亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        LIPSCHITZ TYPE SMOOTHNESS OF MULTILINEAR FRACTIONAL INTEGRAL ON VARIABLE EXPONENTS SPACES

        2017-04-12 14:31:39SUNAiwenWANGMinSHULisheng
        數(shù)學(xué)雜志 2017年2期

        SUN Ai-wen,WANG Min,SHU Li-sheng

        (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

        LIPSCHITZ TYPE SMOOTHNESS OF MULTILINEAR FRACTIONAL INTEGRAL ON VARIABLE EXPONENTS SPACES

        SUN Ai-wen,WANG Min,SHU Li-sheng

        (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

        In this paper,we study the boundedness of multilinear fractionalintegraloperators on variable exponent spaces.It is obtained that these operators are both bounded from strong and weak Lebesgue spaces with variable exponent spaces into Lipschitz type spaces with variable exponent,which gives some new results for previous published papers.A simple way is obtained that is colsely linked with a class of fractional integral operator.

        Lipschitz spaces;multilinear fractional integral;variable exponent

        1 Introduction

        Let(Rn)m=Rn× Rn× ···× Rnbe the m-fold product space of Rn,the multilinear fractionalintegrals on Rnare defined by

        When The famous Hardy-Littlewood-Sobolev theorem tells us that the fractional integral operator Iβis a bounded operator from the usual Lebesgue spaces Lp1(Rn)to Lp2(Rn)when 1 < p1< p2< ∞ andp1

        1?Kenig and Stein[1]as wellas Grafakos and Kalton[2]considered the boundedness of a family of related multilinear fractional integrals.Lan[3]presented the boundedness of multilinear fractional integral operators on weak type Hardy spaces.Recently,Yasuo[4] considered the boundedness of multilinear fractionalintegraloperators on Herz spaces.

        It is well known that function spaces with variable exponents were intensively studied during the past 20 years,due to their applications to PDE with non-standard growth conditions and so on,we mention e.g.[5,6].A great dealofwork was done to extend the theory offractionalintegralon the classical Lebesgue spaces to the variable exponent case(see[7–9]). However,these articles do not consider the behavior of Iβwhen.Recently,Ramseyer,Salinas and Viviani[10]studied that Lipschitz type smoothness of fractional integral on variable exponent spaces,when.Hence,whenit will be an interesting problem whether we can establish the boundedness of multilinear fractional integral from Lebesgue spaces Lp(·)into Lipschitz-type spaces with variable exponents.The main purpose of this paper is to answer the above problem.

        To meet the requirements in the next sections,here,the basic elements ofthe theory of the Lebsegue spaces with variable exponent are briefly presented.

        Lp(·)(?)is a Banach space with the norm defined by

        We say a function p(·):Rn?→ R is locally log-H¨older continuous,if there exists a constant C such that

        For brevity,C always means a positive constant independent of the main parameters and may change from one occurrence to another.be the characteristic function of the setdenotes the Lebesgue measure of S.f ~ g means C?1g ≤ f ≤ C g.

        Defi nition 1.1[10]Given an exponent function p(·)we say that a measurable function f belongs to Lp(·),∞if there exists a constant C such that for every t > 0.

        It is not diffi cult to see that

        is a quasi-norm in Lp(·),∞.

        Defi nition 1.2[10]Given 0 < β < n and an exponent function p(·)with 1 < p?≤p+< ∞ we say that a locally integrable function f belongs to Lipβ,p(·)if there exists a constant C such that

        RemarkIt is easy to see that in definition the average can be replaced by a constant in the following sense

        In this paper,we consider the case of bilinear fractional integral.

        Defi nition 1.3[4]

        where 0 < β < 2n.

        Now it is in this position to state our results.

        2 Lemmas

        Lemma 2.1[11]If p(·) ∈ P(Rn),then for all f ∈ Lp(·)(Rn)and all g ∈ Lp′(·)(Rn)we have

        where rp:=1+1/p?? 1/p+.

        Lemma 2.2[10]Let p(·)be an exponent function in Plog(Rn)such that 1 < p?≤ p+<∞ and p(x) ≤ p(∞)for|x|> r0with r0> 1.Then there exiZsts a positive constant C depending on r0and the constants associated Plog(Rn)such thatfor every ball B and f ∈ Lp(·),∞.

        The following lemma see Corollary 4.5.9 in[12].

        and

        Lemma 2.3Let p(·) ∈ Plog(Rn),then for every ball B ? Rn,we have

        We remark that Lemma 2.4 were showed in[13]and we willgive the proof of it.

        Lemma 2.4Let p(·) ∈ Plog(Rn)and x2∈ 2B(x1,r),then we have

        ProofWe consider two cases,by Lemma 2.3.

        Case 1|B|≥ 1.

        Case 2|B|≤ 1.

        where we denote that x′∈ B(x1,r)and x′′∈ B(x2,r).

        Indeed,since x2∈ 2B(x1,r),x′∈ B(x1,r)and x′′∈ B(x2,r)we note that|x′? x′| ≤ 4r, we make use of local-H¨older continuity of p(x)and get,

        Lemma 2.5Let pi(·) ∈ Plog(Rn)for i=1,2 and,then for every

        ball B=B(x,r) ? Rn,we have

        ProofWe will give the proof of inequality(2.2),the argument for inequality(2.1)is similar,we omit the details here.We consider two cases,by Lemma 2.3.

        Case 1|B|≤ 1.

        Case 2|B|≥ 1.

        Lemma 2.6Let p(·) ∈ Plog(Rn),then there exists a constant C > 0 such that for all balls B and allmeasurable subsets S=B(x0,r0) ? B=B(x1,r1),

        RemarkWe can easily show that inequality(2.4)implies ‖χ2B‖p′(·)≤ C‖χB‖p′(·).

        ProofWe will prove inequality(2.3),the argument for inequality(2.4)is similar,we omit the details here.We consider three cases,by Lemma 2.3.

        where we denote that xS∈ S and xB∈ B.

        Indeed,since|xB? xS|≤ 2r1,we make use of local-H¨older continuity of p′(x)and get

        Lemma 2.7Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R)and k < n ? n/p?,then there exists a constant C > 0 such that

        ProofUsing Lemma 2.1,we obtain

        Lemma 2.6 gives

        Lemma 2.8Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R)and k > n ? n/p+,then there exists a constant C > 0 such that

        ProofApplying Lemma 2.1,we derive the estimate

        Lemma 2.6 implies that

        Lemma 2.9Suppose pi(·)then

        ProofFor y1,y2∈ 2B,one can obtain the following inequality in[4]

        When n < β < 2n,using Lemma 2.1 and 2.5,we obtain

        When 0 < β < n,we write

        when j > ?1 we define D3=0.

        For y1∈ Aiy2∈ Aj,we have|y1? y2|≥ |y1|? |y2|> 2i?2R.Then

        Now Lemma 2.1 yields

        By Lemma 2.5,we get

        Next we estimate D2.

        Noting that|y1? y2|≤ |y1|+|y2|< C2iR for y1∈ Ai,y2∈ Aj,using Lemmas 2.1 and 2.7,we have

        By Lemmas 2.4 and 2.5,we arrive at the inequality

        Finally,we estimate D3.

        We note y1∈ Ai,y2∈ Aj,|y1? y2|≥ |y1|? |y2|> 2j?2R and derive

        Hence,we apply Lemma 2.1 and 2.5 and obtain

        When β =n,the proof is similar.Therefore we omit the details.We use the following inequality

        As long as we change the conclusion of Lemma 2.1 into the conclusion of Lemma 2.2 in the proof of Lemmas 2.7–2.9,we can obtain the corresponding conclusions in Lp(·),∞space.

        Corollary 2.1Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R), p(x) ≤ p(∞)for|x|> r0with r0> 1 and k < n ? n/p?,then there exists a constant C > 0 such that Z

        Corollary 2.2Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R), p(x) ≤ p(∞)for|x|> r0with r0> 1 and k > n ? n/p+,then there exists a constant C > 0 such that Z

        Corollary 2.3Let pi(·) ∈ Plog(Rn)such that 1 < p?i≤p+i< ∞ ,pi(x) ≤ pi(∞)for i=1,2 and|x|> r0with r0> 1.Suppose B=B(x0,R)andthen

        3 Proof of Theorems

        We will give the proof of the Theorem 1.1 below.In Corollary 2.1–Corollary 2.3,we obtain the corresponding results in Lp(·),∞space.The argument for Theorem 1.2 is similar, we omit the details here.

        Proof of Theorem 1.1We write

        And we need to estimate four terms ?Iβ(f1χ2B,f2χ2B),?Iβ(f1χRn2B,f2χ2B),?Iβ(f1χ2B,f2χRn2B) and ?Iβ(f1χRn2B,f2χRn2B).

        Hence,we arrive at the inequality

        Next we estimate ?Iβ(f1χRn2B,f2χ2B)and ?Iβ(f1χ2B,f2χRn2B).

        We only estimate ?Iβ(f1χRn2B,f2χ2B)and the estimate for ?Iβ(f1χ2B,f2χRn2B)is similar,we omit the details here.

        Let c= ?Iβ(f1χRn2B,f2χ2B)(x0),then for x ∈ B,we have

        Applying Lemma 2.8,2.1 and 2.5,we obtain

        Thus we get that

        Finally we estimate I?β(f1χRn2B,f2χRn2B).

        By Lemmas 2.8 and 2.5,we havewhere we can take s1and s2such that s1< n/p+1,s2< n/p+2and s1+s2= β ? 1.

        Hence,we obtain

        Consequently we prove Theorem 1.1.

        [1]Kenig C,Stein E M.Multilinear estimates and fractional integration[J].Math.Res.Lett.,1999,6: 1–15.

        [2]Grafakos L,Kalton N.Some remarks on multilinear maps and interpolation[J].Math.Ann.,2001, 319:151–180.

        [3]Lan J C.The boundedness of multilinear of fractional integral operators on weak type Hardy spaces[J].J.Math.,2006,26(3):343–348.

        [4]Yasuo K.Multilinear fractional integral operators on Herz spaces[J].Austr.J.Math.Anal.Appl., 2013,10:1–12.

        [5]Chen Y,Levine S,Rao M.Variable exponent,linear growth functionals in image restoration[J]. Siam J.Appl.Math.,2006,66(4):1383–1406.

        [6]Harjulehto P,H¨ast¨o P,L?e′uv,Nuortio M.Overview of diff erential equations with non-standard growth[J].Nonl.Anal.,2010,72(12):4551–4574.

        [7]Cruz-Uribe D,Fiorenza A,Martell J M,et al.The boundedness of classical operators on variable Lpspaces[J].Ann.Acad.Sci.Fenn.Math.,2006,31(1):239–264.

        [8]Capone C,Cruz-Uribe D,Fiorenza A.The fractional maximal operator and fractional integrals on variable Lpspaces[J].Rev.Math.Iberoamericana,2007,23(3):743–770.

        [9]Diening L.Riesz potencials and Sobolev embeddings on generalized Lebesgue and Sobolev Lp(x)and Wk,p(x)[J].Math.Nachr.,2004,268:31–43.

        [10]Ramseyer M,Salinas O,Viviani B.Lipschitz type smoothness of the fractional integral on variable exponent spaces[J].J.Math.Anal.Appl.,2013,403(1):95–106.

        [11]Kov′aˇcik O,R′akosn′?k J.On spaces Lp(x)and Wk,p(x)[J].Czechoslovak Math.,1991,41:592–618.

        [12]Diening L,Harjulehto P,H¨ast¨o P,Ruˇziˇcka M.Lebesgue and Sobolev spaces with variable exponents[M].Berlin:Springer,2011.

        [13]Ho K P.John-Nirenberg inequalities on Lebesgue spaces with variable exponents[J].Taiwanese J. Math.,2014,18(4):1107–1118.

        變指數(shù)空間上多線性分?jǐn)?shù)次積分的 Lipschitz 光滑性

        孫愛(ài)文,王 敏,束立生
        (安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽蕪湖 241003)

        本文研究了多線性分?jǐn)?shù)次積分算子在變指數(shù)空間的有界性.利用多線性分?jǐn)?shù)次積分轉(zhuǎn)化為相對(duì)應(yīng)的分?jǐn)?shù)次積分的方法, 獲得了它從變指數(shù)強(qiáng)和弱Lebesgue空間到變指數(shù)Lipschitz空間的有界性, 推廣了先前的研究結(jié)果.

        Lipschitz空間; 多線性分?jǐn)?shù)次積分; 變指數(shù)

        :42B20;46E30

        O174.2

        tion:42B20;46E30

        A < class="emphasis_bold">Article ID:0255-7797(2017)02-0315-10

        0255-7797(2017)02-0315-10

        ?Received date:2015-09-09 Accepted date:2016-04-27

        Foundation item:Supported by National Natural Science Foundation of China(11201003; 11301006);and University NSR Pro ject of Anhui Province(KJ2015A117;KJ2014A087).

        Biography:Sun Aiwen(1982–),female,born at Bengbu,Anhui,associate professor,major in harmonic analysis.

        在线免费黄网| 本道天堂成在人线av无码免费 | 国产精品黄色av网站| 日韩少妇人妻中文字幕| 国产深夜男女无套内射| 日韩精品久久久一区| 最新国产av网址大全| 亚洲久悠悠色悠在线播放| 国产成人亚洲精品青草天美 | 国产喷水在线观看| 日本草逼视频免费观看| 国产av在线观看一区二区三区 | 日韩丝袜亚洲国产欧美一区| 青青草视频在线免费观看91| 亚洲男人天堂黄色av| 欧美艳星nikki激情办公室| 无码午夜剧场| 在线免费观看毛视频亚洲精品| 亚洲熟女av在线观看| 97久人人做人人妻人人玩精品| 亚洲中文字幕无码一区| 2017天天爽夜夜爽精品视频| 精品久久一品二品三品| 亚洲欧美日韩另类精品一区| 韩国三级中文字幕hd久久精品 | 48沈阳熟女高潮嗷嗷叫| 国产精品毛片久久久久久l| 中文字幕色一区二区三区页不卡| 少妇被又大又粗又爽毛片久久黑人 | 国产亚洲精品bt天堂精选| 四虎影视久久久免费| 宅男天堂亚洲一区二区三区| 日韩av午夜在线观看| 无码一区二区三区在线| 日韩国产成人精品视频| 久久狼人国产综合精品 | 日本成本人片免费网站| 伊人影院综合在线| 自拍偷拍另类三级三色四色| 丰满少妇高潮惨叫久久久| 18无码粉嫩小泬无套在线观看|