal characteristic of sedimentary magnetic susceptibility becomes an indirect but available method to explore gas hydrate occurrence, which is helpful for gas hydrate exploration in the northern South China Sea.

        magnetic susceptibility; authigenic pyrites; methane events; northeastern SCS; sediments

        1000-0550(2017)02-0290-09

        10.14027/j.cnki.cjxb.2017.02.008

        2016-04-19; 收修改稿日期: 2016-05-19

        國家自然科學(xué)基金(41472085);南海天然氣水合物成礦理論及分布預(yù)測(cè)研究專題(GZH20110030-50603)[Foundation:National Natural Science Foundation of China, No. 41472085; National Project of Exploration and Test Production for Gas Hydrate, No. GZH20110030-50603]

        林榮驍,男,1991年出生,碩士研究生,海洋天然氣水合物沉積學(xué)和礦物學(xué),E-mail: 296992305@qq.com

        王家生,男,教授,E-mail: js-wang@cug.edu.cn

        P736.21+1

        A

        猜你喜歡
        磁化率水合物站位
        提高政治站位 對(duì)標(biāo)國內(nèi)一流
        建黨百年說“站位”
        水上消防(2021年3期)2021-08-21 03:12:00
        氣井用水合物自生熱解堵劑解堵效果數(shù)值模擬
        提升站位講政治 創(chuàng)新?lián)?dāng)爭(zhēng)出彩
        熱水吞吐開采水合物藏?cái)?shù)值模擬研究
        天然氣水合物保壓轉(zhuǎn)移的壓力特性
        我國海域天然氣水合物試采成功
        基于超拉普拉斯分布的磁化率重建算法
        巖(礦)石標(biāo)本磁化率測(cè)定方法試驗(yàn)及認(rèn)識(shí)
        溫度對(duì)不同初始狀態(tài)ising模型磁化強(qiáng)度和磁化率的影響
        河南科技(2014年18期)2014-02-27 14:15:23
        av大片在线无码永久免费网址| 久久无码av中文出轨人妻| 少妇人妻真实偷人精品视频| 色综合久久久久综合999| 国产成人美涵人妖视频在线观看 | 亚洲精品一品二品av| 中文字幕一区二区综合| 极品粉嫩嫩模大尺度视频在线播放| 亚洲色偷偷综合亚洲avyp| 无码综合天天久久综合网| 日本a在线播放| 免费女女同黄毛片av网站| 热99re久久精品这里都是精品免费| 国产超碰人人做人人爱ⅴa| 日韩精品一区二区三区毛片| 亚洲精品亚洲人成在线下载| 看av免费毛片手机播放| 国产午夜在线视频观看| 未满十八勿入av网免费| 久久精品国产99国产精2020丨| 亚洲精品白浆高清久久| 精品日本一区二区视频| 一本色道久久亚洲加勒比| 欧美成人秋霞久久aa片| 亚洲 暴爽 av人人爽日日碰| 精品亚洲一区二区99| 麻豆视频在线观看免费在线观看| 国产激情久久久久久熟女老人| 亚洲国产长腿丝袜av天堂 | 青青草极品视频在线播放| 日韩国产一区二区三区在线观看| 欧洲美熟女乱av亚洲一区| 国产精品麻豆成人av电影艾秋| 国产一级淫片a免费播放口| 国产精品国产三级在线专区| 日韩无码专区| 国产午夜精品久久久久免费视| 久久青草国产免费观看| 国产av精品一区二区三区不卡| 免费av一区二区三区| 欧美巨大xxxx做受中文字幕|