亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Weakly J#-clean Rings

        2017-04-11 02:40:56HAOYapuCHENHuanyin
        關(guān)鍵詞:理學(xué)院師范大學(xué)杭州

        HAO Yapu, CHEN Huanyin

        (School of Science, Hangzhou Normal University,Hangzhou 310036, China)

        On Weakly J#-clean Rings

        HAO Yapu, CHEN Huanyin

        (School of Science, Hangzhou Normal University,Hangzhou 310036, China)

        weakly J#-clean ring; clean ring; weakly nil clean;S=R[D,C] ring; idempotent; Jacobson radical

        1 Introduction

        Following W. K. Nicholson[1], we call a ringRis clean if every elementa∈Rcan be written in the form ofa=e+uwhereeis an idempotent anduis a unit. Later, A. J. Diesl[2]replaced units to nilpotent elements and then extended the clean rings to nil clean rings. A ringRis called a nil clean ring if every elementa∈Rcan be written in the form ofa=e+wwhereeis an idempotent andwis a nilpotent. Recently, S. Breaz, P. Danchev and Y. Zhou[3]introduced weakly nil clean rings. A ringRis called a weakly nil clean ring if every elementa∈Rcan be written in the form ofa=e+wora=-e+wwhereeis an idempotent andwis a nilpotent element. On the other hand, J-clean rings are studied by Chen[4]. A ringRis called a J-clean ring if every elementa∈Rcan be written in the form ofa=e+jwhereeis an idempotent andjbelongs to Jacobson radical. Recently, Shen[5]introduced weakly J-clean rings. A ringRis called a weakly J-clean ring if every elementa∈Rcan be written in the form ofa=e+jora=-e+jwhereeis an idempotent andjbelongs to Jacobson radical. Inspired by the weakly nil cleanness and J#-cleanness, we introduce a new type of ring. We call a ringRis weakly J#-clean if for anya∈R, there existse∈Id(R) such thata-e∈J#(R) ora+e∈J#(R). Here,J#(R)={x∈R|?n, such thatxn∈J(R)}. We prove in the following that a ringRis weakly nil-clean if and only ifRis weakly J#-clean andJ(R) is nil. Then we imply that these rings are equivalent to each other with some other conditions. We also discuss various properties of such rings.

        Throughout this paper, the rings that we discussed are associative rings with an identity.Id(R) denotes the idempotents ofR,J(R) denotes the Jacobson radicals ofR,J#(R)={x∈R|?n, such thatxn∈J(R)},U(R) denotes the units ofR,N(R) denotes the nilpotent elements ofR,P(R) denotes the intersection of all prime ideals ofRand we useTn(R) to stand for the ring of alln×nupper triangular matrices over a ringR.

        2 Examples

        Definition 1 A ringRis called a weakly J#-clean ring if every elementa∈Rcan be written in the form ofa=e+jora=-e+jwheree∈Id(R) andj∈J#(R).

        Proposition 1 IfN(R) forms an ideal, then every weakly J#-clean ring is clean ring.

        Proof Leta∈Rthena=e+jora=-e+jwheree∈Id(R) andjn∈J(R) sinceRis weakly J#-clean. Ifa=e+jthena=(2e-1+j)+(1-e), (1-e)∈Id(R), as (2e-1)(2e-1)=1, we know that (2e-1) is a unit, so (2e-1+j)=(2e-1)[1+(2e-1)j]∈U(R) sinceN(R) forms an ideal, soais clean. Ifa=-e+jthena=(1-e)+(j-1) where (j-1)∈U(R) and (1-e)∈Id(R), soais clean. Therefore we get the result.

        The following example shows that the converse of Proposition 1 is not true.

        Example 1 Z5is a field, so Z5is clean. But Z5is not weakly J#-clean. As Z5is field, 0 and 1 are the all idempotents in Z5and 0 is the only element in the Jacobson radical of Z5, so 0+0=0,-0+0=0,1+0=1,-1+0=-1=4, we can see that 2 and 3 can not be written in the form ofe+jor -e+j. In conclusion, Z5is clean but not weakly J#-clean.

        Following Shen[5], an elementaof a ringRis weakly J-clean in case there is an idempotente∈Rand a Jacobson radicalj∈Rsuch thata=e+jora=-e+j. Every weakly J-clean ring is weakly J#-clean. However weakly J#-clean rings maybe not weakly J-clean rings as the following shows.

        Example 2M2(Z3) is weakly J#-clean, but it is not weakly J-clean.

        In fact, we have the following inclusions:J(R)J#(R)Rqnil

        Remark1LetSbeacommutativeringandR=M2(S).By[7,Example4.3],wehaveJ#(R)=Rqnil.

        Example5Herearesomeexamples:

        1)AnyquotientofweaklyJ#-cleanringisweaklyJ#-clean.

        2) R[x]iscertainlyneveraweaklyJ#-cleanasitisnotcleanring.

        3) R[x]/(xn)isweaklyJ#-cleanifandonlyifsoisR.

        3 Elementary Propositions

        Thefollowingtheoremrevealstherelationshipbetweenweaklynil-cleanringsandweaklyJ#-cleanrings.

        Theorem1LetRbearing.ThenRisweaklynil-cleanifandonlyifRisweaklyJ#-cleanandJ(R)isnil.

        ProofLeta∈J(R)thena=e+wora=-e+wwheree∈Id(R)andw∈N(R)sinceRisweaklynil-clean.Ifa=e+wthene=a-w, e=en=(a-w)n∈J(R), e=0.Soa=w, J(R)isnil.Similarly,ifa=-e+wthene=w-a.Wecanalsogeta=w, J(R)isnil.SoRisweaklyJ#-clean.

        Conversely,ifRisweaklyJ#-clean,thenforanya∈R, a=e+jora=-e+jwheree∈Id(R)andj∈J#(R).AndJ(R)isnil,weget(jn)m=0,soj∈N(R).ThusRisweaklynil-clean.

        AringRiscalledaJ#-cleanringifeveryelementa∈Rcanbewrittenintheformofa=e+jwheree∈Id(R)andj∈J#(R).

        Theorem2LetRbeacleanring.ThenRisJ#-cleanifandonlyif

        1) RisweaklyJ#-clean;

        2) 2∈J(R).

        ProofSupposeRisJ#-clean,itisobviousthatRisweaklyJ#-clean.Write2=e+jnwheree∈Id(R)andjn∈J(R). 1-e=jn-1∈U(R)isbothanidempotentandaunit,hencee=0, 2=jn∈J(R).So2∈J(R).

        Thefollowingassertionisusefulforapplications.

        Lemma1EveryhomomorphicimageofaweaklyJ#-cleanringisweaklyJ#-clean.

        ProofItisobvious.

        Theorem3LetRbeacleanring.ThenRisweaklyJ#-cleanifandonlyifR/J(R)isweaklynil-clean.

        Corollary1LetRbearing.ThenRisJ#-cleanifandonlyif

        1) Risclean;

        2) R/J(R)isJ#-clean.

        ProofSupposeRisJ#-clean, R/J(R)isJ#-cleansinceR/J(R)isthehomomorphicimageofR.Soeveryelement1+a∈Rcanbewrittenintheformof1+a=e+j,thatisa=e+(j-1)wheree∈Id(R)andjn∈J(R), jn-1∈U(R), j-1∈U(R).SoRisclean.

        Theorem4LetRbearing.ThenRisweaklyJ#-cleanifandonlyifR/P(R)isweaklyJ#-clean.

        ProofThenecessitybeinganelementaryconsequenceofLemma1.

        Theorem5LetIbenilpotent.ThenRisweaklyJ#-cleanifandonlyifR/IisweaklyJ#-clean.

        ProofThenecessitybeinganelementaryconsequenceofLemma1,weconcentrateonthesufficiency.Tothataim,leta∈R,thena+I∈R/Iandbyhypothesis, a+I=(b+e)+Iora+I=(b-e)+I,whereb+I∈J#(R/I)ande+I∈Id(R/I).AsIisnilpotent,itisobviousthatb∈J#(R).Asfore,itiswellknownthatidempotentsliftmoduloanynilideal,sothatthisfollowstoassumethate∈Id(R).So, RisweaklyJ#-clean,asdesired.

        1)R/Iis weakly J#-clean ;

        2)R/Inis weakly J#-clean for alln≥1.

        Proof SupposeR/Iis weakly J#-clean. Write eithera+I=(b+I)+(e+I)=(b+e)+Iora+I=(b+I)-(e+I)=(b-e)+I, whereb+I∈J#(R/I) ande+I∈Id(R/I). AndIis an ideal ofR, soa+In=(b+e)+In=(b+In)+(e+In) ora+In=(b-e)+In=(b+In)-(e+In), whereb+In∈J#(R/In) ande+In∈Id(R/In). SoR/Inis weakly J#-clean for alln≥1.

        Conversely, it is obvious when we choosen=1.

        1)R/(IJ) is weakly J#-clean;

        2)R/(I∩J) is weakly J#-clean.

        Proof SupposeR/(IJ) is weakly J#-clean. SinceR/(I∩J)?R/(IJ)/(I∩J)/(IJ) andR/(IJ)/(I∩J)/(IJ) is the homomorphic image ofR/(IJ), as required.

        Conversely, (I∩J/IJ)2?(I∩J)(I∩J)/IJ?IJ/IJ=0. SoR/(IJ) is weakly J#-clean by Theorem 5.

        1)R/(IJ) is J#-clean;

        2)R/(I∩J) is J#-clean.

        Proof By Corollary 3 and induction, we easily obtain this result.

        4 Extensions

        In this section, we further consider weak J#-cleanness for various related rings.

        Theorem7LetRbearing.Thenthefollowingareequivalent:

        (1) RisweaklyJ#-clean;

        (2) R[[x]]isweaklyJ#-clean.

        (1)?(2)Letf(x)=a0+a1x+a2x2+…∈R[[x]].SupposethatRisweaklyJ#-clean,fora0∈R,wehavea0=e+jora0=-e+jwheree∈Id(R)andj∈J#(R).Ifa0=e+j,thenf(x)=a0+a1x+a2x2+…=e+j+(a1x+a2x2+…)=e+α(x)whereα(x)=j+a1x+a2x2+….Similarly,ifa0=-e+j,thenf(x)=-e+α(x).Itiseasytoknowα(x)∈J#(R[[x]]),hence, R[[x]]isweaklyJ#-clean.

        Corollary5LetRbearing.Thenthefollowingareequivalent:

        1) RisweaklyJ#-clean;

        2) R[[x1,x2,…xn]]isweaklyJ#-clean.

        ProofByTheorem7andinduction,weeasilyobtainthisresult.

        Theorem8LetRbearing.Thenthefollowingareequivalent:

        (1) RisJ#-clean;

        (2)Thereisanintegern≥1suchthatTn(R)isJ#-clean;

        (3)Thereisanintegern≥2suchthatTn(R)isweaklyJ#-clean.

        (2)?(3)Itisobvious.

        Lemma2SupposeR=∏i∈IRiisadirectproductofringsRi?Rforalli∈IsuchthatIisfiniteand|I|≥2.ThenRisweaklyJ#-cleanifandonlyifRiisJ#-clean.

        ProofOnedirectionisobvious.IfRiisJ#-cleanforalli∈I,thenR=∏i∈IRiisJ#-clean,ofcourseitisweaklyJ#-clean.

        Conversely,ifR=∏i∈IRiisweaklyJ#-clean.Weassumethereisani∈IsuchthatRiisweaklyJ#-clean,thenallRiareweaklyJ#-cleansinceRi?R.Thusthereexistr1∈Ri1andr2∈Ri2suchthatr1≠e+jandr2≠-e+jwheree∈Id(R)andj∈J#(R).Thenwegetthat(r1,r2)isnotweaklyJ#-cleaninRi1×Ri2,acontradiction.

        Theorem9LetRbearing.Thenthefollowingareequivalent:

        (1) RisJ#-clean;

        (2)Thereisanintegern≥1suchthat×nRisJ#-clean;

        (3)Thereisanintegern≥2suchthat×nRisweaklyJ#-clean.

        Proof(1)?(2)Foranyelement(a1,a2,...,an)∈×nR, aicanbewrittenintheformofai=ei+jiwhereei∈Id(R)andji∈J#(R)foranyi∈N*, 1≤i≤nsinceRisJ#-clean.Then(a1,a2,...,an)canbewrittenintheformof(a1,a2,...,an)=(e1,e2,...,en)+(j1,j2,...,jn)where(e1,e2,...,en)∈Id(×nR)and(j1,j2,...,jn)∈J#(×nR),so×nRisJ#-clean.

        (2)?(3)Itisobvious.

        (3)?(1)ByLemma2andinduction,weeasilyobtainthisresult.

        Theorem10SupposeR=∏i∈IRiisadirectproductofringsRi?Rforalli∈IsuchthatIisfiniteand|I|≥2.ThenRisweaklyJ#-cleanifandonlyifthereexistsk∈IsuchthatRkisweaklyJ#-cleanandRjisJ#-cleanforallj≠k.

        ProofSupposethatRisweaklyJ#-clean.AsanimageofR,eachRiforalli∈IisweaklyJ#-cleanasaconsequenceofLemma1.Assumethatthereexisttwoindicesi1andi2suchthatneitherRi1norRi2areJ#-clean.Thenthereexistr1∈Ri1andr2∈Ri2suchthatr1≠e+jandr2≠-e+jwheree∈Id(R)andj∈J#(R).Thus(r1,r2)isnotweaklyJ#-cleaninRi1×Ri2,acontradiction.

        Conversely,ifeveryRiisJ#-clean,byLemma2,soRisweaklyJ#-clean.SupposethatRkisweaklyJ#-cleanbutnotJ#-cleanandalltheotherRjareJ#-clean.Letx=(xi)∈R=∏i∈IRi,thenxk=jk+ekorxk=jk-ekwhereek∈Id(Rk)andjk∈J#(Rk).Ifxk=jk+ek,thenforj≠kandRjisJ#-clean,wemusthavexi=ji+eiwhereei∈Id(Ri)andji∈J#(Ri).Ifnowxk=jk-ek,thenforj≠kandRjisJ#-clean,wecanwritexi=ji-eiwhereei∈Id(Ri)andji∈J#(Ri).Therefore, xisweaklyJ#-cleaninR,asexpected.

        LetDbearing, CbeasubringofDand1D∈C,write:

        S=R[D,C]={(d1,...,dn,c,c,...)|di∈D,c∈C,n≥1}

        S′=R{D,C}={(d1,...,dn,cn+1,cn+2,...)|di∈D,cj∈C,n≥1}

        Lemma3 1) J(S)=R[J(D),J(D)∩J(C)]. 2) J(S′)=R{J(D),J(D)∩J(C)}.

        Proof See [8, Theorem 2.1.14].

        Lemma 4 LetS=R[D,C], thenDis isomorphic to an internal direct sum ofSandCis the epimorphism ofS.

        Proof See [8, Proposition 2.1.1].

        Theorem 11 The following conditions are equivalent:

        (1)S=R[D,C] is weakly J#-clean;

        (2) (a)Dis weakly J#-clean; (b)For anya∈C, there existsf∈Id(C), such thata+f∈J#(D)∩J#(C) ora-f∈J#(D)∩J#(C).

        (3)S′=R{D,C} is weakly J#-clean.

        or

        or

        SoSis weakly J#-clean.

        (3)?(2) It is similar to (1)?(2).

        Corollary 6 IfS=R[D,C] is weakly J#-clean, thenDandCare weakly J#-clean.

        ProofItisobviousthatDisweaklyJ#-cleanbyTheorem8.Forany

        thereexistsanidempotente∈Rsuchthata+e∈J#(R)ora-e∈J#(R).Then

        or

        SoS=R[D,C]isaweaklyJ#-cleanring.

        [1]NICHOLSONWK.Liftingidempotentsandexchangerings[J].TransactionsoftheAmericanMathematicalSocity,1977,229(5):269-278.

        [2]DIESLAJ.Nilcleanrings[J].Algebra,2013,383(6):197-211.

        [3] BREAZ S, DANCHEV P, ZHOU Y. Rings in which every element is either a sum or a difference of a nilpotent and an idempotent[J]. Journal of Algebra and Its Applications,2016,15(8):410-422.

        [4] CHEN H Y. On strongly J-clean rings[J]. Comm Algebra,2010,38(10):3790-3804.

        [5] SHEN H D, CHEN H Y. On weakly J-clean rings[J]. Journal of Hangzhou Normal University(Natiral Science Edition),2015,14(6):616-624.

        [6] HARTE R E. On quasinilpotents in rings[J]. Panamerican Math,1991,1(1):10-16.

        [7] WANG Z, CHEN J L. Pseudo Drazin inverses in associative rings and Banach algebras[J]. Linear Algebra Appl,2012,437(6):1332-1345.

        [8] CHENG G P, CHEN J L. The Structure of RingR[D,C] and Its Characterizations[J]. Journal Nanjing University(Natural Sciences Edition),2007,24(1):20-28.

        關(guān)于Weakly J#-clean環(huán)

        郝亞璞, 陳煥艮

        (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

        weakly J#-clean環(huán);clean環(huán);weakly nil clean 環(huán);S=R[D,C]環(huán);冪等元;Jacobson 根

        2016-05-04

        Foundation item:Supported by the Natural Science Foundation of Zhejiang Province (LY17A010018).

        CHEN Huanyin(1963—),male,Professor,Ph.D.,majored in algebra of basic mathematics. E-mail:huanyinchen@aliyun.com

        10.3969/j.issn.1674-232X.2017.02.010

        O153.3 MSC2010: 16U99,16N40,16U10 Article character: A

        1674-232X(2017)02-0173-08

        Received date:2016-05-25

        猜你喜歡
        理學(xué)院師范大學(xué)杭州
        昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
        昆明理工大學(xué)理學(xué)院簡(jiǎn)介
        杭州
        幼兒畫刊(2022年11期)2022-11-16 07:22:36
        Study on the harmony between human and nature in Walden
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        Balance of Trade Between China and India
        商情(2017年9期)2017-04-29 02:12:31
        G20 映像杭州的“取勝之鑰”
        Courses on National Pakistan culture in Honder College
        杭州
        汽車與安全(2016年5期)2016-12-01 05:21:55
        Film Music and its Effects in Film Appreciation
        人妻精品久久久一区二区| 国产乱理伦片在线观看| 国产精品亚洲专区无码web| 综合久久青青草免费观看视频| 久久av不卡人妻出轨一区二区| 人人摸人人搞人人透| 推油少妇久久99久久99久久| 99热高清亚洲无码| 一级老熟女免费黄色片| 在线看无码的免费网站| 欧美国产日产一区二区| 亚洲日本精品一区久久精品| 极品一区二区在线视频| 777米奇色8888狠狠俺去啦| 奇米狠狠色| 成人在线视频自拍偷拍| 91精品国产综合久久熟女| 天堂aⅴ无码一区二区三区| 亚洲动漫成人一区二区| 日本97色视频日本熟妇视频| 摸丰满大乳奶水www免费| 国产精品亚洲综合色区韩国| 天堂Av无码Av一区二区三区| 日韩中文字幕不卡在线| 夜夜揉揉日日人人青青| 波多野结衣一区| 亚洲国产都市一区二区| 免费a级毛片无码免费视频首页| 国产av电影区二区三区曰曰骚网| a级国产精品片在线观看| 激情五月开心五月啪啪| 奇米影视第四色首页| 亚洲精品国产字幕久久vr| 午夜一区二区在线视频| www婷婷av久久久影片| 熟妇人妻无码中文字幕| 亚洲无码美韩综合| 亚洲精品一品区二品区三区| 国产成人av性色在线影院色戒| 色综合999| 91九色最新国产在线观看|