亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        THE POINTED LAYER SOLUTION OF SINGULAR PERTURBATION FOR NONLINEAR EVOLUTIONEQUATIONS WITH TWO PARAMETERS

        2017-04-12 14:31:39OUYANGChengCHENXianfengMOJiaqi
        數(shù)學(xué)雜志 2017年2期
        關(guān)鍵詞:解和安徽師范大學(xué)數(shù)學(xué)系

        OUYANG Cheng,CHEN Xian-feng,MO Jia-qi

        (1.Faculty of Science,Huzhou University,Huzhou 313000,China)

        (2.Department of Mathematics,Shanghai Jiaotong University,Shanghai 200240,China)

        (3.Department of Mathematic,Anhui Normal University,Wuhu 241003,China)

        THE POINTED LAYER SOLUTION OF SINGULAR PERTURBATION FOR NONLINEAR EVOLUTION
        EQUATIONS WITH TWO PARAMETERS

        OUYANG Cheng1,CHEN Xian-feng2,MO Jia-qi3

        (1.Faculty of Science,Huzhou University,Huzhou 313000,China)

        (2.Department of Mathematics,Shanghai Jiaotong University,Shanghai 200240,China)

        (3.Department of Mathematic,Anhui Normal University,Wuhu 241003,China)

        In this paper,the nonlinear singular perturbation problem for the evolution equations is studied.The outer solution and corrective terms of the pointed,boundary and initiallayers for the solution are constructed.By using the fi xed point theorem,the uniformly validity of solution to the problem ia proved and the results of the study for the singular perturbation with two parameters is extended.

        pointed layer;singular perturbation;evolution equation

        1 Introduction

        The nonlinear singular perturbation evolution equations are an important target in the mathematical,engineering mathematics and physical etc.circles.Many approximate methods were improved.Recently,many scholars did a great of work,such as de Jager et al.[1],Barbu et al.[2],Hovhannisyan et al.[3],Graef et al.[4],Barbu et al.[5], Bonfoh et al.[6],Faye et al.[7],Samusenko[8],Liu[9]and so on.Using the singular perturbation and other’s theorys and methods the authoes also studied a class of nonlinear singular perturbation problems[10–24].In this paper,using the specialand simple method, we consider a class of the evolution equation.

        Now we studied the following singular perturbation evolution equations initial-boundary value problem with two parameters

        where

        εand μ are small positive parameters,x=(x1,x1,···,xn) ∈ ?,? is a bounded region in?n, ? ? denotes boundary of ? for class C1+α,where α ∈ (0,1)is H¨older exponent,T0is a positive constant large enough,f(t,x,u)is a disturbed term,L signifies a uniformly elliptic operator.

        Hypotheses that

        [H1] σ = ε/μ as μ → 0;

        [H2] αij,βiwith regard to x are H¨older continuous,g and hiare suffi ciently smooth functions in correspondence ranges;

        [H3]f is a suffi ciently smooth functions in correspondence ranges except x0∈ ?;

        [H4]f(t,x,u) ≤ ?c < 0,(x/=x0),where C > 0 is a constant and for f(t,x,u)=0, there exists a solution

        2 Construct Outer Solution

        Now we construct the outer solution of problems(1.1)–(1.3).

        The reduced problem for the original problem is

        From hypotheses,there is a solution U00(t,x)(x/=x0)to equation(2.1).And there is a U00(t,x)which satisfies f(t,x0,U00(t.x0))=0.

        Let the outer solution U00(t,x)to problems(1.1)–(1.3),and

        Substituting eq.(2.2)into eq.(1.1),developing the nonlinear term f in ε,and μ,and equating coeffi cients of the same powers of εiμj(i,j=0,1,···,i+j/=0),respectively.We can obtain Uij(t,x),i,j=0,1,···,i+j/=0.Substituting U00(t,x)and Uij(t,x),i,j= 0,1,···,i+j/=0 into eq.(2.2),we obtain the outer solution U(t,x)to the original problem. But it does not continue at(t,x0)and it may not satisfy the boundary and initialconditions (1.2)–(1.3),so that we need to construct the pointed layer,boundary layer and initial layer corrective functions.

        3 Construct Pointed Layer Corrective Term

        Set up a local coordinate system(ρ,φ)near x0∈ ?.Define the coordinate of every point Q in the neighborhood of x0with the following way:the coordinate ρ(≤ ρ0)is the distance from the point Q to x0,where ρ0is smallenough.The φ =(φ1,φ2,···,φn?1)is a nonsingular coordinate.

        In the neighborhood of x0:(0 ≤ ρ ≤ ρ0) ∈ ?,

        where

        We lead into the variables of multiple scales[1]on(0 ≤ ρ ≤ ρ0) ? ?:

        where h(ρ,φ)is a function to be determined.For convenience,we still substitute ρ,φ for ~ρ,~φ below respectively.From eq.(3.1),we have

        while

        and K1,K2are determined operators and their constructions are omitted. and the solution u of originalproblems(1.1)–(1.3)be

        where V1is a pointed layer corrective term.And

        Substituting eqs.(3.1)–(3.4)into eq.(1.1),expanding nonlinear terms in σ and μ,and equating the coeffi cients of like powers of σiμj,respectively,for i,j=0,1,···,we obtain

        where Gij(i,j=0,1,···,i+j/=0)are determined functions.From problems(3.5)–(3.6),we can have v100,From v100and eqs.(3.7)–(3.8),we can obtain solutions v1ij(i,j= 0,1,···,i+j/=0),successively.

        From the hypotheses,it is easy to see that v1ij(i,j=0,1,···)possesses boundary layer behavior

        where δij> 0(i,j=0,1,···)are constants.

        For convenience,we still substitute v1ijfor v1ijbelow.Then from eq.(3.4),we have the pointed layer corrective term V1near(0 ≤ ρ ≤ ρ0) ? ?.

        4 Construct Boundary Layer Corrective Term

        Now we set up a localcoordinate systemin the neighborhood near ? ? :0 ≤ ρ ≤ ρ0as Ref.[9],where.In the neighborhood of ? ? :0 ≤ ρ ≤ ρ0,

        where

        We lead into the variables of multiple scales[1]on

        while

        where V2is a boundary layer corrective term.And

        Substituting eq.(4.4)into eqs.(1.1)and(1.2),expanding nonlinear terms in ε and σ, and equating the coeffi cients of like powers of εiσj(i,j=0,1,···).And we obtain

        From problems(4.5)–(4.6),we can have v200.And from eqs.(4.7),(4.8),we can obtain solutions v2ij(i=0,1,···,i+j/=0)successively.Substituting into eq.(4.4),we obtain the boundary layer corrective function V2for the original boundary value problems(1.1)–(1.3).

        From the hypotheses,it is easy to see that v2ij(i,j=0,1,···)possesses boundary layer behavior

        For convenience,we still substitute v2ijforbelow.Then from eq.(4.4)we have the boundary layer corrective term V2near

        5 Construct Initial Layer Corrective Term

        The solution u of originalproblems(1.1)–(1.3)be

        where W is an initial layer corrective term.Substituting eq.(5.1)into eqs.(1.1)–(1.3),we

        have

        We lead into a stretched variable[1,2]: τ=t/εand let

        Substituting eqs.(2.2),(3.4),(4.4)and(5.6)into eqs.(5.2)–(5.5),expanding nonlinear terms in εand μ,and equating the coeffi cients oflike powers of εiμj,respectively,for i,j=0,1,···, we obtain

        where Gij(i,j=0,1,···,i+j/=0)are determined functions.From problems(5.7)–(5.10),we can have w00,From w00and eqs.(5.11)–(5.14),we can obtain solutions wij(i,j= 0,1,···,i+j/=0)successively.

        From the hypotheses,it is easy to see that wij(i,j=0,1,···)possesses initial layer behavior

        where~δij> 0(i,j=0,1,···)are constants.

        Then from eq.(5.15)we have the initialcorrective term W.

        From eq.(5.1),thus we obtain the formal asymptotic expansion of solution u for the nonlinear singular perturbation evolution equations initial-boundary value problems(1.1)–

        (1.3)with two parameters

        6 The Main Result

        Now we prove that this expansion(5.16)is a uniformly valid in ? and we have the following theorem

        TheoremUnder hypotheses[H1]? [H4],then there exists a solution u(t,x)of the nonlinear singular perturbation evolution equation initial-boundary value problems(1.1)–(1.3)with two parameters and holds the uniformly valid asymptotic expansion(5.16)for ε and μ in(t,x) ∈ [0,T0]× ?.

        ProofWe now get the remainder term R(t,x)of the initial-boundary value problems (1.1)–(1.3).Let

        where

        Using eqs.(2.2),(3.9),(4.9),(5.15),(6.1),we obtain

        The linearized differential operator L reads

        and therefore

        For fixed ε,μ,the normed linear space N is chosen as

        with norm

        and the Banach space B as

        with norm

        From the hypotheses we may show that the condition

        of the fixed point theorem[1,2]is fulfilled where l?1is independent of εand μ,i.e.,L?1is continuous.The Lipschitz condition of the fixed point theorem become

        where C1,C2and C3are constants independent of ε and μ,this inequality is valid for all

        p1,p2in a ball KN(r)with ‖r‖ ≤ 1.Finally,we obtain the result that the remainder term exists and moreover

        From eq.(6.1),we have

        The proof of the theorem is completed.

        [1]de Jager E M,Jiang Furu.The theory of singular perturbation[M].Amsterdam:North-Holland Publishing Co.,1996.

        [2]Barbu L,Morosanu G.Singularly perturbed boundary-value problems[M].Basel:Birkhauserm Verlag AG,2007.

        [3]Hovhannisyan G,Vulanovic R.Stability inequalities for one-dimensionalsingular perturbation problems[J].Nonl.Stud.,2008,15(4):297–322.

        [4]Graef J R,Kong L.Solutions of second order multi-point boundary value problems[J].Math.Proc. Camb.Philos.Soc.,2008,145(2):489–510.

        [5]Barbu L,Cosma E.Elliptic regularizations for the nonlinear heat equation[J].J.Math.Anal.Appl., 2009,351(2):392–399.

        [6]Bonfoh A,Grassrlli M,Miranville A.Intertial manifolds for a singular perturbation of the viscous Cahn-Hilliiard-Gurtin equation[J].Topol.Meth.Nonl.Anal.,2010,35(1):155–185.

        [7]Faye L,Frenod E,Seck D.Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[J].Discrete Contin.Dyn.Syst.,2011,29(3):1001–1030

        [8]Samusenko P F.Asymptotic integration of degenerate singularly perturbed systems of parabolic partial diff erential equations[J].J.Math.Sci.,2013,189(5),834–847.

        [9]Mo Jiaqi.Singular perturbation for a class of nonlinear reaction diff usion systems[J].Sci.China, Ser.A,1989,32(11):1306–1315.

        [10]Mo Jiaqi,Lin Wantao.Asymptotic solution of activator inhibitor systems for nonlinear reaction diff usion equations[J].J.Sys.Sci.Compl.,2008,20(1):119–128.

        [11]Mo Jiaqi.A class of singulaely perturbed diff erential-diff erence reaction diff usion equations[J].Adv. Math.,2009,38(2):227–230.

        [12]Mo Jiaqi.Approximate solution of homotopic mapping to solitary for generalized nonlinear KdV system[J].Chin.Phys.Lett.,2009,26(1):010204-1-010204-4.

        [13]Mo Jiaqi.A variational iteration solving method for a class of generalized Boussinesq equations[J]. Chin Phys.Lett.,2009,26(6):060202-1-060202-3.

        [14]Mo Jiaqi.Homotopic mapping solving method for gain fluency of laser pulse amplifi er[J].Sci.China, Ser.G,2009,39(5):568–661.

        [15]Mo Jiaqi,Lin Wantao.Asymptotic solution for a class of sea-air oscillator modelfor El-Nino southern oscillation[J].Chin.Phys.,2008,17(2):370–372.

        [16]Mo Jiaqi.A class of homotopic solving method for ENSO mpdel[J].Acta Math.Sci.,2009,29(1): 101–109.

        [17]Mo Jiaqi,Chen Huaijun.The corner layer solution of Robin problem for semilinear equation[J]. Math.Appl.,2012,25(1):1–4.

        [18]Mo Jiaq,Lin Yihua,Lin Wantao,Chen Lihua.Perturbed solving method for interdecadal sea-air oscillator model[J].Chin.Geogr.Sci.,2012,22(1):1,42–47.

        [19]Mo Jiaqi,Yao Jingsun.A class of singularly perturbed nonlinear reaction diff usion equations with two parameters[J].J.Math.,2011,31(2):341–346(in Chinese).

        [20]Ouyang Cheng,Cheng Lihua,Mo Jiaqi.Solving a class of burning disturbed problem with shock layers[J].Chin.Phys.B,2012,21(5):050203.

        [21]Ouyang Cheng,Lin Wantao,Cheng Rongjun,Mo Jiaqi.A class of asymptotic solution of El Nino sea-Air time delay oscillator[J].Acta.Phys.Sinica,2013,62(6):060201(in Chinese).

        [22]Ouyang Cheng,Shi Janfang,Lin Wantao,Mo Jiaqi.Perturbation method of travelling solution for(2+1)dimensional disturbed time delay breaking solitary wave equation[J].Acta.Phys.Sinica, 2013,62(17):170202(in Chinese).

        [23]Ouyang Cheng,Yao Jingsun,Shi Janfang,Mo Jiaqi.The solitary wave solution for a class of dusty plasma[J].Acta.Phys.Sinica,2013,63(11):110203(in Chinese).

        [24]Chen Lihua,Yao Jingsun,Wen Zhaohui,Mo Jiaqi.Shock wave solution for the nonlinear reaction diff usion problem[J].J.Math.,2013,33(3):381–387.

        兩參數(shù)非線性發(fā)展方程的奇攝動(dòng)尖層解

        歐陽(yáng)成1, 陳賢峰2, 莫嘉琪3
        (1.湖州師范學(xué)院理學(xué)院, 浙江 湖州 313000)
        (2.上海交通大學(xué)數(shù)學(xué)系, 上海 200240)
        (3.安徽師范大學(xué)數(shù)學(xué)系, 安徽 蕪湖 241003)

        本文研究了一類(lèi)具有非線性發(fā)展方程奇攝動(dòng)問(wèn)題.引入伸長(zhǎng)變量和多重尺度,構(gòu)造了初始邊值問(wèn)題外部解和尖層、邊界層和初始層校正項(xiàng),得到了問(wèn)題形式解. 利用不動(dòng)點(diǎn)定理,證明了問(wèn)題的解的一致有效性.推廣了對(duì)兩參數(shù)的奇攝動(dòng)問(wèn)題的研究結(jié)果.

        尖層;奇攝動(dòng);發(fā)展方程

        :35B25

        O175.4

        tion:35B25

        A < class="emphasis_bold">Article ID:0255-7797(2017)02-0247-10

        0255-7797(2017)02-0247-10

        ?Received date:2015-06-18 Accepted date:2015-11-30

        Foundation item:Supported by the National Natural Science Foundation of China(11371248) and the Natural Science Foundation of Zhejiang Province,China(LY13A010005).

        Biography:Ouyang Cheng(1962–),female,born at Deqing,Zhejiang,master,professor,major in Applied Mathematics.

        猜你喜歡
        解和安徽師范大學(xué)數(shù)學(xué)系
        一個(gè)人就是一個(gè)數(shù)學(xué)系
        ——丘成桐
        約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
        《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
        北京師范大學(xué)數(shù)學(xué)系教授葛建全
        具異號(hào)非線性源項(xiàng)的熱方程淬火解和仿真
        Hemingway’s Marriage in Cat in the Rain
        圓柱散射場(chǎng)RCS的解析解和MoM數(shù)值解
        論Gross曲線的二次扭
        《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
        Constructing DHCP Using Electronic Archetypes
        亚洲一区二区三区香蕉| 丝袜人妻中文字幕首页| 国产在线观看视频一区二区三区| 亚洲av无码一区二区三区网址| 欧美丰满熟妇aaaaa片| 粗大挺进尤物人妻一区二区| 日韩一区二区三区人妻中文字幕| 最新国产精品拍自在线观看| 色多多a级毛片免费看| 久久亚洲道色宗和久久| 亚洲国产都市一区二区| 国内精品免费一区二区三区| 中文日韩亚洲欧美制服| 亚洲AV肉丝网站一区二区无码| 国产av精品一区二区三区不卡| 亚洲youwu永久无码精品| 日本japanese少妇高清| 亚洲国产精品午夜电影| 宅男天堂亚洲一区二区三区| 欧美成人国产精品高潮| 久久久久亚洲av无码专区| 亚洲AV无码中文AV日韩A| 亚洲国产天堂久久综合网| 波多野结衣的av一区二区三区| 中文字幕亚洲欧美日韩在线不卡| 久久高潮少妇视频免费| 漂亮丰满人妻被中出中文字幕| 亚洲国产精品ⅴa在线观看| 色欲av一区二区久久精品| 在线观看女同一区二区| 老师开裆丝袜喷水视频| 国产山东熟女48嗷嗷叫| 欧洲一级无码AV毛片免费| 亚洲熟女少妇精品综合| 性色av无码中文av有码vr| 女女同性黄网在线观看| 大香蕉视频在线青青草| 夜夜爽妓女8888888视频| 国产AV无码专区亚洲AⅤ| 在线看片免费人成视久网不卡| 精品一区二区三区在线视频|