亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        體素內(nèi)不相干運動雙指數(shù)模型的技術(shù)現(xiàn)況

        2017-03-23 09:45:36羅馬張衛(wèi)東
        磁共振成像 2017年4期
        關(guān)鍵詞:體素血流穩(wěn)定性

        羅馬,張衛(wèi)東

        體素內(nèi)不相干運動雙指數(shù)模型的技術(shù)現(xiàn)況

        羅馬,張衛(wèi)東*

        作者單位:
        中山大學腫瘤防治中心放射科,廣州510060

        體素內(nèi)不相干運動(intravoxel incoherent motion,IVIM)通過多b值擴散加權(quán)成像,可無創(chuàng)性地區(qū)分組織中的單純水分子擴散(D)與灌注相關(guān)擴散(D*、f),進而對它們進行量化分析。IVIM雙指數(shù)模型已獲得了廣泛的關(guān)注,并應(yīng)用于全身多臟器及其相關(guān)疾病的診斷及鑒別診斷、療效評估或預測、病變分期或分級、與其他成像方式相結(jié)合等方面的研究中。本文對IVIM雙指數(shù)模型的掃描方式及其影響因素、b值選取、參數(shù)重復性及其意義、灌注參數(shù)的準確性等成像技術(shù)方面的研究現(xiàn)況和進展予以評述。

        體素內(nèi)不相干運動;雙指數(shù)模型;磁共振成像

        磁共振擴散加權(quán)成像是一種無創(chuàng)性的功能成像,探測由布朗運動引起的水分子運動,廣泛應(yīng)用于臨床及醫(yī)學研究中。然而,室腔模型實驗證實體素內(nèi)水分子擴散并非唯一的運動形式,還包括血流運動。當運用多個b值成像時,單指數(shù)衰減模式既不能很好地擬合信號曲線,也不能敏感地分析富血供臟器或病變的信息,體現(xiàn)了其局限性。為了將擴散及灌注效應(yīng)區(qū)分開并進行定量,Le Bihan等[1]提出了體素內(nèi)不相干運動(intravoxel incoherent motion,IVIM)雙指數(shù)模型。

        1 模型簡介

        IVIM雙指數(shù)模型公式為:Sb/S0=(1-f)×exp(-b×D)+f×exp[-b×(D*+D)]。其中Sb和S0分別代表b為任意值和b=0 s/mm2時體素內(nèi)平均信號;D為純擴散系數(shù),代表體素內(nèi)單純水分子擴散;D*為灌注相關(guān)擴散系數(shù),代表體素內(nèi)由微循環(huán)引起的擴散;f為灌注分數(shù),代表體素內(nèi)快速擴散占總體擴散效應(yīng)的百分率。

        2 技術(shù)現(xiàn)況與參數(shù)意義

        2.1 參數(shù)算法及掃描機器

        IVIM參數(shù)有多種計算方法,包括非線性最小二乘法(levenberg marquardt,LM)、分段算法(segmented constrained,SC)、貝葉斯概率算法(bayesian probability,BP)等。上述方法中穩(wěn)定性最高的是BP,最差的是SC。BP在腹部各臟器間數(shù)據(jù)變異性最小,所得偽彩圖信號更均勻[2-3]。目前最常用的是SC,由于D*明顯大于D,當b>200 s/mm2時,灌注效應(yīng)明顯衰減可忽略不計,由單指數(shù)衰減得出D與f,最后計算D*;其次是LM,先計算D,再依據(jù)多b值同時得出f、D*。后兩種方法類似于將參數(shù)“近似”算出,故所得參數(shù)特別是灌注參數(shù)的穩(wěn)定性差。

        IVIM研究所用場強最高已達11.7 T,但絕大多數(shù)為醫(yī)用的3.0 T以內(nèi)場強;所用b值最高已達3000 s/mm2,但大多所用為1000 s/mm2以內(nèi)。

        Barbieri等[2]比較GE、Phillips、Siemens 3種廠家不同型號及場強的掃描儀,GE 3.0 T所得參數(shù)波動性最大,Phillips所得數(shù)據(jù)穩(wěn)定性最佳;Kakite等[4]認為相對于1.5 T,3.0 T由于增加了圖像不均勻性及磁敏感偽影,會對參數(shù)重復性產(chǎn)生影響。雖然也有研究表明不同場強并不會對結(jié)果產(chǎn)生影響[5],但是該研究僅針對表觀擴散系數(shù)(apparent diffusion coefficient,ADC),未涉及IVIM。

        上述情況說明參數(shù)算法的選擇、使用機型的不同均會對參數(shù)穩(wěn)定性及數(shù)據(jù)比較產(chǎn)生影響。

        2.2 掃描方式

        關(guān)于IVIM參數(shù)在增強掃描前后是否存在差異,有研究證實增強前后參數(shù)變化差異并無統(tǒng)計學意義[6-7]。因此增強與否并不影響所得參數(shù),但為保證掃描一致性,多數(shù)在增強前進行。

        腹部臟器由于受呼吸運動及心臟搏動的影響,常采用呼吸觸發(fā)(respiratory trigger,RT)或屏氣掃描(breath hold,BH),有時加用心電門控(echocardiography triggering,ET)[8],然而掃描時間會相應(yīng)延長;自由呼吸(free breathing,F(xiàn)B)掃描時間短,但需受檢者良好的呼吸配合。有學者認為FB呼吸運動偽影多、信噪比低,價值有限,建議使用RT[4,9]。但也有研究認為門控技術(shù)并不優(yōu)于FB[10-11],然而該兩項研究僅對小肝癌、腹部正常臟器進行探究,在研究對象方面存在偏倚。Watanabe等[12]提高FB的激勵次數(shù)與并行加速因子,也獲得了良好效果,原因可歸結(jié)為周期性的呼吸運動并不會引起額外的肝臟信號衰減,且多次信號采集或信號平均能提高信噪比;使用BH技術(shù)易產(chǎn)生圖像形變及偽影,且受檢者屏氣程度無法保證一致;使用RT技術(shù)一旦受檢者呼吸不規(guī)則則易產(chǎn)生參數(shù)計算錯誤,或由于掃描時間過長使患者產(chǎn)生不適,甚至無法繼續(xù)掃描。

        目前掃描技術(shù)的選擇尚無明確標準,雖然RT普遍用于臨床,但FB也有其優(yōu)勢所在。

        IVIM不僅受掃描技術(shù)差異的影響,也與受檢者生理狀態(tài)的不同有關(guān)。Hollingsworth等[13]研究禁食與進食對肝臟灌注的影響,發(fā)現(xiàn)進食后門脈明顯增粗、血流量明顯增加,膨大的胃腔擠壓鄰近肝左葉,因此進食組ADC較禁食組有顯著的升高。據(jù)此,受檢者在掃描前禁食是必要的,特別是進行小b值掃描,灌注的變化更加敏感。正常肝左葉及其病變的ADC均大于右葉,原因是左葉受到心臟舒縮活動的影響,ADC會偏高且誤差大[14-15],若時間允許,掃描時可加用ET。因此對于肝臟,感興趣區(qū)(region of interest,ROI)的放置除應(yīng)避免明顯的管道結(jié)構(gòu)與壞死區(qū)外,還應(yīng)遠離膈頂、易受心臟搏動及胃腸蠕動影響的肝左葉。

        2.3 b值選擇

        為獲得灌注敏感信息,增加b值數(shù)量及足夠多低b值是必要的,然而D*受b值影響大,若低b值太少會導致D*過小[16],過多則灌注效應(yīng)明顯,影響參數(shù)真實性,且掃描時間相應(yīng)延長[17];高b值所得圖像信噪比低。區(qū)分灌注與擴散的閾值并非均為200 s/mm2,即不同臟器甚至同一臟器不同位置其b值閾值不同,如肝左右葉、腎皮髓質(zhì)在不同閾值下得到的參數(shù)明顯不同。因此,b值的分布、閾值及數(shù)目既可以“掩蓋”參數(shù)真實性,也會影響文獻的比較,使用b值的不同是所得結(jié)果存在差異的一個重要因素。目前b值大多為6~12個,有建議使用4個,但重復性差[18];也有建議至少16個,其結(jié)果仍待進一步證實[19]。已有研究提出“兩個關(guān)鍵b值”的概念[20],使用一個低b值(非0)與一個高b值,分別代表IVIM效應(yīng)與非高斯擴散,即可區(qū)分灌注與自由擴散,這樣既能明顯縮短采集時間,也有利于b值的統(tǒng)一,還能提高病變鑒別的敏感性。

        2.4 參數(shù)可重復性與再現(xiàn)性

        可重復性是指不同操作者用相同方法所得結(jié)果的一致性,反映受試者間差異;再現(xiàn)性指相同操作者用相同方法在不同時間所得結(jié)果,反映受試者內(nèi)差異。

        D*在肝轉(zhuǎn)移瘤及正常肝實質(zhì)的波動范圍最大[21],即可重復性最差,而D穩(wěn)定性最好[22-23];D*標準差(standard deviation,SD)明顯大于f與D,甚至有時SD超過平均值[23-24]。上述現(xiàn)象有以下幾點原因:選擇的算法不同,如前所述BP所得穩(wěn)定性最高,而LM、SC等穩(wěn)定性差;相對于正常組織,病變特別是腫瘤內(nèi)成分的不均勻性及血管分布存在差異,或?qū)τ诜ρ┎∽儯瑴y量其灌注參數(shù)的準確性低;有些掃描過程會出現(xiàn)擴散加權(quán)成像與參數(shù)圖不匹配或配準錯誤的現(xiàn)象[4,12],從而導致計算失誤;ROI放置及體素選取方式的不同、有無血管“污染”也會對結(jié)果產(chǎn)生顯著影響[4,25]。雖然灌注效應(yīng)確實存在,但其相關(guān)參數(shù),特別是D*,穩(wěn)定性明顯差于D與ADC,D與ADC可作為可靠指標用于研究間的再現(xiàn)。

        2.5 參數(shù)意義

        D較ADC剔除了灌注效應(yīng)的影響,能更直觀反映細胞密度及水分子運動,如前列腺癌D顯著低于良性病變,符合腫瘤組織內(nèi)細胞高度致密的特點。多數(shù)研究中D對于良惡性鑒別的診斷效能優(yōu)于ADC,然而也有研究認為D并不優(yōu)于甚至差于ADC[12,24]。

        D*與f為灌注相關(guān)參數(shù),理論上它們具有相關(guān)性或一致性,但反映的側(cè)重點不同,D*與毛細血管長度及血流速度有關(guān),f反映血流占總體擴散效應(yīng)的百分比,故它們可能出現(xiàn)不相關(guān)性甚至矛盾的現(xiàn)象,這在以下研究中得到了證實。

        鼻咽癌D*明顯高于腺樣體,反映了惡性腫瘤富血供,然而前者f低于后者[26]。f受回波時間(echo time,TE)影響,TE越大則f越大;此外還與組織T2弛豫時間有關(guān),鼻咽癌T2弛豫明顯小于腺樣體,該效應(yīng)在弛豫小于血液的器官中更加明顯,故所得f并非“真f”,“真f”需經(jīng)T2校正才能獲得,然而尚未有“真f”的報道。

        肝硬化引起門脈血流減少會導致灌注下降,然而在一項研究中,正常組D*、f分別高于、低于肝硬化組,推測與門脈血流減少引起肝動脈代償性擴張,致其血流量反應(yīng)性增高有關(guān),也與肝硬化時小葉結(jié)構(gòu)的重塑對肝血流的影響更大有關(guān)[27]。上述研究說明病變所在臟器的變化,即本底或背景不同,如肝硬化、脂肪含量的變化、慢性胰腺炎等也會對參數(shù)產(chǎn)生影響[28-30]。

        Yamada等[31]最初將IVIM用于肝臟,囊腫f為0,但之后其他學者的研究中出現(xiàn)了囊腫f不為0,即有“灌注”的現(xiàn)象[12,32],這一方面與使用b值及MR設(shè)備的發(fā)展有關(guān),Yamada等采用4個b值,僅有一個低b值,且未對D*進行探討,圖像質(zhì)量及軟件處理也遜于現(xiàn)今;另外在信號采集期間,囊腫周圍肝組織由于呼吸運動對其造成的相對慣性沖擊力被“捕捉”,在后處理時出現(xiàn)了體素“污染”,說明囊腫易受呼吸運動及血流形式的影響,也從側(cè)面證實了灌注參數(shù)的不穩(wěn)定。

        f不僅與血流,還與其他形式的流動現(xiàn)象有關(guān),如腺體及顆粒的分泌、流動方式、彌散方向等[14,16],即f還包含了非血流成分,這可部分解釋f與D*的“失匹配”。

        在肝癌及肝轉(zhuǎn)移瘤的療效評價研究中[33-34],肝癌有效組f明顯升高,與索拉菲尼降低血管滲漏及增加血管基膜厚度有關(guān);肝轉(zhuǎn)移瘤有效組f明顯下降,與貝伐單抗抑制血管生成、腫瘤血管退化有關(guān)。這些研究的不足在于病例數(shù)偏少、研究間隔不夠長,且病種及藥物均不同。確切機制尚不清楚,需進行更多的研究。相對于f與D*,兩者的乘積fD*似乎更有應(yīng)用價值、穩(wěn)定性更高[35-36],但若出現(xiàn)f與D*的失匹配,則fD*的應(yīng)用價值有待更多的研究證實。

        由于D*穩(wěn)定性差,理論上若同時測定穩(wěn)定性相對較好的擴散參數(shù)D和灌注參數(shù)f應(yīng)該有助于疾病的診斷或鑒別診斷。然而,目前專門針對運用D和f來進行的研究并不多,僅在少數(shù)學者的研究中有所體現(xiàn),例如酒精性脂肪肝的診斷、軟組織黏液樣與非黏液樣腫瘤的鑒別、個別病變放療后的評價、腦膠質(zhì)瘤高低級別的判斷等[37-40]。由于各研究結(jié)果間尚存在差異,且針對此目的的研究尚不具系統(tǒng)性,故目前仍未在該領(lǐng)域獲得統(tǒng)一的認識,但這為IVIM的后續(xù)研究提供了新的研究方向與思路,也許能挖掘IVIM更多的應(yīng)用價值與潛能。隨著研究的廣泛性及對照性研究的多樣性,IVIM后續(xù)的深入研究定能在此方面有所突破。

        2.6 IVIM與其他研究的結(jié)合及灌注參數(shù)的準確性

        由于IVIM灌注參數(shù)的穩(wěn)定性差,故參數(shù)準確性的高低是衡量其效用的另一方面,這引起了學者的廣泛關(guān)注。

        IVIM結(jié)合其他的灌注成像方法是目前研究熱點之一,包括動態(tài)磁敏感對比成像(dynamic susceptibility contrast-enhanced,DSC)、動態(tài)對比增強(dynamic contrast-enhanced,DCE)、動脈自旋標記(arterial spin labeling,ASL)、彈力成像等[40-42],其應(yīng)用領(lǐng)域包括肝臟、胸部、盆腔、顱腦、頭頸部的腫瘤、慢性病變和代謝性疾病等。研究者通過對上述方法進行對比與分析,進一步量化并衡量了灌注參數(shù)的準確性。目前,大部分研究顯示IVIM灌注參數(shù)與其所測得的結(jié)果存在不同程度的正相關(guān)性,體現(xiàn)了它們之間的一致性,例如腦膠質(zhì)瘤級別的高低與D*、f和ASL有關(guān),頭面部鱗癌的f和DCE的血流分數(shù)具有相同的變化趨勢,說明IVIM灌注參數(shù)具備一定的準確性,但上述各方法所得的參數(shù)標準差均較大,說明各灌注指標間的波動性仍較大;然而少數(shù)研究結(jié)果則顯示IVIM與它們并無相關(guān)性[43-44],有學者推測這可能是IVIM與DSC、DCE、ASL等的區(qū)別不僅在于采集模型的不同,還在于后三者僅受灌注因素影響,即它們的差異既與作用機制不同有關(guān),也與是否摻雜非灌注因素有關(guān)[45]。因此,總體來說,IVIM灌注參數(shù)的準確性得到了多數(shù)研究的支持。IVIM與其他成像方法的結(jié)合仍會是目前及今后的研究熱點與趨勢。

        IVIM在最近10年得到了密切關(guān)注[20]。理論上IVIM可用于任何活的生物體,從病理生理角度看,比ADC更貼近實際,在療效評估、病變分級及病灶檢出率等方面能提供更多信息,較ADC更有價值。因此,有學者建議用IVIM替代ADC,然而IVIM在參數(shù)算法、掃描方式、參數(shù)意義等方面仍未“標準化”,且灌注參數(shù)穩(wěn)定性差也是其局限性之一,這些是IVIM需解決的關(guān)鍵問題。在后續(xù)研究中,對上述方面加以規(guī)范,會為日后的臨床及科研帶來更大的效益。

        [References]

        [1] Le BD, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.

        [2] Barbieri S, Donati OF, Froehlich JM, et al. Comparison of intravoxel incoherent motion parameters across MR imagers and field strengths:evaluation in upper abdominal organs. Radiology, 2016, 279(3):784-794.

        [3] Orton MR, Collins DJ, Koh D, et al. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magnet Reson Med, 2014, 71(1): 411-420.

        [4] Kakite S, Dyvorne H, Besa C, et al. Hepatocellular carcinoma: shortterm reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 T. Magn Reson Imaging, 2015,41(1): 149-156.

        [5] Rosenkrantz AB, Oei M, Babb JS, et al. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. Magn Reson Imaging, 2011, 33(1): 128-135.

        [6] Colagrande S, Mazzoni LN, Mazzoni E, et al. Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver. Magn Reson Imaging, 2013, 38(2): 365-370.

        [7] Choi JS, Kim M, Choi J, et al. Diffusion-weighted MR imaging of liver on 3.0 Tesla system: effect of intravenous administration of gadoxetic acid disodium. Eur Radiol, 2010, 20(5): 1052-1060.

        [8] Lee Y, Lee SS, Kim N, et al. Intravoxel incoherent motion diffusionweighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology, 2015, 274(2): 405-415.

        [9] Dyvorne HA, Galea N, Nevers T, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters-a pilot study. Radiology, 2013, 266(3):920-929.

        [10] Shan Y, Zeng MS, Liu K, et al. Comparison of free-breathing with navigator-triggered technique in diffusion weighted imaging for evaluation of small hepatocellular carcinoma: effect on image quality and intravoxel incoherent motion parameters. J Comput Assist Tomo,2015, 39(5): 709-715.

        [11] Jerome NP, Orton MR, D'Arcy JA, et al. Comparison of freebreathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics. Magn Reson Imaging, 2014, 39(1): 235-240.

        [12] Watanabe H, Kanematsu M, Goshima S, et al. Characterizing focal hepatic lesions by free-breathing intravoxel incoherent motion MRI at 3.0 T. Acta Radiol, 2014, 55(10): 1166-1173.

        [13] Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR in Biomedicine, 2006, 19(2): 231-235.

        [14] Kwee TC, Takahara T, Niwa T, et al. Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magn Reson Mater Phy, 2009, 22(5): 319-325.

        [15] Schmid-Tannwald C, Jiang Y, Dahi F, et al. Diffusion-weighted MR imaging of focal liver lesions in the left and right lobes. Acta Radiol,2013, 20(4): 440-445.

        [16] Cohen AD, Schieke MC, Hohenwalter MD, et al. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magnet Reson Med, 2015, 73(1): 306-311.

        [17] Gurney-Champion OJ, Froeling M, Klaassen R, et al. Minimizing the acquisition time for intravoxel incoherent motion magnetic resonance imaging acquisitions in the liver and pancreas. Invest Radiol, 2016,51(4): 211-220.

        [18] Dyvorne H, Jajamovich G, Kakite S, et al. Intravoxel incoherent motion diffusion imaging of the liver: Optimal b-value subsampling and impact on parameter precision and reproducibility. Eur Radiol,2014, 83(12): 2109-2113.

        [19] Ter Voert EE, Delso G, Porto M, et al. Intravoxel incoherent motion protocol evaluation and data quality in normal and malignant liver tissue and comparison to the literature. Invest Radiol, 2016, 51(2):90-99.

        [20] Iima M, Le BD. Clinical intravoxel incoherent motion and diffusion MR imaging: Past, present, and future. Radiology, 2016, 278(1):13-32.

        [21] Andreou A, Koh DM, Collins DJ, et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol, 2013, 23(2): 428-434.

        [22] Chandarana H, Kang SK, Wong S, et al. Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol, 2012, 47(12): 688-696.

        [23] Yoon JH, Lee JM, Yu MH, et al. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: Comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. Magn Reson Imaging, 2014, 39(2): 276-285.

        [24] Doblas S, Wagner M, Leitao HS, et al. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements.Invest Radiol, 2013, 48(10): 722-728.

        [25] Dijkstra H, Baron P, Kappert P, et al. Effects of microperfusion in hepatic diffusion weighted imaging. Eur Radiol, 2012, 22(4): 891-899.[26] Zhang S, Jia Q, Zhang Z, et al. Intravoxel incoherent motion MRI:emerging applications for nasopharyngeal carcinoma at the primary site. Eur Radiol, 2014, 24(8): 1998-2004.

        [27] Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology, 2008, 249(3):891-899.

        [28] Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0 T MR study. Radiology, 2012, 265(1): 96-103.

        [29] Parente DB, Paiva FF, Oliveira Neto JA, et al. Intravoxel incoherent motion diffusion weighted MR imaging at 3.0 T: assessment of steatohepatitis and fibrosis compared with liver biopsy in type 2 diabetic patients. PLoS One, 2015, 10(5): e125653.

        [30] Klauss M, Lemke A, Grunberg K, et al. Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol, 2011, 46(1):57-63.

        [31] Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology, 1999,210(3): 617-623.

        [32] Moteki T, Horikoshi H. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. Magn Reson Imaging, 2006, 24(3):637-645.

        [33] Lewin M, Fartoux L, Vignaud A, et al. The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol, 2011, 21(2): 281-290.

        [34] Granata V, Fusco R, Catalano O, et al. Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: the role of intravoxel incoherent motion in diffusion-weighted imaging. PLoS One, 2015, 10(11): e142876.

        [35] Yu XP, Hou J, Li FP, et al. Intravoxel incoherent motion diffusion weighted magnetic resonance imaging for differentiation between nasopharyngeal carcinoma and lymphoma at the primary site. J Comput Assist Tomo, 2016, 40(3): 413-418.

        [36] Federau C, O'Brien K, Birbaumer A, et al. Functional mapping of the human visual cortex with intravoxel incoherent motion MRI. PLoS One, 2015, 10(2): e117706.

        [37] Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0 T MR study. Radiology, 2012, 265(1): 96-103.

        [38] Zhou N, Chu C, Dou X, et al. Early evaluation of irradiated parotid glands with intravoxel incoherent motion MR imaging: correlation with dynamic contrast-enhanced MR imaging. BMC Cancer, 2016,16(1): 865.

        [39] Marzi S, Stefanetti L, Sperati F, et al. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors. NMR Biomed, 2016, 29(1): 6-14.

        [40] Lin Y, Li J, Zhang Z, et al. Comparison of intravoxel incoherent motion diffusion-weighted MR imaging and arterial spin labeling MR imaging in gliomas. Biomed Res Int, 2014, 2015: 1-10.

        [41] Fujima N, Yoshida D, Sakashita T, et al. Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Magn Reson Imaging, 2014,32(10): 1206-1213.

        [42] Federau C, O'Brien K, Meuli R, et al. Measuring brain perfusion with intravoxel incoherent motion (IVIM): Initial clinical experience.Magn Reson Imaging, 2014, 39(3): 624-632.

        [43] Wang LL, Lin J, Liu K, et al. Intravoxel incoherent motion diffusionweighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol, 2014, 24(8): 1914-1922.

        [44] Patel J, Sigmund EE, Rusinek H, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrastenhanced MRI alone and in combination: Preliminary experience.Magn Reson Imaging, 2010, 31(3): 589-600.

        [45] Hectors SJ, Wagner M, Besa C, et al. Intravoxel incoherent motion diffusion-weighted imaging of hepatocellular carcinoma: Is there a correlation with flow and perfusion metrics obtained with dynamic contrast-enhanced MRI?. Magn Reson Imaging, 2016, 44(4):856-864.

        The technology progression of intravoxel incoherent motion on biexponential model

        LUO Ma, ZHANG Wei-dong*
        Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060,China
        *Correspondence to: Zhang WD, E-mail: zhangwd@sysucc.org.cn

        Intravoxel incoherent motion (IVIM) is a quantitative method that can be used to noninvasively distinguish tissue diffusivity from perfusion related-diffusion by multiple b values sampling on diffusion-weighted imaging. IVIM biexponential model has not only attracted broad attention, but also been applied in the researches of disease diagnosis and differentiation, evaluation or prediction of therapeutic effect,lesion staging or grading and combination of other imaging patterns. The current research situations and progresses on technology, such as scanning methods, the choice of b value, the repeatability and significance of parameters, and the accuracy of perfusion-related parameters, are mainly discussed in this article.

        Intravoxel incoherent motion; Biexponential model; Magnetic resonance imaging

        24 Nov 2016, Accepted 22 Mar 2017

        張衛(wèi)東,E-mail:zhangwd@sysucc.org.cn

        2016-11-24

        接受日期:2017-03-22

        R445.2;R-331

        A

        10.12015/issn.1674-8034.2017.04.006

        羅馬, 張衛(wèi)東. 體素內(nèi)不相干運動雙指數(shù)模型的技術(shù)現(xiàn)況. 磁共振成像, 2017,8(4): 265-269.

        猜你喜歡
        體素血流穩(wěn)定性
        基于超體素聚合的流式細胞術(shù)自動門控方法
        基于多級細分的彩色模型表面體素化算法
        超微血流與彩色多普勒半定量分析在慢性腎臟病腎血流灌注中的應(yīng)用
        運用邊界狀態(tài)約束的表面體素加密細分算法
        基于體素格尺度不變特征變換的快速點云配準方法
        非線性中立型變延遲微分方程的長時間穩(wěn)定性
        半動力系統(tǒng)中閉集的穩(wěn)定性和極限集映射的連續(xù)性
        BD BACTEC 9120血培養(yǎng)儀聯(lián)合血清降鈣素原在血流感染診斷中的應(yīng)用
        冠狀動脈慢血流現(xiàn)象研究進展
        血流動力學不穩(wěn)定的破裂性腹主動脈瘤腔內(nèi)治療3例
        亚洲不卡在线免费视频| 韩国v欧美v亚洲v日本v | 久久天天躁狠狠躁夜夜av浪潮| 精品av一区二区在线| 精品嫩模福利一区二区蜜臀| www国产亚洲精品| 色偷偷偷久久伊人大杳蕉| 开心婷婷五月激情综合社区| 国产亚洲欧美另类久久久| 一区二区三区精品亚洲视频| av网站在线观看亚洲国产| 国产成人小视频| 国产特级毛片aaaaaa高清| 中文字幕乱偷乱码亚洲| 国内人妖一区二区在线播放| 国产一级黄色录像大片| 99热在线观看| 老熟妻内射精品一区| 欧美日韩高清一本大道免费| 国产精品女同二区五区九区 | 久久精品国产91久久性色tv| 在线观看中文字幕一区二区三区 | 久久久受www免费人成| 伊人激情av一区二区三区| 富婆如狼似虎找黑人老外| 亚洲精品高清av在线播放| 伊人久久大香线蕉av不变影院 | 亚洲亚洲亚洲亚洲亚洲天堂| 精品久久一区二区三区av制服| 中文字幕 亚洲精品 第1页| 精精国产xxxx视频在线播放 | 精品久久久久久国产潘金莲| 成年人视频在线观看麻豆| 美女扒开屁股让男人桶| 免费国产裸体美女视频全黄| 美女爽好多水快进来视频| 中文字幕丰满人妻被公强| 99re66在线观看精品免费| 久久精品麻豆日日躁夜夜躁| 日韩亚洲制服丝袜中文字幕| 日本老年人精品久久中文字幕|