汪秋艷,孫曉輝
白藜蘆醇對(duì)間歇低氧大鼠胰島素抵抗的影響
汪秋艷,孫曉輝*
目的 觀察白藜蘆醇對(duì)間歇低氧大鼠胰島素抵抗的影響,探討其可能的作用機(jī)制。方法 8周齡SD雄性大鼠40只,隨機(jī)分為5組,對(duì)照組(A組)、間歇低氧組(B組)、白藜蘆醇低劑量組[C組,6 mg/(kg·d)]、白藜蘆醇中劑量組[D組,30 mg/(kg·d)]、白藜蘆醇高劑量組[E組,60 mg/(kg·d)]。C組、D組、E組大鼠間歇低氧4周,同時(shí)按不同劑量白藜蘆醇灌胃。實(shí)驗(yàn)結(jié)束后,測(cè)大鼠空腹胰島素和血糖水平,取肝臟,采用RT-PCR和Western blot法測(cè)定肝臟SIRT1。結(jié)果 白藜蘆醇干預(yù)后間歇低氧大鼠的胰島素抵抗降低,呈劑量依賴(lài)性,伴隨SIRT1的表達(dá)增高,各組間差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。結(jié)論 白藜蘆醇能減輕間歇低氧大鼠的胰島素抵抗,呈劑量依賴(lài)性,其可能是通過(guò)提高SIRT1的表達(dá)起作用。
白藜蘆醇;間歇低氧;胰島素抵抗
阻塞性睡眠呼吸暫停綜合征是目前常見(jiàn)的一種睡眠呼吸紊亂性疾病,在人群中的發(fā)病率高達(dá)2%~4%,在肥胖人群中達(dá)到25%~35%[1-2],老年人患病率更高。研究表明,OSA(Obstructive sleep apnea)是胰島素抵抗的獨(dú)立危險(xiǎn)因素[3-4],鼠類(lèi)模型提示,間歇性低氧(Intermittent hypoxia,IH)是一個(gè)重要因素。IH可以導(dǎo)致健康瘦鼠急性胰島素抵抗[5]。白藜蘆醇(Resveratrol,RSV)是沉默信息調(diào)節(jié)因子1(Silent information regulator 1,SIRT1)的強(qiáng)有力的激動(dòng)劑[6-8],研究發(fā)現(xiàn),其具有改善胰島素敏感性的作用[9-10],可以減輕缺氧組織的胰島素抵抗[11-12],但機(jī)制尚未明確。
本研究旨在應(yīng)用不同劑量的白藜蘆醇對(duì)間歇低氧胰島素抵抗大鼠進(jìn)行干預(yù),探討白藜蘆醇減輕間歇低氧大鼠胰島素抵抗的可能機(jī)制。
1.1 實(shí)驗(yàn)動(dòng)物和分組處理
1.1.1 實(shí)驗(yàn)動(dòng)物 8周齡SD雄性大鼠,適應(yīng)性喂養(yǎng)1周后開(kāi)始實(shí)驗(yàn)。常規(guī)飼料喂養(yǎng),溫度(22±2)℃,濕度50%左右,明/暗周期12 h,自由進(jìn)食和飲水。
1.1.2 動(dòng)物分組及處理 40只大鼠隨機(jī)分為5組,對(duì)照組(A組)、間歇低氧組(B組)、白藜蘆醇低劑量組(C組)、白藜蘆醇中劑量組(D組)、白藜蘆醇高劑量組(E組)。A組為對(duì)照組,B組間歇低氧4周,4周后大鼠禁食12 h,測(cè)空腹胰島素和血糖水平,計(jì)算穩(wěn)態(tài)模型胰島素抵抗指數(shù)(HOMA-IR),確定大鼠產(chǎn)生明確的胰島素抵抗,建模成功。按建模方式處理C組、D組、E組大鼠,同時(shí)分別按6、30、60 mg/(kg·d)白藜蘆醇灌胃4周。
1.2 實(shí)驗(yàn)方法
1.2.1 間歇低氧方式 大鼠每日間歇低氧8 h(09∶00~17∶00),將其置入自制間歇低氧設(shè)備,入氣口經(jīng)氣體交換控制系統(tǒng)控制,分別給予8%氧氣(氮?dú)馄胶?和室內(nèi)空氣(21%氧氣),每間隔90 s給低氧1次。
1.2.2 穩(wěn)態(tài)胰島素評(píng)估模型胰島素抵抗指數(shù) HOMA-IR指數(shù)=空腹胰島素濃度(μU/mL)×空腹血糖濃度(mmol/L)/22.5。大鼠胰島素測(cè)定應(yīng)用大鼠胰島素檢測(cè)試劑盒(millipore公司)。
1.2.3 RT-PCR方法測(cè)定肝臟SIRT1 SIRT1上游引物:ACCCTCAATTTCTGTTCTGC;下游引物:TTGGACATTACCACGTCTGC。Western blot方法測(cè)SIRT1。
2.1 間歇低氧4周,大鼠產(chǎn)生明顯的胰島素抵抗,SIRT1的轉(zhuǎn)錄和表達(dá)明顯下降。白藜蘆醇干預(yù)后,大鼠胰島素抵抗減輕,呈劑量依賴(lài)性。C組、D組、E組胰島素抵抗指數(shù)與B組之間差異均有統(tǒng)計(jì)學(xué)意義(P<0.01)。見(jiàn)表1。
表1 各組HOMA-IR與SIRT1比較
注:**與A組比較,P<0.01;##與B組比較,P<0.01
2.2 SIRT1在間歇低氧后轉(zhuǎn)錄減少,白藜蘆醇干預(yù)后,表達(dá)增加,呈劑量依賴(lài)性(P<0.01)。見(jiàn)圖1~圖3。
圖1 各組SIRT1基因值
圖2 各組SIRT1蛋白值
圖3 各組SIRT1的免疫組化圖(200×)
OSA是一個(gè)復(fù)雜的病理生理過(guò)程,其特點(diǎn)是反復(fù)上氣道阻塞,頻繁打鼾,睡眠時(shí)呼吸暫停,慢性夜間睡眠缺失,白天嗜睡[13]。OSA可以導(dǎo)致睡眠時(shí)慢性間歇低氧(CIH)。OSA與胰島素抵抗(IR)、糖耐量異常和其他代謝綜合征相關(guān)[14-18]。研究表明,IH可以通過(guò)交感興奮、系統(tǒng)性炎癥反應(yīng)、胰腺損害、調(diào)節(jié)相關(guān)激素和脂肪酸分泌來(lái)影響糖代謝,導(dǎo)致糖代謝紊亂。而慢性間歇性低氧可以加劇胰島素抵抗和糖耐量異常。本實(shí)驗(yàn)應(yīng)用IH研究其與大鼠胰島素抵抗的關(guān)系,應(yīng)用不同劑量白藜蘆醇干預(yù)間歇低氧大鼠,探討白藜蘆醇減輕大鼠胰島素抵抗的機(jī)制。
白藜蘆醇是一種天然多酚類(lèi)化合物,具有明顯的改善胰島素敏感性、降低血糖的作用[19]。Chi等[20]使用白藜蘆醇分別干預(yù)1型糖尿病、2型糖尿病和胰島素抵抗小鼠,發(fā)現(xiàn)白藜蘆醇可通過(guò)胰島素依賴(lài)和非胰島素依賴(lài)的機(jī)制改善小鼠的胰島素抵抗,但白藜蘆醇對(duì)IH情況下的IR的研究報(bào)道很少[12]。
SIRT1是一種依賴(lài)于煙酰胺腺嘌呤二核苷酸的組蛋白去乙酰化酶,可使多種蛋白質(zhì)的賴(lài)氨酸殘基發(fā)生去乙酰化[21]。SIRT1也參與調(diào)節(jié)葡萄糖內(nèi)環(huán)境穩(wěn)定和胰島素分泌。研究表明,在胰島素抵抗細(xì)胞和組織中SIRT1的表達(dá)下調(diào),下調(diào)或者抑制SIRT1可以導(dǎo)致胰島素抵抗[22]。
本研究發(fā)現(xiàn),間歇低氧4周后,伴隨SIRT1表達(dá)的下降,大鼠出現(xiàn)了顯著的胰島素抵抗。白藜蘆醇干預(yù)后,各組的胰島素抵抗指數(shù)均出現(xiàn)顯著下降,說(shuō)明白藜蘆醇可以減輕間歇低氧情況下的大鼠胰島素抵抗。隨著白藜蘆醇劑量的加大,減輕胰島素抵抗的效果就更明顯,推測(cè)其作用的機(jī)制為通過(guò)提高SIRT1的表達(dá)而起效,為白藜蘆醇應(yīng)用于臨床提供了理論依據(jù)。
[1]Punjabi NM.The epidemiology of adult obstructive sleep apnea[J].Proc Am Thorac Soc,2008,5(2):136-143.
[2]Casale M,Pappacena M,Rinaldi V,et al.Obstructive sleep apnea syndrome:from phenotype to genetic basis[J].Curr Genomics,2009,10(2):119-126.
[3]Byberg S,Hansen AL,Christensen DL,et al.Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis[J].Diabet Med,2012,29:e354-e360.
[4]Van Cauter E.Sleep disturbances and insulin resistance[J].Diabet Med,2011,28(12):1455-1462.
[5]Iiyori N,Alonso LC,Li J,et al.Intermittent Hypoxia Causes Insulin Resistance in Lean Mice Independent of Autonomic Activity[J].Am J Respir Crit Care Med,2007,175(8):851-857.
[6]Milne JC,Lambert PD,Schenk S,et al.Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes[J].Nature,2007,450(7170):712-716.
[7]Lagouge M,Argmann C,Gerhart Hines Z,et al.Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha[J].Cell,2006,127(6):1109-1122.
[8]Tennen RI,Michishita-Kioi E,Chua KF.Finding a target for resveratrol[J].Cell,2012,148(3):387-389.
[9]Howitz KT,Bitterman KJ,Cohen HY,et al.Small molecule activators of sirtuins extend saccharomyces cerevisiae lifespan[J].Nature,2003,425(6954):191-196.
[10]王紅,賈明,侯曉彤.白藜蘆醇的抗氧化抗炎作用和抗動(dòng)脈粥樣硬化研究進(jìn)展[J].中國(guó)醫(yī)藥,2016,11(6):932-935.
[11]Zhao W,Li A,Feng X,et al.Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue[J].Cell Signal,2016,28(9):1401-1411.
[12]Carreras A,Zhang SX,Almendros I,et al.Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice[J].Endocrinology,2015,156(2):437-443.
[13]Young T,Palta M,Dempsey J,et al.The occurrence of sleep-disordered breathing among middle-aged adults[J].N Engl J Med,1993,328(17):1230-1235.
[14]Coughlin SR,Mawdsley L,Mugarza JA,et al.Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome[J].Eur Heart J,2004,25(9):735-741.
[15]Ip MS,Lam B,Ng MM,et al.Obstructive sleep apnea is independently associated with insulin resistance[J].Am J Respir Crit Care Med,2002,165(5):670-676.
[16]Punjabi NM,Shahar E,Redline S,et al.Sleep-disordered breathing,glucose intolerance,and insulin resistance:the sleep heart health study[J].Am J Epidemiol,2004,160(6):521-530.
[17]Goodson BL,Wung SF,Archbold KH.Obstructive sleep apnea hypopnea syndrome and metabolic syndrome:a synergistic cardiovascular risk factor[J].J Am Acad Nurse Pract,2012,24(12):695-703.
[18]Gao ZH,Yuan RY,Chen KY,et al.Obstructive sleep apnea and the metabolic syndrome[J].Sleep Breath,2012,16(4):937-938.
[19]韓敦正,湯穆浛,邢曉雯,等.白藜蘆醇對(duì)糖尿病下肢缺血大鼠氧化應(yīng)激和血管新生的作用[J].實(shí)用醫(yī)學(xué)雜志,2015,31(5):723-724.
[20]Chi TC,Chen WP,Chi TL,et al.Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats[J].Life Sci,2007,80(18):1713-1720.
[21]Finkel T,Deng CX,Mostoslavsky R.Recent progress in the biology and physiology of sirtuins[J].Nature,2009,460(7255):587-591.
[22]Rodgers JT,Lerin C,Haas W,et al.Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1[J].Nature,2005,434(7029):113-118.
Effects of different doses of resveratrol on insulin resistance in rats with intermittent hypoxia
WANG Qiu-yan,SUN Xiao-hui*
(The First Affiliated Hospital of Dalian Medical University,Dalian 116011,China)
Objective To investigate the effects of resveratrol on insulin resistance in rats with intermittent hypoxia and to explore its underlying mechanisms.Methods Forty 8-week-old SD rats were randomly divided into five groups,control group (group A),intermittent hypoxia group (group B),low dose resveratrol group [group C,6 mg/(kg·d)],median dose resveratrol group [group D,30 mg/(kg·d)],high dose resveratrol group [group E,60 mg/(kg·d)].Rats in group C,group D and group E were treated with different doses of resveratrol by gavage and intermittent hypoxia for 4 weeks.In the end,the fasting insulin and glucose levels of the rats were measured.The expression of SIRT1 in liver was detected by RT-PCR and Western blot.Results The insulin resistance of rats with chronic intermittent hypoxia was decreased,which was dose-dependent,and the expression of SIRT1 was increased,the difference being statistically significant(P<0.01).Conclusion Resveratrol can reduce the insulin resistance in rats with intermittent hypoxia,which is dose-dependent;the mechanism may be by increasing the expression of SIRT1.
Resveratrol;Intermittent hypoxia;Insulin resistance
2016-04-28
大連醫(yī)科大學(xué)附屬第一醫(yī)院,大連 116011
*通信作者
10.14053/j.cnki.ppcr.201702007