邢瑞敏,趙曉宇,許銀霞,劉 勇,劉繡華,何建英,劉山虎
(河南大學(xué) 化學(xué)化工學(xué)院,河南 開封 475004)
蘆丁在Au-TiO2修飾電極上的電化學(xué)行為及其測定
邢瑞敏,趙曉宇,許銀霞,劉 勇,劉繡華,何建英,劉山虎
(河南大學(xué) 化學(xué)化工學(xué)院,河南 開封 475004)
利用沉淀沉積法合成了納米金-二氧化鈦(Au-TiO2)復(fù)合納米材料.構(gòu)建了Au-TiO2復(fù)合材料修飾的電化學(xué)傳感器,并對蘆丁進行了檢測.通過掃描電鏡(SEM),X射線衍射(XRD)對Au-TiO2復(fù)合材料進行表征,利用循環(huán)伏安(CV)和電流時間曲線(Amperometrici-tCurve)考察了其對蘆丁的電催化性能.在最優(yōu)條件下對蘆丁進行檢測,檢測范圍為0.1~10 μmol/L,靈敏度為1.47 μA·μmol·L-1·cm-2,信噪比為3時檢測限為0.083 μmol/L.
Au;TiO2;蘆??;電化學(xué)傳感器
作為一種天然黃酮衍生物,蘆丁具有很多藥理活性,例如降血壓、抗氧化、消炎殺菌、抗腫瘤活性等[1-3],經(jīng)常用于一些疾病的治療.建立一種快速、簡便、靈敏、選擇性好的分析方法,對藥物和植物中蘆丁檢測有重要意義[4-6].目前有很多分析方法用于蘆丁的測定,如紫外可見分光光度法[7]、高效液相色譜法[8]、化學(xué)發(fā)光法[9]、毛細(xì)管電泳[10-11]、高效液相色譜質(zhì)譜連用技術(shù)[12]等.但這些傳統(tǒng)檢測方法不易實現(xiàn)“現(xiàn)場”分析,往往需要復(fù)雜的樣品前處理制備步驟,這使它們在實踐操作中不方便.電化學(xué)方法具有快速、選擇性好及靈敏等特性,可以較好地滿足檢測要求[13-15].
電化學(xué)方法的進步依賴于新材料的發(fā)展,發(fā)現(xiàn)新材料或新方法來提高電化學(xué)傳感的敏感度、選擇性依舊是一個挑戰(zhàn)[16-17].二氧化鈦因其化學(xué)穩(wěn)定性、催化活性高、無毒廉價易得等優(yōu)點,被用來作為負(fù)載貴金屬納米材料[18].貴金屬納米粒子,例如金納米粒子,具有非凡的電導(dǎo)率,比表面積大,常用于電化學(xué)催化反應(yīng)[19].本文中我們利用液相沉積法合成了金/二氧化鈦復(fù)合納米材料,構(gòu)建了Au-TiO2復(fù)合材料修飾的電化學(xué)傳感器,對蘆丁進行了檢測.在最佳條件下,用計時電流法測定蘆丁的峰電流,線性范圍0.1~10 μmol/L,靈敏度為1.47 μA·μmol·L-1·cm-2.
1.1 儀器和試劑
電化學(xué)實驗采用CHI660D型電化學(xué)工作站(上海辰華儀器公司),使用三電極體系:玻碳電極為工作電極,Ag/AgCl電極為參比電極,Pt為輔助電極.粉末X射線衍射分析法(Powder X-ray Diffraction)采用德國Bruker公司公司出產(chǎn)的 D8 Advance型X射線衍射儀, 2θ范圍為10°~90°,探測器為林克斯陣列探測器和林克斯XE陣列探測器,Cu靶標(biāo)準(zhǔn)尺寸光管,管電壓40 kV.掃描電子顯微鏡(SEM) 使美國FEI公司Nova Nano SEM 450型號的電鏡.
二氧化鈦獲贈于CRISTAL ACTIV公司;氯金酸(HAuCl4)和磷酸二氫鉀(KH2PO4)購于國藥化學(xué)試劑有限公司;磷酸氫二鈉(Na2HPO3)購于天津科密歐公司;Nafion 購于Alfa Aesar公司;蘆丁購于大連美侖生物有限公司.所有試劑采用分析純,水采用二次蒸餾水.
1.2 Au-TiO2納米材料的制備
Au-TiO2納米材料的制備采用沉積沉淀法.實驗過程如下:配制1 g/L的氯金酸溶液20 mL用氫氧化鈉調(diào)節(jié)pH為7.0,水浴加熱至65 ℃,上述溶液中不斷攪拌下加入0.2 g二氧化鈦粉末.攪拌4 h,離心洗滌,200 ℃干燥.即可得到Au-TiO2納米材料.
1.3 修飾電極的制備
首先將裸玻碳電極在均相紙上打磨,然后在麂皮上用1.0、0.3和0.05 μmol/Lα-Al2O3懸濁液做進一步的拋光處理,最后依次用1∶1 HNO3、無水乙醇、二次水超聲清洗以得到光潔、平滑的電極表面,電極吹干后備用.將2 g/L的Au-TiO2懸濁液通過滴涂法負(fù)載在玻碳電極表面,晾干備用.
2.1 材料的表征
運用X射線衍射對樣品的晶體結(jié)構(gòu)進行表征,如圖1(A)所示,在復(fù)合材料的衍射峰除了二氧化鈦純品出現(xiàn)的銳鈦礦衍射峰(JCPDS file No.21-1 272)外,還有4個衍射峰38.2°,44.5°,64.7°,81.9°,分別對應(yīng)金納米粒子的(111),(200),(220)和(311)晶面(JCPDS file No.65-860)[20].通過掃描電子顯微鏡(SEM)對Au-TiO2的形態(tài)特征進行了表征.從圖1(B)中可以看出,金納米粒子均勻的沉積在二氧化鈦上,無明顯聚集.
圖1 Au-TiO2納米材料的XRD圖譜(A)和掃描(SEM)電鏡(B)Fig.1 XRD (A) and SEM (B) pattern of Au-TiO2 nanocomposite
2.2 Au-TiO2-Nafion傳感器用于蘆丁檢測的循環(huán)伏安特征
圖2(A)顯示的是蘆丁在不同的修飾電極上的循環(huán)伏安曲線.在0.1 mol/L磷酸鹽緩沖液(PBS,pH=3.0)中,蘆丁在Au-TiO2-Nafion修飾電極上氧化還原峰電流高于蘆丁在TiO2/GCE,空白GCE電極上氧化還原峰電流,這表明蘆丁在Au-TiO2-Nafion修飾電極上發(fā)生了較強的吸附和較快的電化學(xué)反應(yīng).蘆丁在Au-TiO2-Nafion修飾電極上出現(xiàn)一對氧化還原峰,峰電位是0.59 V和0.54 V,說明蘆丁的電化學(xué)氧化還原反應(yīng)是可逆的.由于二氧化鈦負(fù)載金納米材料的催化能力較好,可提高電子傳輸速率,能有效促進蘆丁進行電化學(xué)反應(yīng).通過圖2(B)同一電極不同溶液的對比試驗,可以看出該修飾電極可以檢測蘆丁溶液.
圖2 (A)含0.1 mmol/L 蘆丁的不同電極的循環(huán)伏安圖,掃速:100 mV/s.a:空白電極 b:TiO2-Nafion修飾電極 c:Au-TiO2-Nafion修飾電極 (B) Au-TiO2-Nafion修飾電極在a:0.1 mol/L PBS (pH=3) b:0.1 mmol/L 蘆丁PBS(0.1 mol/L,pH=3)中的循環(huán)伏安圖Fig.2 (A) CVs on different types of electrodes in the presence of 0.1 mmol/L rutin at 100 mV/s.a:bare b:TiO2-Nafion/GCE c:Au-TiO2-Nafion/GEC (B) CVs on Au-TiO2-Nafion modified GCE in a:0.1 mol/L PBS (pH=3) b:0.1 mmol/L rutin PBS(0.1 mol/L,pH=3)
2.3 Au-TiO2-Nafion傳感器響應(yīng)的優(yōu)化條件
2.3.1 納米材料的滴涂量對傳感器的影響
電極上所修飾的納米粒子的量的多少直接影響到傳感器表面對蘆丁的吸附能力及電子傳遞的難易.圖3所示為不同Au-TiO2滴涂量的影響.隨滴涂量從5 μL到13 μL,氧化峰電流由增變減,其中9 μL時,氧化峰電流最大,最優(yōu)的滴涂量是9 μL,原因可能是,當(dāng)?shù)瓮苛砍^9 μL,多余的Au-TiO2-Nafion會阻礙修飾材料與溶液之間的電荷轉(zhuǎn)移,不利于蘆丁的電催化氧化.
圖3 0.1 mmol/L蘆丁在0.1 mol/L PBS (pH=3.0)不同修飾量Au-TiO2-Nafion電極上的循環(huán)伏安圖,掃速100 mV/sFig.3 CVs of 0.1 mmol/L rutin in 0.1 mol/L PBS (pH=3.0) with different Au-TiO2-Nafion suspension coating on bare GCE at 100 mV/s
2.3.2 pH對傳感器的影響
在Au-TiO2-Nafion/GCE上,研究了0.1 mmol/L蘆丁在0.1 mol/L緩沖液中不同pH時的電化學(xué)行為.試驗結(jié)果如圖4所示,當(dāng)pH從2.0逐漸增加到8.0時,蘆丁的氧化峰電位逐漸負(fù)移,同時,蘆丁的氧化峰電位與pH之間具有良好的線性關(guān)系(見圖4(B)),其線方程為Epa/V = 0.772 45-0.054 21pH (R2=0.995 6),因氧化電位可用下式表述:
EP=E0-m/n0.059pH
EP為實際電位,E0為標(biāo)準(zhǔn)電勢,m代表參加反應(yīng)質(zhì)子的數(shù)量,n代表參加反應(yīng)的電子數(shù)量,pH代表溶液酸堿度,根據(jù)該方程的斜率-0.054 V·pH-1接近理論值-0.059 V·pH-1,可以推斷出,參與電化學(xué)反應(yīng)的電子數(shù)與質(zhì)子數(shù)相等[11].在pH為2~8的范圍內(nèi),隨著pH的增加,蘆丁氧化峰電流先增大后減小,當(dāng)pH=3.0時達(dá)到最大值.當(dāng)pH過大時,陽極峰電流變小.隨著pH的增大,電位向負(fù)向移動,這種試驗現(xiàn)象的發(fā)生是由于質(zhì)子參與了電極反應(yīng)[1],根據(jù)以上實驗結(jié)論,本實驗中蘆丁的測定最佳pH為3.0.
圖4 (A):0.1 mmol/L蘆丁在Au-TiO2-Nafion/GCE電極上,0.1 mol/L磷酸鹽底液中不同pH (2~8)下的循環(huán)伏安圖 (B):Ipa 和 Epa與pH的線性關(guān)系圖Fig.4 (A) CVs of Au-TiO2-Nafion modified GC electrode in a 0.1 mol/L PBS with 0.1 mmol/L rutin at different solution pHs (pH 2-8).(B) Influence of pH on current response of Au-TiO2 nanocomposite modified GC electrode to rutin oxidation in PBS
2.3.3 掃速對傳感器的影響
Au-TiO2-Nafion修飾電極在0.1 mmol/L蘆丁在0.1 mol/L磷酸鹽緩沖液(pH 3.0)中,不同掃描速率時對其峰電流的影響如圖5(A)所示.掃描速率,從10 mV·s-1逐漸增加到100 mV·s-1時,蘆丁的氧化峰電位都隨著掃描速率的增加而正移,并且蘆丁的氧化峰電流與掃描速率(v)成正比(見圖5(B)),具有良好的線性關(guān)系,說明該反應(yīng)受傳質(zhì)控制.
圖5 0.1 mmol/L蘆丁(0.1 mol/LPBS,pH=3.0)不同掃速時在Au-TiO2-Nafion/GCE上的循環(huán)伏圖Fig.5 CVs on Au-TiO2-Nafion/GCE in the presence of 0.1 mmol/L rutin (0.1 mol/LPBS,pH=3.0) at different sweep rates
2.4 Au-TiO2-Nafion傳感器對蘆丁的檢測
i-t曲線法具有較高的靈敏度和較好的與背景電流分離的能力,所以采用i-t曲線法來實現(xiàn)蘆丁測定.如圖6在+0.6 V(pH=3.0,0.1 mol/L PBS)下,研究蘆丁濃度與峰電流之間的關(guān)系.當(dāng)蘆丁濃度在0.1~10 μmol/L之間,峰電流與蘆丁濃度之間呈線性關(guān)系,相關(guān)系數(shù)0.9950,靈敏度1.47μA·μmol·L-1·cm-2,信噪比為3時檢測限為0.083 μmol/L.
圖6 Au-TiO2-Nafion修飾電極的i-t 曲線,pH 3.0;工作電壓:+0.59 V,插入圖:蘆丁的線性曲線Fig.6 Amperometric response of Au-TiO2-Nafion /GCE at 0.59 V upon successive addition of 1 mmol/L rutin to 50 mL of 0.1 mol/L PBS (pH 3.0).Inset shows a plot of electro-catalytic current against rutin concentration
2.5 Au-TiO2-Nafion傳感器的抗干擾能力
2.6 重現(xiàn)性和穩(wěn)定性
將上述修飾電極在含有1 mmol/L蘆丁磷酸緩沖液中連續(xù)掃描10次,其循環(huán)伏安中的峰電流的相對標(biāo)準(zhǔn)偏差3.8%.表明該傳感器用于蘆丁測定具有好的重現(xiàn)性.在修飾電極制備完成的1 w后,用該傳感器對1 mmol/L蘆丁進行掃描.發(fā)現(xiàn)電流的響應(yīng)值為初始電流的87%.這說明該傳感器具有良好的穩(wěn)定性.
利用沉淀沉積方法成功制備了Au-TiO2復(fù)合材料,在此基礎(chǔ)上構(gòu)建了電化學(xué)傳感器.研究了蘆丁在該修飾電極上的電化學(xué)行為,在最優(yōu)條件下可實現(xiàn)蘆丁的靈敏檢測.該傳感器具有較高的選擇性和穩(wěn)定性,為蘆丁的實際分析提供了可能.
[1] LIU M,DENG J,CHEN Q,et al.Sensitive detection of rutin with novel ferrocene benzyne derivative modified electrodes [J].Biosensors & Bioelectronics,2013,41:275-281.
[2] GHOLIVAND M B,MOHAMMADI-BEHZAD L,HOSSEINKHANI H.Application of a Cu-chitosan/multiwalled carbon nanotube film-modified electrode for the sensitive determination of rutin [J].Analytical Biochemistry,2016,493:35-43.
[3] YANG S,WANG G,LI G,et al.Decoration of graphene modified carbon paste electrode with flower-globular terbium hexacyanoferrate for nanomolar detection of rutin [J].Electrochimica Acta,2014,144:268-274.
[4] LIU Z,XUE Q,GUO Y.Sensitive electrochemical detection of rutin and isoquercitrin based on SH-beta-cyclodextrin functionalized graphene-palladium nanoparticles [J].Biosensors & Bioelectronics,2016,89:444-452.
[5] ZHANG K,XU J,ZHU X,et al.Poly(3,4-ethylenedioxythiophene) nanorods grown on graphene oxide sheets as electrochemical sensing platform for rutin [J].Journal of Electroanalytical Chemistry,2015,739:66-72.
[6] 岳瑩,梁卿,郭勇,等.介孔碳納米纖維修飾電極用于黃酮類化合物蘆丁的電化學(xué)測定[J].分析測試學(xué)報,2012,31(8):915-921.
YUE Y, LIANG Q, GUO Y,et al.Electrochemical determination of the flavonoid:rutin using a mesoporous carbon nanofiber-modified electrode [J].Journal of Instrumental Analysis,2012,31(8):915-921.
[7] GONG A,PING W,WANG J,et al.Cyclodextrin polymer/Fe3O4nanocomposites as solid phase extraction material coupled with UV-vis spectrometry for the analysis of rutin [J].Spectrochimica Acta A,2014,122:331-336.
[8] LIU D,MEI Q,WAN X,et al.Determination of rutin and isoquercetin contents in Hibisci mutabilis Folium in diffe-rent collection periods by HPLC [J].Journal of Chromatographic Science,2015,53:1680-1684.
[9] LI S,ZHANG L,CHEN L,et al.Determination of rutin by chemiluminescence based on a luminol-potassium periodate-ZnSe system [J].Analytical Methods,2016,8:4056-4063.
[10] WANG W,LIN P,MA L,et al.Separation and determination of flavonoids in three traditional chinese medicines by capillary electrophoresis with amperometric detection [J].Journal of Separation Science,2016,39:1357-1362.
[11] SUN W,WANG X,ZHU H,et al.Graphene-MnO2nanocomposite modified carbon ionic liquid electrode for the sensitive electrochemical detection of rutin [J].Sensors & Actuators B-Chemical,2013,178:443-449.
[12] SOARES M S,DA SILVA D F,FORIM M R,et al.Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C.Limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry [J].Phytochemistry,2015,115:161-170.
[13] LI J,QU J,YANG R,et al.A sensitive and selective electrochemical sensor based on graphene quantum dot/gold nanoparticle nanocomposite modified electrode for the determination of quercetin in biological samples [J].Electroanalysis,2016,28:1322-1330.
[14] YAN L J ,NIU X L,WANG W C.Electrochemical sensor for rutin detection with graphene oxide and multi-walled carbon nanotube nanocomposite modified electrode [J].International Journal of Electrochemical Science,2016:1738-1750.
[15] 孫偉, 王丹,張媛媛,等.電化學(xué)沉積納米金和石墨烯修飾離子液體碳糊電極檢測蘆丁的研究[J].分析化學(xué),2013,41(5):709-713.
SUN W,WANG D,ZHANG Y Y,Electrochemical deposition of gold and graphene modified ionic liquid carbon paste electrode detection research of rutin [J].Chinese Journal of Analytical Chemistry,2013,41(5):709-713.
[16] CUI R,HAN Z,PAN J,et al.Direct electrochemistry of glucose oxidase and biosensing for glucose based on helical carbon nanotubes modified magnetic electrodes [J].Electrochimica Acta,2011,58:179-183.
[17] 趙建軍,潘勇,秦莫林,等.納米金屬金屬氧化物在電化學(xué)傳感器中的應(yīng)用進展[J].化學(xué)傳感器,2010,30(3):22-29.
ZHAO J J,PAN Y,QIN M L,et al.Progress of electrochemical sensors involving nano-metal/metal oxides [J].Chemical Sensors,2010,30(3):22-29.
[18] AMPELLI C,LEONARDI S G,GENOVESE C,et al.Monitoring of glucose in fermentation processes by using Au/TiO2composites as novel modified electrodes [J].Journal of Applied Electrochemistry,2015,45:943-951.
[19] HU L,FONG C C,ZHANG X,et al.Au nanoparticles decorated TiO2nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A [J].Environmental Science & Technology,2016,50:4430-4438.
[20] FENG F,MA Z.Sensitive electrochemical detection of hydrazine based on hollow core-satellite hZnS@Au nanoparticles [J].Sensors and Actuators B-Chemical,2016,232:9-15.
[責(zé)任編輯:吳文鵬]
Electrochemical behavior and detection of rutin on Au-TiO2modified electrode
XING Ruimin*,ZHAO Xiaoyu,XU Yinxia,LIU Yong,LIU Xiuhua,HE Jianying,LIU Shanhu
(CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)
Au-TiO2nanoparticles were synthesized by deposition-precipitation and used for electrochemical detection of rutin.Emission scanning electron microscopy (SEM),and X-ray powder diffraction (XRD) patterns were used to characterize the morphology,structure and properties of this nanocomposite.Cyclic voltammetry (CV) and amperometrici-tcurve were used to the catalytic performance of Au-TiO2.Under the optimal conditions,the Au-TiO2-Nafion modified GC electrode can be used to determine rutin concentration in a wide linear range from 0.1 μmol/L to 10 μmol/L,and the sensitivity and the detection limit were estimated to be 1.47 μA·μmol·L-1·cm-2and 0.083 μmol/L,respectively,at a signal-to-noise ratio=3 (S/N=3).
Au; TiO2; rutin; electrochemical sensor
2016-09-19.
國家自然科學(xué)基金(21105021),河南省高??萍紕?chuàng)新團隊項目(14IRTSTHN030).
邢瑞敏(1980-),女,副教授,研究方向為納米材料控制合成及其相關(guān)應(yīng)用.*
,E-mail:xingenjoy@163.com.
O657.1
A
1008-1011(2017)01-0064-06