余 建 趙愛春 劉長英 梁燕梅 朱攀攀 蔡雨翔 王茜齡 李鎮(zhèn)剛 余茂德
(1. 西南大學(xué)生物技術(shù)學(xué)院 家蠶基因組生物學(xué)國家重點實驗室 重慶 400715; 2. 云南省農(nóng)業(yè)科學(xué)院蠶桑蜜蜂研究所 蒙自 661101)
?
外源乙烯利與1-MCP處理對桑椹中乙烯和花青素相關(guān)代謝基因表達(dá)的影響*
余 建 趙愛春1劉長英1梁燕梅1朱攀攀1蔡雨翔1王茜齡1李鎮(zhèn)剛2余茂德1
(1. 西南大學(xué)生物技術(shù)學(xué)院 家蠶基因組生物學(xué)國家重點實驗室 重慶 400715; 2. 云南省農(nóng)業(yè)科學(xué)院蠶桑蜜蜂研究所 蒙自 661101)
【目的】 以桑品種‘嘉陵40號’的桑椹為試驗材料,探究乙烯在桑椹發(fā)育進(jìn)程中的作用和乙烯相關(guān)基因的表達(dá)模式,為今后有效開發(fā)桑椹的經(jīng)濟(jì)價值和通過分子生物學(xué)手段調(diào)控桑椹成熟期提供理論依據(jù)?!痉椒ā?桑盛花期后21天(21DAF)和26天(26DAF),分別用100 mg·L-1乙烯利噴灑桑椹表面,采摘后桑椹經(jīng)0.5 μL·L-1乙烯抑制劑1-MCP熏蒸處理,測定其花青素和總糖含量,并提取桑椹的總RNA及合成cDNA模板,利用實時熒光定量PCR (qRT-PCR)分析乙烯生物合成基因MaACO2和MaACS3,乙烯信號轉(zhuǎn)導(dǎo)基因MaETR1,MaETR2,MaCTR1,MaEIN2和MaEIL2,以及花青素生物合成下游基因MaDFR和MaANS的轉(zhuǎn)錄表達(dá)?!窘Y(jié)果】 桑椹經(jīng)過乙烯利處理后,花青素含量和總糖含量與對照相比都有明顯增加,與花青素合成有關(guān)的基因表達(dá)也受乙烯利上調(diào),經(jīng)1-MCP熏蒸的桑椹花青素含量和總糖含量與對照相比都有所下降。在21DAF桑椹中,乙烯相關(guān)基因的表達(dá)經(jīng)乙烯利處理后顯著上調(diào),而對1-MCP具有不同的響應(yīng)模式,其中,MaACO2,MaACS3以及MaEIL2表達(dá)下調(diào),MaETR1,MaCTR1和MaEIN2的表達(dá)量在各時段顯著上調(diào),MaETR2表達(dá)量在12 h無明顯變化,其他時段上調(diào)。26DAF桑椹中,經(jīng)1-MCP的熏蒸而下調(diào)了乙烯各基因的表達(dá),而乙烯利的處理對各基因表達(dá)具有不同的影響,與對照相比,處理后32 h,MaACO2,MaETR1,MaETR2,MaEIN2 和MaEIL2的表達(dá)上調(diào),MaACS3和MaCTR1的表達(dá)則下調(diào)?!窘Y(jié)論】 乙烯利處理能夠誘導(dǎo)桑椹乙烯生物合成和花青素生物合成相關(guān)基因的上調(diào)表達(dá),對乙烯信號轉(zhuǎn)導(dǎo)基因也有一定調(diào)控作用,且能促進(jìn)桑椹花青素和總糖含量的積累,并能加快桑椹的發(fā)育進(jìn)程。乙烯抑制劑1-MCP的熏蒸能抑制乙烯信號轉(zhuǎn)導(dǎo)各元件基因的表達(dá),阻止乙烯信號轉(zhuǎn)導(dǎo)和傳遞,且抑制桑椹中花青素和總糖含量的積累。
桑; 乙烯利; 1-MCP; 花青素; 基因表達(dá); 信號轉(zhuǎn)導(dǎo)
乙烯是一種重要的植物激素,已被證明作為一種信號分子參與調(diào)控果實的成熟衰老,也是果實成熟軟化進(jìn)程中重要的啟動因子(Ozgaetal., 2003),參與調(diào)控果實成熟相關(guān)基因的轉(zhuǎn)錄和翻譯,使果實呈現(xiàn)特有的成熟現(xiàn)象(Wangetal., 2009)。大量研究證明,通過控制乙烯的釋放可以改變果實的貨架期。對不同成熟期果實施加外源乙烯可以調(diào)節(jié)其成熟進(jìn)程,已在葡萄(Vitisvinifera) (Blankenshipetal., 2003)、葡萄柚(Citrusparadisi) (Chaudharyetal., 2012; 2015)等物種中得以證明。而添加乙烯抑制劑1-甲基環(huán)丙烯(1-MCP),能抑制果蔬和切花后熟或衰老進(jìn)程中乙烯誘導(dǎo)的相關(guān)生理、生化反應(yīng),明顯延長貯藏壽命(Blankenshipetal., 2003; Bulensetal., 2014)。
乙烯調(diào)控果實成熟主要是通過其生物合成和信號轉(zhuǎn)導(dǎo)來實現(xiàn)的。ACS(1-aminocyclopropane-1-carboxylate synthase)和ACO(1-aminocyclopropane-1-carboxylate oxidase) 是乙烯生物合成的關(guān)鍵基因,改變這些基因的表達(dá)能夠控制乙烯在果實中的含量,并改變果實的成熟期(Caraetal., 2008; 劉樂等, 2009)。Oller等(1991)將ACS反義基因?qū)敕?Lycopersiconesculentum),所得轉(zhuǎn)基因番茄的乙烯合成量較對照果實降低了99%,成熟時間推遲了30~90天; Ayub等(1996)將反義ACO基因轉(zhuǎn)入甜瓜(Cucumismelo)中,也獲得了與番茄類似的結(jié)果。
乙烯信號轉(zhuǎn)導(dǎo)途徑主要是通過ETR(ethylene receptors)、EIN2(ethylene insensitive 2)、 EIN3/EIL(ethylene-insensitive 3, EIN3; EIN3-like, EIL)和ERF(ethylene response factor)四級元件完成。目前,對番茄、柑橘(Citrusreticulata)等果實乙烯受體基因研究發(fā)現(xiàn),ETR各成員的表達(dá)模式以及對乙烯的響應(yīng)模式存在差異(Caraetal., 2008; Kleeetal., 2002; Katzetal., 2004)。CTR1(constitutive triple response 1)位于ETR的下游,是乙烯信號轉(zhuǎn)導(dǎo)途徑的第2個元件,CTR1基因被證實在組織的生長發(fā)育進(jìn)程中與乙烯產(chǎn)生和果實成熟有關(guān)(Adams-Phillipsetal., 2004a; 2004b),能響應(yīng)乙烯和1-MCP的處理(El-Sharkawyetal., 2007; Daletal., 2006)。EIN2位于細(xì)胞膜,EIN2基因沉默會延緩果實的發(fā)育和成熟,使果實成熟相關(guān)基因和乙烯相關(guān)基因的表達(dá)受到影響(Huetal., 2010)。EIL基因在果實成熟、衰老進(jìn)程中表達(dá)水平基本穩(wěn)定(Yokotanietal., 2003),但香蕉(Musanana)中MaEIL2的表達(dá)量在果實成熟進(jìn)程中呈上升趨勢,可被外源乙烯誘導(dǎo)(Mbéguié-A-Mbéguiéetal., 2008)。
花青素是一種類黃酮物質(zhì),為植物著色的主要物質(zhì)之一,其含量在果實成熟衰老過程中逐漸增加,花青素生物合成相關(guān)酶基因的表達(dá)量也有一定程度的增強。大多數(shù)植物DFR(dihydroflavonol 4-reductase)的表達(dá)與花青素的合成呈正相關(guān)(Nakatsukaetal., 2008),且具有底物特異性; ANS(anthocyanidin synthase) 是植物花青素生物合成途徑末端的關(guān)鍵酶,位于DFR下游,催化無色花色素到有色花色素的轉(zhuǎn)變(Jaakola, 2013)。大量研究表明,乙烯能促進(jìn)某些果實著色和花青素的合成(Kondoetal., 1997; Zhangetal., 2009)。
桑(Morusalba)是一種經(jīng)濟(jì)價值較高的木本植物,果實桑椹已被國家列入既是食品又是藥品的保健品行列(唐忠富, 2009)。有關(guān)乙烯調(diào)控植物生長發(fā)育和果實成熟的作用機制的研究已有諸多報道,但在桑樹(Morus)中還比較缺乏。本課題組前期對乙烯(Liuetal., 2014; 2015)和花青素(Lietal., 2014)相關(guān)基因做了初步探索,在此基礎(chǔ)上,本試驗使用乙烯利和乙烯抑制劑處理不同發(fā)育時期的桑椹,分析乙烯利和1-MCP處理對桑椹總糖含量、花青素含量、花青素生物合成相關(guān)基因和乙烯相關(guān)基因表達(dá)量的影響,探究乙烯在桑椹發(fā)育進(jìn)程中的作用和乙烯相關(guān)基因的表達(dá)模式,為今后有效開發(fā)桑椹的經(jīng)濟(jì)價值和通過分子生物學(xué)手段調(diào)控桑椹成熟期提供理論依據(jù)。
1.1 試驗材料 所用材料為桑品種‘嘉陵40號’(Morusalba‘Jialing 40’) (重慶市審定果桑品種),栽培于西南大學(xué)桑樹種質(zhì)資源圃。根據(jù)桑椹的發(fā)育特征和顏色的變化,于2015年4月選取‘嘉陵40號’的4年生健壯枝條上盛花期(即桑雌花柱頭左右伸開,并發(fā)白發(fā)亮?xí)r為盛花期)后21天(21DAF)和26天(26DAF)的桑椹用于相關(guān)試驗處理,每個處理重復(fù)3個枝條。
1.2 乙烯利處理桑椹 分別選取大部分桑椹處于21DAF和26DAF的健壯枝條,人工去除非該時期的桑椹,分別用100 mg·L-1乙烯利(含0.1%吐溫-20)和ddH2O(含0.1%吐溫-20)噴灑桑椹表面,噴至有液滴為止。根據(jù)桑椹處理后顏色變化程度,21DAF的桑椹在處理后48,72,81 h取樣,26DAF的桑椹處理后8,24,32 h取樣。液氮速凍后于-80 ℃保存?zhèn)溆谩?/p>
1.3 1-MCP處理采摘后桑椹 分別選取處于21DAF和26DAF時期的健康桑椹,帶柄采摘,裝入500 mL的密閉瓶中,用1-MCP (0.5 μL·L-1,SmartFreshTM)在室溫下熏蒸12 h,置于22 ℃、相對濕度90%的光照恒溫培養(yǎng)箱內(nèi)(Xiaoetal., 2013),于處理后0,12,24 h取樣。液氮速凍后于-80 ℃保存?zhèn)溆谩?/p>
1.4 RNA 的提取及cDNA 第1鏈的合成 按照北京全式金公司TransZolTMPlant RNA 抽提試劑盒說明書提取總RNA。分別取適量體積RNA用1%的瓊脂糖凝膠電泳檢測,并用紫外分光光度計檢測總RNA的濃度。以總RNA為模板,參照TAKARA公司反轉(zhuǎn)錄酶M-MLV說明書合成cDNA第1鏈,于-20 ℃保存?zhèn)溆谩?/p>
1.5 桑椹花青素和總糖含量測定 1) 桑椹花青素含量測定 參考Jeong等(2010)的方法。桑椹經(jīng)低溫冷凍干燥后,液氮研磨成粉末,稱取0.5 g左右,加入10 mL預(yù)冷的酸性甲醇(含1%HCl),4 ℃下避光提取 12 h后,將提取液經(jīng)4 000 r·min-1離心10 min。取5 mL 上清,加入等體積水和氯仿,顛倒混勻,混合液經(jīng)12 000 r·min-1離心1 min,吸取上層溶液測量波長530 nm處的吸光值。 花青素含量(A530·g-1)=A530×提取液體積×稀釋倍數(shù)/樣品質(zhì)量。每個樣品3次重復(fù),并用SPSS軟件進(jìn)行顯著性差異分析。
2) 桑椹總糖含量測定 參考鄭小堅等(2002)的方法。用葡萄糖(一水合物)配制成0.2 mg·mL-1母液,再分別稀釋成0,5,10, 20,40,60,80,100 mg·L-18個濃度梯度,分別取1 mL與5 mL 蒽酮試劑(蒽酮∶濃硫酸∶ddH2O=0.6 g∶100 mL∶33 mL)混合,于沸水中加熱10 min,冷卻后于紫外分光光度計上測定波長630 nm處的吸光值,繪制標(biāo)準(zhǔn)曲線。每個濃度設(shè)置3次重復(fù)。
準(zhǔn)確稱取桑椹干粉,加入5 mL 6 mol·L-1稀鹽酸,消煮2 h,期間不時搖動,消煮完后立即加入一角勺(約0.1 g)活性炭,用于吸附色素,靜置冷卻后過濾,與5 mL 蒽酮混合,沸水中加熱10 min,冷卻后測定波長630 nm處的吸光值。 桑椹總糖含量(mg·g-1)=標(biāo)準(zhǔn)曲線值×水解液總體積/樣品質(zhì)量。每個樣品3次重復(fù),并用SPSS軟件進(jìn)行顯著性差異分析。
1.6 實時熒光定量PCR(qRT-PCR)分析 根據(jù)前期研究,選取乙烯生物合成基因MaACO2,MaACS3,信號轉(zhuǎn)導(dǎo)相關(guān)基因MaETR1,MaETR2,MaCTR1,MaEIN2和MaEIL2(Liuetal., 2014; 2015),花青素生物合成下游基因(Lietal., 2014)MaDFR(KC521445)和MaANS(JF499384),進(jìn)行qRT-PCR分析。qRT-PCR 引物序列如表1,所用引物均在南京金斯瑞公司合成。使用定量PCR試劑為SYBR Premix Ex Taq Ⅱ (TaKaRa),反應(yīng)體系為Premix Ex Taq Ⅱ(2×) 10 μL,10 μmol·L-1上、下游引物各0.8 μL,50×ROX Reference Dye (50×) 0.4 μL,cDNA 2 μL和無菌水6 μL。參照TaKaRa 公司的SYBR Premix Ex Taq 試劑盒操作說明書進(jìn)行real-time PCR分析,熱啟動程序為95 ℃ 30 s,95 ℃ 5 s,60 ℃ 30 s,共40個循環(huán),每個樣品設(shè)3 次重復(fù)取其平均值,并以MaACTIN3(李軍等, 2011) (HQ163775.1)作為內(nèi)參。利用2-ΔΔCt法計算基因的相對表達(dá)量,并用SPSS進(jìn)行顯著性差異分析。
2.1 乙烯利處理及1-MCP熏蒸對桑椹中花青素含量和相關(guān)基因表達(dá)量的影響 隨著桑椹發(fā)育,桑椹顏色發(fā)生改變(圖1、圖2),花青素含量也隨之升高,通過乙烯利處理的桑椹花青素含量變化較對照明顯(圖3)。21DAF(盛花期后21天)桑椹經(jīng)過乙烯利處理后48,72,81 h,每1 g干質(zhì)量桑椹樣品的花青素含量由最初的5.48 mg逐漸上升到27.59,52.05,46.21 mg,通過ddH2O處理的桑椹中花青素含量也上升,但上升幅度較小。26DAF(盛花期后26天)桑椹對照組和處理組中花青素含量變化趨勢與21DAF處理桑椹相似。21DAF桑椹經(jīng)乙烯利處理后,MaDFR和MaANS的表達(dá)量在72 h出現(xiàn)大幅度上升; 26DAF桑椹經(jīng)乙烯利處理后,MaDFR的表達(dá)量相比對照有提高,MaANS表達(dá)量沒有顯著差異(圖3)。離體桑椹經(jīng)乙烯抑制劑1-MCP熏蒸后,26DAF桑椹中花青素含量受到顯著抑制,21DAF桑椹在處理后24 h花青素含量受到抑制; 21DAF桑椹的MaDFR表達(dá)量與對照相比沒有明顯變化,而MaANS表達(dá)量在24 h才明顯下調(diào),26DAF桑椹的MaDFR和MaANS表達(dá)量顯著低于對照處理(圖4)。以上結(jié)果表明乙烯利及1-MCP對桑椹中花青素的積累和相關(guān)基因的表達(dá)具有調(diào)控作用。
表1 本研究使用的定量PCR引物Tab.1 Primers for qRT-PCR of genes in this study
圖1 乙烯利處理不同發(fā)育時期桑椹表型變化Fig.1 Changes in phenotypes during development of mulberry fruit under ethephon treatment
A: 21DAF (盛花期后21天)桑椹對照處理; B: 21DAF桑椹乙烯利處理; C: 26DAF(盛花期后26天)桑椹對照處理; D: 26DAF桑椹乙烯利處理。
A: The control of 21DAF (21 days after full-bloom) mulberry fruit treated with ddH2O; B: The 21DAF mulberry fruit treated with ethephon; C: The control of 26DAF (26 days after full-bloom) mulberry fruit treated with ddH2O; D: The 26DAF mulberry fruit treated with ethephon.
圖2 1-MCP處理桑椹表型變化Fig.2 Changes in phenotypes during development of mulberry fruit under 1-MCP treatment
A: 21DAF桑椹對照處理; B: 21DAF桑椹1-MCP熏蒸; C: 26DAF桑椹對照處理; D: 26DAF桑椹1-MCP熏蒸。
A: The control of 21DAF mulberry fruit treated with ddH2O; B: The 21DAF mulberry fruit treated with 1-MCP; C: The control of 26DAF mulberry fruit treated with ddH2O; D: The 26DAF mulberry fruit treated with 1-MCP.
圖3 乙烯利對桑椹花青素含量及其生物合成基因表達(dá)量的影響Fig.3 Effects of ethephon treatments on anthocyanin content and the expression of anthocyanin biosynthesis related genes in mulberry fruit
21DAF:盛花期后21天; 26DAF:盛花期后26天。*,差異性顯著(P<0.05)。下同。
21DAF:21 days after full-bloom; 26DAF:26 days after full-bloom.*, Significant difference (P<0.05). The same below.
圖4 1-MCP對桑椹的花青素含量及其生物合成基因表達(dá)量的影響Fig.4 Effects of 1-MCP treatments on anthocyanin content and the expression of anthocyanin biosynthesis related genes in mulberry fruit
2.2 乙烯利處理及1-MCP采后熏蒸對桑椹總糖含量的影響 21DAF和26DAF桑椹經(jīng)乙烯利處理后,總糖含量相比對照都有顯著提高 (圖5A,B)。桑椹經(jīng)1-MCP熏蒸后,24 h的總糖含量相比對照有所下調(diào)(圖5C,D)。以上結(jié)果表明,乙烯利和1-MCP影響桑椹發(fā)育過程中總糖的合成效應(yīng)是相反的,前者促進(jìn),后者抑制。
圖5 乙烯利及1-MCP對不同發(fā)育時期桑椹總糖含量影響Fig.5 Effects of ethephon and 1-MCP treatments on total sugar content at mulberry fruit development stages
圖6 乙烯利對21DAF桑椹乙烯生物合成及信號轉(zhuǎn)導(dǎo)相關(guān)基因的影響Fig.6 Effects of ethephon treatments on ethylene biosynthesis and signal transduction related gene in the 21DAF mulberry fruits
2.3 乙烯生物合成及信號轉(zhuǎn)導(dǎo)基因?qū)ν庠匆蚁├捻憫?yīng) 21DAF桑椹的乙烯生物合成基因(MaACO2,MaACS3)和信號轉(zhuǎn)導(dǎo)基因(MaETR1,MaETR2,MaCTR1,MaEIN2,MaEIL2)經(jīng)乙烯利處理后,表現(xiàn)為3種不同的表達(dá)模式(圖6)。MaACO2,MaACS3以及MaCTR1經(jīng)乙烯利處理后,表達(dá)量先上調(diào)后下調(diào),48 h時表達(dá)量最高,72 h和81 h均降低;MaETR1,MaEIN2,MaEIL2經(jīng)乙烯利處理后,表達(dá)量在0~48 h下調(diào),72 h升高,81 h再次下調(diào); 而MaETR2表達(dá)模式與MaETR1相反,為先升高再降低,81 h表達(dá)量升到最高。使用乙烯利處理后,與ddH2O相比,乙烯信號轉(zhuǎn)導(dǎo)途徑的基因都受到顯著上調(diào),對乙烯利有顯著的響應(yīng)。
26DAF桑椹經(jīng)乙烯利和ddH2O處理后,乙烯生物合成及信號轉(zhuǎn)導(dǎo)基因的表達(dá)量都在處理后8 h顯著上調(diào)(圖7),MaACO2,MaACS3,MaETR1 和MaCTR1的表達(dá)量在處理后32 h達(dá)到最高,MaETR2和MaEIL2在處理后24 h達(dá)到最高,而MaEIN2的表達(dá)量在處理后8 h趨于穩(wěn)定。各個基因?qū)σ蚁├幚肀憩F(xiàn)出了不同的響應(yīng)模式。MaACO2,MaEIN2和MaEIL2表現(xiàn)出相似的表達(dá)模式,其表達(dá)量在處理后8~24 h下調(diào),在處理后32 h上調(diào);MaACS3的表達(dá)量經(jīng)過乙烯利處理后有所下調(diào);MaETR1,MaETR2和MaCTR1的表達(dá)在處理后8~24 h略有上調(diào),處理后32 hMaETR1和MaETR2上調(diào),而MaCTR1下調(diào)。
圖7 乙烯利對26DAF桑椹乙烯生物合成及信號轉(zhuǎn)導(dǎo)相關(guān)基因的影響Fig.7 Effects of ethephon treatments on ethylene biosynthesis and signal transduction related gene in the 26DAF mulberry fruits
2.4 1-MCP對采后桑椹乙烯相關(guān)基因的影響 21DAF桑椹中,各個基因?qū)?-MCP 熏蒸呈現(xiàn)不同的響應(yīng)模式。其中MaACS3在0 h表達(dá)量上調(diào),其他時段均受到抑制;MaACO2和MaEIL2的表達(dá)量受到1-MCP熏蒸的抑制,而MaETR1,MaETR2,MaCTR1,MaEIN2卻在1-MCP熏蒸后上調(diào)(圖8)。
1-MCP熏蒸26DAF采后桑椹對乙烯合成與信號轉(zhuǎn)導(dǎo)各基因的表達(dá)量大多有抑制作用,尤其對12 h和24 h表達(dá)量的抑制效應(yīng)更為顯著(圖9)。
圖8 1-MCP對21DAF采后桑椹乙烯生物合成及信號轉(zhuǎn)導(dǎo)相關(guān)基因的影響Fig.8 Effects of 1-MCP treatments on ethylene biosynthesis and signal transduction related gene in the 21DAF mulberry fruits
圖9 1-MCP對26DAF采后桑椹乙烯生物合成及信號轉(zhuǎn)導(dǎo)相關(guān)基因的影響Fig.9 Effects of 1-MCP treatments on ethylene biosynthesis and signal transduction related gene in the 26DAF mulberry fruits
桑椹是一種營養(yǎng)豐富、風(fēng)味獨特的果品,其生產(chǎn)和商業(yè)化發(fā)展長久以來受到其貨架期短、易脫落、易腐爛和不耐儲藏的生理特征的困擾。先前研究表明,桑椹在盛花期26天(26DAF)前可溶固形物含量、乙烯釋放速率和呼吸速率較為穩(wěn)定,而26DAF后驟變,且對乙烯及其抑制劑具有響應(yīng)作用,認(rèn)為乙烯對桑椹的發(fā)育起重要調(diào)控作用,但對其具體的調(diào)控機制還不是很清楚(Liuetal., 2014; 2015; 劉長英等, 2014)。乙烯調(diào)控植物果實的發(fā)育和成熟,主要是通過其生物合成途徑和信號轉(zhuǎn)導(dǎo)來實現(xiàn)的,乙烯對果實調(diào)控的分子機制也已在番茄、西瓜(Citrulluslanatus)和美味獼猴桃(Actinidiadeliciosavar.deliciosacv. Hayward)等物種中得以驗證(Caraetal., 2008; Wechteretal., 2008; Yinetal., 2008)?;诒疚难芯拷Y(jié)果和前期對34DAF桑椹處理的結(jié)果(表2),對乙烯調(diào)控桑椹發(fā)育及成熟的機制進(jìn)行了探討。MaACO2和MaACS3基因在21DAF 和26DAF處理桑椹中 均被乙烯利上調(diào),但在34DAF處理的桑椹中卻受到了乙烯的抑制,試驗結(jié)果與無花果(Ficuscarica)的研究 (Owinoetal., 2006) 一致。以上試驗結(jié)果表明乙烯生物合成基因在躍變前后參與了乙烯的合成,在果實發(fā)育后期受到了乙烯的反饋調(diào)控。此外,在桑椹不同發(fā)育階段,MaACO2和MaACS3都受到了1-MCP的抑制,而且減緩了桑椹的成熟進(jìn)程。1-MCP與乙烯分子結(jié)構(gòu)相似,能夠與乙烯受體結(jié)合,從而阻斷乙烯的傳遞,使得乙烯生理效應(yīng)無法完成,也間接證明了乙烯對于桑椹成熟的重要性。
表2 乙烯生物合成與信號轉(zhuǎn)導(dǎo)基因在桑椹不同發(fā)育時期對乙烯及其抑制劑的響應(yīng)模式①Tab.2 Response of ethylene biosynthesis and signal transduction related genes to ethylene and its inhibition at mulberry fruit development stages
①34DAF(盛花期后34天)的結(jié)果引自 Liuetal. (2015)?!?基因量在處理后沒有顯著變化; ↓: 基因表達(dá)量在處理后下調(diào); ↑: 基因表達(dá)量在處理后上調(diào)。The result of 34DAF(34 days after full-bloom) is referenced from Liuetal. (2015). —: No significant changes in gene expression; ↓: The expression level of genes is down-regulated; ↑: The expression level of genes is up-regulated.
在乙烯信號轉(zhuǎn)導(dǎo)途徑中,MaETR1,MaETR2,MaEIN2和MaEIL2等發(fā)揮正調(diào)控作用的基因在不同發(fā)育時期桑椹中都受到了乙烯的上調(diào),暗示這些基因?qū)τ谏i┑陌l(fā)育起調(diào)控作用。MaETR1,MaETR2的表達(dá)差異,主要體現(xiàn)在MaETR2的表達(dá)量在26DAF對乙烯無明顯響應(yīng),而MaETR1在26DAF表達(dá)量受到乙烯上調(diào),分別與成熟柑橘果實采后貯藏過程中CsETR1和CsERS1的表達(dá)模式(Katzetal., 2004)相似。根據(jù)果實成熟過程中乙烯生成量的變化,可分為乙烯系統(tǒng)Ⅰ和乙烯系統(tǒng)Ⅱ(Mcmurchietal., 1972),在柑橘中CsETR1可能參與系統(tǒng)Ⅰ乙烯生理效應(yīng)發(fā)揮,CsERS1則調(diào)節(jié)果實對乙烯的敏感性。因此,MaETR1很可能在桑椹成熟早期發(fā)揮作用,而MaETR2可能在桑椹成熟后期才發(fā)揮作用。MaCTR1基因在26DAF和34DAF桑椹中受到乙烯的抑制,MaCTR1在桑椹發(fā)育和成熟過程中,扮演負(fù)調(diào)控因子的作用,通過基因工程提高該基因的表達(dá),可為今后改良桑樹果實的成熟期提供一個很好的思路。此外,本文還分析了乙烯信號轉(zhuǎn)導(dǎo)基因?qū)?-MCP的響應(yīng)機制,發(fā)現(xiàn)參與乙烯信號轉(zhuǎn)導(dǎo)的各個元件受到了1-MCP的抑制,1-MCP可以阻止桑椹中乙烯信號轉(zhuǎn)導(dǎo)和傳遞,從而達(dá)到抑制桑椹的成熟。
關(guān)于乙烯如何促進(jìn)果實花青素的積累有2種觀點: 一種認(rèn)為乙烯直接促進(jìn)花青素相關(guān)基因的表達(dá)從而促進(jìn)花青素的積累(Kondoetal., 1997);另一種則認(rèn)為乙烯首先促進(jìn)果實成熟,從而促進(jìn)花青素的積累(潘增光等, 1995; Zhangetal., 2009)。本試驗中,乙烯上調(diào)21DAF和26DAF桑椹中花青素生物合成相關(guān)基因的表達(dá),促進(jìn)花青素和總糖含量的積累; 而1-MCP則下調(diào)花青素生物合成相關(guān)基因的表達(dá),抑制花青素和總糖含量的積累。表明乙烯對桑椹發(fā)育各時期中花青素的積累具有調(diào)控作用,但其分子機制還有待今后深入研究。
乙烯利處理能夠誘導(dǎo)桑椹乙烯生物合成和花青素生物合成相關(guān)基因的上調(diào)表達(dá),對乙烯信號轉(zhuǎn)導(dǎo)基因也有一定調(diào)控作用,且能促進(jìn)桑椹花青素和總糖含量的積累,并能加快桑椹的發(fā)育進(jìn)程。1-MCP熏蒸能抑制乙烯信號轉(zhuǎn)導(dǎo)各元件基因的表達(dá),阻止乙烯信號轉(zhuǎn)導(dǎo)的傳遞,且抑制桑椹中花青素和總糖含量的積累。
李 軍, 趙愛春, 王茜齡, 等. 2011. 三個桑樹肌動蛋白基因的克隆與組織表達(dá)分析. 作物學(xué)報, 37(4): 641-649.
(Li J, Zhao A C, Wang X L,etal. 2011. Molecular cloning and tissues expression analysis of threeActingenes from mulberry (Morusalba). Acta Agronomica Sinica, 37(4): 641-649. [in Chinese])
劉 樂, 饒景萍, 常曉曉, 等. 2009. 丙烯和1-MCP 處理對采后柿果實ACS和ACO基因表達(dá)的影響. 中國農(nóng)業(yè)科學(xué), 42(6): 2092-2097.
(Liu L, Rao J P, Chang X X,etal. 2009. Effects of propylene and 1-methylcyclopropene on expressions of ACC synthase and ACC oxidase genes in persimmon fruits. Scientia Agricultura Sinica, 42(6): 2092-2097. [in Chinese])
劉長英, 李 軍, 趙愛春, 等. 2014. 桑椹發(fā)育中花青素、葉綠素含量變化及相關(guān)基因的表達(dá)分析. 林業(yè)科學(xué), 50(9): 59-66.
(Liu C Y, Li J, Zhao A C,etal. 2014. Changes of anthocyanin and chlorophyll content, and expression levels of related genes during development process of mulberry fruit. Scientia Silvae Sinicae, 50(9): 59-66. [in Chinese])
潘增光, 范 輝, 束懷瑞. 1995. 蘋果果實花青素形成與乙烯釋放的關(guān)系. 植物生理學(xué)通訊, 31(5): 338- 340.
(Pan Z G, Fan H, Shu H R. 1995. The relationship between anthocyanidin content and rate of ethylene production in apple fruits. Plant Physiology Communications, 31(5): 338- 340. [in Chinese])
唐忠富. 2009. 桑資源的藥用開發(fā)與利用. 蠶桑通報, 39(1): 6-8.
(Tang Z F. 2009. Exploitation and utilization of mulberry,Morusalba, in the medicine. Bulletin of Sericulture, 39(1): 6-8. [in Chinese])
鄭小堅, 陸小平. 2002. 桑樹組織總糖含量蒽酮比色法測定技巧. 廣西蠶業(yè), 39(1): 8-9.
(Zheng X J, Lu X P. 2002. The techniques of determinating total sugar content by anthrone colorimetry in mulberry. Guangxi Sericulture, 39(1):8-9. [in Chinese])
Adams-Phillips L, Barry C, Giovannoni J. 2004a. Signal transduction systems regulating fruit ripening. Trends in Plant Science, 9(7): 331-338.
Adams-Phillips L, Barry C, Kannan P,etal. 2004b. Evidence thatCTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Molecular Biology, 54(3): 387-404.
Ayub R, Guis M, Ben A M,etal. 1996. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechnology, 14(7): 862-866.
Blankenship S M, Dole J M. 2003. 1-methylcyclopropene: a review. Postharvest Biology and Technology, 28 (1): 1-25.
Bulens I, van de Poel B, Hertog M L,etal. 2014. Dynamic changes of the ethylene biosynthesis in ‘Jonagold’ apple. Physiologia Plantarum, 150(2): 161-173.
Cara B, Giovannoni J J. 2008. Molecular biology of ethylene during tomato fruit development and maturation. Plant Science, 175 (1/2): 106-113.
Chaudhary P R, Jayaprakasha G K, Patil B S. 2015. Ethylene degreening modulates health promoting phytochemicals in Rio Red grapefruit. Food Chemistry, 188: 77-83.
Chaudhary P, Jayaprakasha G K, Porat R,etal. 2012. Degreening and postharvest storage influences ‘Star Ruby’ grapefruit (CitrusparadisiMacf.) bioactive compounds. Food Chemistry, 135(3): 1667-1675.
Dal C V, Rizzini F M, Botton A,etal. 2006. The ethylene biosynthetic and signal transduction pathways are differently affected by 1-MCP in apple and peach fruit. Postharvest Biology and Technology, 42(2): 125-133.
El-Sharkawy I, Kim W S, El-Kereamy A,etal. 2007. Isolation and characterization of four ethylene signal transduction elements in plums (PrunussalicinaL.). Journal of Experimental Botany, 58(13): 3631-3643.
Hu Z L, Deng L, Chen X Q,etal. 2010. Co-suppression of theEIN2-homology geneLeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russian Journal of Plant Physiology, 57(4): 554-559.
Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Science, 18 (9): 477-483.
Jeong S W, Das P K, Jeoung S C,etal. 2010. Ethylene suppression of sugar-induced anthocyanin pigmentation inArabidopsis. Plant Physiology, 154(3): 1514-1531.
Katz E, Lagunes P M, Riov J,etal. 2004. Molecular and physiological evidence suggests the existence of a system-like pathway of ethylene production in non-climacteric citrus fruit. Planta, 219(2): 243-252.
Klee H, Tieman D. 2002. The tomato ethylene receptor gene family: Form and function. Physiologia Plantarum, 115(3): 336-341.
Kondo S, Inoue K.1997. Abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) content during growth of ‘Satohnishiki’ cherry fruit, and the effect of ABA and ethephon application on fruit quality. Journal of Horticultural Science, 72(2): 221-227.
Li J, Lü R H, Zhao A C,etal. 2014. Isolation and expression analysis of anthocyanin biosynthetic genes inMorusalbaL. Biology Plantarum, 58(4): 618-626.
Liu C Y, Lü R H, Zhao A C,etal. 2014. Characterization and expression profiles ofMaACSandMaACOgenes from mulberry (MorusalbaL.). Journal of Zhejiang University-Science B, 15(7): 611-623.
Liu C Y, Zhao A C, Zhu P P,etal. 2015. Characterization and expression of genes involved in the ethylene biosynthesis and signal transduction during ripening of mulberry fruit. PLoS ONE, 10(3): e0122081.
Mbéguié-A-Mbéguié D, Hubert O, Fils-Lycaon B,etal. 2008.EIN3-likegene expression during fruit ripening of Cavendish banana(Musaacuminatacv. Grande naine). Physiologia Plantarum, 133(2): 435-448.
Mcmurchi E J, Mcglasso W B, Eaks I L. 1972. Treatment of fruit with propylene gives information about biogenesis of ethylene. Nature, 237(5352): 235-236.
Nakatsuka T, Haruta K S, Pitaksutheepong C,etal. 2008. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant and Cell Physiology, 49(12): 1818-1829.
Oller P W, Wong L M, Tayfor L P,etal. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254(5030): 437-439.
Owino W O, Manabe Y, Mathooko F M,etal. 2006. Regulatory mechanisms of ethylene biosynthesis in response to various stimuli during maturation and ripening in fig fruit (FicuscaricaL.). Plant Physiol Biochem, 44(5/6): 335-342.
Ozga J A, Reinecke D M. 2003. Hormonal interactions in fruit development. Journal of Plant Growth Regulation, 22(1): 73-81.
Wang A, Yamakake J, Kudo H,etal. 2009. Null mutation of theMdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiology, 151(1): 391-399.
Wechter W P, Levi A, Harris K R,etal. 2008. Gene expression in developing watermelon fruit. BMC Genomics, 9: 275.
Xiao Y Y, Chen J Y, Kuang J F,etal. 2013. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany, 64(8): 2499-2510.
Yin X R, Chen K S, Allan A C,etal. 2008. Ethylene-induced modulation of genes associated with the ethylene signaling pathway in ripening kiwifruit. Journal of Experimental Botany, 59(8): 2097-2108.
Yokotani N, Tamura S, Nakano R,etal. 2003. Characterization of a novel tomatoEIN3-likegene(LeEIL4). Journal of Experimental Botany, 54(393): 2775-2776.
Zhang M, Yuan B, Leng P. 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany, 60(6): 1579-1588.
(責(zé)任編輯 徐 紅)
Effects of Exogenous Ethylene and 1-MCP Treatments on the Expression of Genes Involved in Ethylene and Anthocyanin in Mulberry Fruit
Yu Jian1Zhao Aichun1Liu Changying1Liang Yanmei1Zhu Panpan1Cai Yuxiang1Wang Xiling1Li Zhengang2Yu Maode1
(1.StateKeyLaboratoryofSilkwormGenomeBiologyCollegeofBiotechnology,SouthwestUniversityChongqing400715; 2.InstituteofSericultureandApiculture,YunnanAcademyofAgriculturalSciencesMengzi661101)
【Objective】 Ethylene, a kind of phytohormone, plays a critical role in fruit maturation and senescence. This study aims to explore the effect of ethylene on expression of the genes involved in ethylene of mulberry fruit, in order to provide a basis for exploring the economic value of mulberry using the methods of molecular biology. The total sugar content and anthocyanin content were detected and transcriptional expression of ethylene and anthocyanin related genes were analyzed in the variety ‘Jialing 40’ (Morusalba‘Jialing 40’) fruits. 【Method】The mulberry fruits were sprayed with ethephon(100 mg·L-1) 21days (21DAF) and 26 days (26DAF) after full-bloom, respectively and 1-MCP(0.5 μL·L-1) was applied after harvest. Anthocyanin content and total sugar content was measured, total RNA of mulberry were extracted and reverse transcribed to synthesize cDNA. The relative transcriptional expression of ethylene biosynthesis related genesMaACO2 andMaACS3, and signal transduction related genes likeMaETR1,MaETR2,MaCTR1,MaEIN2,MaEIL2, and anthocyanin related genes likeMaDFRandMaANSwere analyzed by using qRT-PCR.【Result】Compared with the control, the anthocyanin and total sugar content were significantly increased by ethephon but decreased by 1-MCP, and the expression level of anthocyanin related genes were up-regulated by ethephon at 21DAF and 26DAF. At 21DAF, the expression level of ethylene related genes were up-regulated by ethephon, but the transcripts ofMaACO2,MaACS3 andMaEIL2 were decreased by 1-MCP;MaETR1,MaCTR1,MaEIN2 were up-regulated significantly but the transcripts ofMaETR2 displayed a non-significant change by 1-MCP.At 26DAF, the expression level of ethylene related genes were down-regulated by 1-MCP and changed differently by ethephon. After 32 hours,MaACO2,MaETR1,MaETR2,MaEIN2 andMaEIL2 were up-regulated whileMaACS3 andMaCTR1 were down-regulated by ethephon compared with the control.【Conclusion】 Ethephon could up-regulated the transcripts of ethylene biosynthesis and anthocyanin biosynthesis related genes and influence the ethylene signal transduction related genes, but 1-MCP inhibited the ethylene signal transduction related genes and blocked ethylene signal transduction. Accumulation of anthocyanin and total sugar content were accelerated by ethephon, but inhibited by 1-MCP.
Morusalba; ethephon; 1-MCP; anthocyanin; gene expression; signal transductions
10.11707/j.1001-7488.20170216
2015-12-31;
2016-03-17。
國家公益性行業(yè)(農(nóng)業(yè))科研專項(201403064); 國家自然科學(xué)基金項目(31360190); 國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-22); 重慶市研究生科研創(chuàng)新項目(CYS2015070)。
S718.46
A
1001-7488(2017)02-0138-11
* 余茂德為通訊作者。