王樹濤,陳玲波,張真瑞,巫 川,姜 瑞,尤 宏(.哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國家重點實驗室,黑龍江 哈爾濱 50090;.黑龍江省環(huán)境保護科學(xué)研究院,黑龍江 哈爾濱 50056)
氧化鋅納米顆粒對污泥厭氧消化過程的影響研究
王樹濤1*,陳玲波1,張真瑞1,巫 川1,姜 瑞2,尤 宏1(1.哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國家重點實驗室,黑龍江 哈爾濱 150090;2.黑龍江省環(huán)境保護科學(xué)研究院,黑龍江 哈爾濱 150056)
建立了污泥厭氧消化反應(yīng)器,以氧化鋅納米顆粒(ZnO-NPs)為研究對象,研究了不同濃度ZnO-NPs(0,2,30,60,90,120,150mg/g-VSS)對污泥厭氧消化過程的影響,分析了可能存在的劑量-效應(yīng)關(guān)系.低濃度(2mg/g-VSS)ZnO-NPs對污泥厭氧消化過程影響較小;較高濃度下,ZnO-NPs對污泥厭氧消化產(chǎn)氣效率、有機物降解效率和污泥減量效果等具有顯著影響,而對揮發(fā)酸產(chǎn)量及其組成無顯著影響.ZnO-NPs暴露濃度為30,60,90,120mg/g-VSS時,平均日產(chǎn)氣量直線下降,在120mg/g-VSS濃度后平均日產(chǎn)氣量為對照組的10%左右.ZnO-NPs對有機物降解效和污泥減量存在明顯抑制作用,且隨著ZnO-NPs濃度的升高,SCOD去除率、TCOD去除率和R(VSS/TSS)值降低.ZnO-NPs濃度升高到120mg/g-VSS時,SCOD去除率、TCOD去除率和R(VSS/TSS)值分別減少到對照組的3%、36.5%和74%.此外,當 ZnO-NPs暴露濃度從2mg/g-VSS升高到150mg/g-VSS 時,污泥減量率從23%左右下降至4.8%左右.
氧化鋅納米顆粒(ZnO-NPs);生物毒性;污泥厭氧消化;污泥減量
隨著納米科技的發(fā)展,納米材料已廣泛應(yīng)用于生活和工業(yè)多個領(lǐng)域[1],而這些含有納米材料的物質(zhì)在使用和作為廢棄物處理時不可避免地會進入環(huán)境[2].由于納米顆粒(NPs)尺寸微小,比表面積巨大,具有更大的反應(yīng)活性,其環(huán)境行為及其毒性效應(yīng)備受關(guān)注[3].Brayner等[4]研究發(fā)現(xiàn)ZnO-NPs能誘導(dǎo)活性氧(ROS)的產(chǎn)生,而ROS的氧化作用可導(dǎo)致細菌細胞膜損壞和細胞質(zhì)泄漏;Thill等[5]觀察到CeO2-NPs可在大腸桿菌表面吸附,認為CeO2-NPs能夠改變細胞膜的粘滯性,破壞特定離子泵,從而影響細胞與外界的物質(zhì)交換,抑制細菌生長.
城市污水處理廠是環(huán)境中 NPs遷移的重要途徑.NPs進入污水生物處理系統(tǒng)后,很可能對各種微生物活性產(chǎn)生負面影響,進而影響污染物降解效率和生物系統(tǒng)穩(wěn)定性.已有研究表明, 50mg/L Al2O3-NPs能明顯降低活性污泥中反硝化細菌的豐度[6],ZnO-NPs濃度達到20mg/L時,微生物脫氮作用受到嚴重抑制[7].Zheng等[8]研究發(fā)現(xiàn)ZnO-NPs釋放出的Zn2+能夠?qū)е挛⑸矬w內(nèi)ROS增加,Zn2+和ROS共同作用抑制了聚磷菌的活性,降低了聚磷酸鹽激酶及外切聚磷酸酶的數(shù)量,從而影響了系統(tǒng)的生物除磷效率.進入污水處理系統(tǒng)中的 NPs絕大多數(shù)最終將匯集到剩余污泥中[9].有調(diào)查顯示,ZnO-NPs、Ag-NPs和碳納米管(CNTs)在污泥中的濃度分別可以達到 57、5.86和0.147mg/kg[10-11].2011年(139所)與2009年(107所)中國的一些污水廠污泥中各種納米材料的總濃度為 1.03g/kg SS,最大達到 9.14g/kg
SS[12-13].
目前采用厭氧消化技術(shù)對剩余污泥進行處理是主要的手段.因此,研究剩余污泥中存在的NPs對污泥厭氧消化過程的影響對于保證污泥處理系統(tǒng)的穩(wěn)定運行以及加強NPs污染物的排放控制具有重要意義.Mu等[14]研究發(fā)現(xiàn)在厭氧生物處理過程中 ZnO-NPs的濃度為 10和50mg/g-TSS時,對厭氧顆粒污泥的EPS和甲烷產(chǎn)量影響較小,但是當暴露濃度為大于 100mg/ g-TSS時,ZnO-NPs使EPS和甲烷產(chǎn)量減少,對甲烷化過程有嚴重的抑制作用.Jorge等[15]研究了幾種NPs對乙酸分解和產(chǎn)氫產(chǎn)甲烷過程的毒性效應(yīng),發(fā)現(xiàn)Cu0-NPs和ZnO-NPs對產(chǎn)甲烷過程有嚴重的抑制作用,主要是由于NPs侵蝕和解離釋放出來的有毒 Cu2+和 Zn2+.Yang等[16]發(fā)現(xiàn),40mg/ LAg-NPs對甲烷產(chǎn)量無明顯影響,溶解氧是Ag- NPs氧化溶解的必要條件,厭氧條件下Ag-NPs不會釋放Ag+,因此不會抑制厭氧消化過程產(chǎn)甲烷菌活性,但Ag-NPs對微生物群落結(jié)構(gòu)影響十分顯著,能夠使與底物降解相關(guān)的菌群減少,而使和生物吸附?生物膨脹等相關(guān)的菌群增加.
納米氧化鋅作為應(yīng)用最廣泛的 3大納米材料(納米二氧化鈦、納米銀和納米氧化鋅)之一,具有良好的抗菌性,對多種微生物具有一定的毒性作用[17].雖然 ZnO-NPs對污泥厭氧消化的影響已有報道,但缺乏系統(tǒng)研究.本文選取 ZnONPs為納米材料的典型代表,建立污泥厭氧消化反應(yīng)系統(tǒng),研究了系統(tǒng)的產(chǎn)氣量、揮發(fā)酸、有機物降解效率、污泥減量效果等,以揭示ZnO-NPs對厭氧消化過程的影響.
1.1 實驗材料
實驗用污泥取自哈爾濱信義污水處理廠二沉池污泥.污泥在冰柜中維持 4℃條件保存,靜置沉淀 24h,將靜置的污泥上層清液吸出.吸出清液后的污泥使用40目的篩子對污泥進行過濾,除去污泥中粒徑較大的雜質(zhì)用于后續(xù)實驗.在自行設(shè)計的有效容積為8L的厭氧消化反應(yīng)器中培養(yǎng)和馴化厭氧消化污泥,培養(yǎng)條件為(55±0.5)℃,pH為7±0.5,避光培養(yǎng).
1.2 儀器和試劑
儀器:掃描電子顯微鏡( SEM,Philips XL30, FEI Company),氣相色譜儀(安捷倫),COD消解儀,馬弗爐.
試劑:ZnO-NPs分散液(CAS no.: 1314-13-2,<100nm,Sigma公司).其他試劑均為分析純.
1.3 實驗方法
1.3.1 NPs在污泥中的形貌分析 對污泥進行掃描電鏡分析以觀測污泥加入ZnO-NPs前后的形態(tài)變化,預(yù)處理方法為[18]:(1)取樣:取 50mL污泥混合液,在5000r/min離心3min,用pH為6.8的磷酸鹽緩沖液(PBS)對下部成分進行清洗;(2)固定:用 pH=6.8的 2.5%的戊二醛淹沒顆粒,于4℃條件下固定2h;(3)沖洗:用0.1mol/L的pH 6.8的磷酸鹽緩沖液沖洗 3次,每次 10min;(4)脫水:污泥樣品分別用30%、50%、70%、80%,90%的乙醇脫水,每次10min;然后用100%的乙醇脫水3次,每次 15min;(5)置換:先用乙醇:乙酸異戊酯=1:1的溶液置換 15min,再用乙酸異戊酯置換15min;(6)干燥:將處理后樣品置于低溫干燥機中烘干;(7)噴金:在樣品表面噴上一層 1500nm的金膜.(8)觀察:將噴金后的樣品置于SEM下進行觀察.由圖1可以看出大部分的ZnO-NPs吸附在污泥顆粒的表面.
圖1 投加120mg/g-VSS ZnO-NPs的掃描電鏡分析(SEM)圖(A)和能譜分析(EDS)圖(B)Fig.1 SEM image (A) and EDS analysis (B) of sludge in the reactors exposed to ZnO-NPs, The dosage of nanoparticles was 120mg/g-VSS
1.3.2 污泥厭氧消化毒性實驗 主要研究了不同濃度ZnO-NPs對厭氧消化過程包括水解、酸化、產(chǎn)甲烷的影響,厭氧發(fā)酵時間為期 20d.厭氧消化實驗在反應(yīng)瓶中進行,每個反應(yīng)瓶的體積為500mL,污泥體積為400mL.實驗開始前檢查裝置的密封性能,然后向反應(yīng)瓶中充入氮氣 5min,以去除瓶中的氧氣,密封后放入55℃水浴鍋中進行厭氧消化反應(yīng).實驗裝置如圖2所示,厭氧消化瓶污泥每天早晚磁力攪拌各1次.啟動厭氧消化反應(yīng)器并使其穩(wěn)定運行.在加入 ZnO-NPs之前,分別測定反應(yīng)器的有機物去除率、TSS和VSS作為對照.每個指標做3個平行.
圖2 厭氧消化反應(yīng)實驗裝置Fig.2 Experimental setup and schematic of anaerobic digestion system
1.3.3 污泥指標的測定
表1 實驗污泥的各項指標
1.4 數(shù)據(jù)統(tǒng)計分析
實驗結(jié)果均以“平均值±標準誤差”即(mean±SD)表示.采用SPSS18.0軟件進行統(tǒng)計分析,多組間比較采用方差齊性檢驗和單因素方差分析.進一步進行組間兩兩比較時,采用 LSD檢驗,以P<0.05表示差異顯著.
2.1 ZnO-NPs對污泥厭氧消化產(chǎn)氣量的影響
由圖 3(A)可知,ZnO-NPs暴露濃度為 2mg/ g-VSS時,對日產(chǎn)氣量變化影響較小,而后隨著ZnO-NPs暴露濃度的升高,厭氧消化系統(tǒng)的日產(chǎn)氣量逐漸減少.由圖3(B)可知,當ZnO-NPs暴露濃度為2mg/g-VSS時,總產(chǎn)氣量降低1.9%;而當ZnO-NPs暴露濃度從2mg/g-VSS升高到120mg/ g-VSS時,相對日產(chǎn)氣量直線下降至對照組的10%左右,而且可以看出在2~120mg/g-VSS濃度范圍內(nèi)存在顯著的劑量-毒性正相關(guān)性.與對照相比,不同暴露濃度下厭氧消化系統(tǒng)的產(chǎn)氣量差異顯著(P<0.05).
圖3 不同濃度ZnO-NPs對污泥厭氧消化日產(chǎn)氣量(A)、總產(chǎn)氣量的和相對產(chǎn)氣量(B)的影響Fig.3 Changes in daily biogas production ( A) ,Total biogas production and Relative biogas production ( B) of sludge anaerobic digestion under exposure to various concentrations of ZnO-NPs
分析可知,隨著 ZnO-NPs暴露濃度的升高, ZnO-NPs對產(chǎn)氣量具有明顯影響.ZnO-NPs能夠溶于水,并釋放出游離的 Zn2+和生成鋅的氫氧化物.溶出 Zn2+會對一些污水的生物處理過程產(chǎn)生影響,并對細胞的生長產(chǎn)生毒性作用;鋅的氫氧化物是中性和堿性條件下鋅的主要存在形態(tài),其對水生生物有高毒性[19].Mu等[20]研究發(fā)現(xiàn),1mg/g-TSS ZnO-NPs不會對產(chǎn)甲烷過程產(chǎn)生影響,而30和150mg/g-TSS下表現(xiàn)出抑制作用,且毒性隨濃度的增大而加,且ZnO-NPs對產(chǎn)氣量的影響主要是來自于溶出Zn2+的釋放.
2.2 ZnO-NPs對揮發(fā)酸生成的影響
揮發(fā)酸主要指乙酸、丙酸、丁酸等短鏈脂肪酸,是厭氧消化過程的重要中間產(chǎn)物,檢測揮發(fā)酸的產(chǎn)量可以更好的了解有機質(zhì)的降解進程[21].不同濃度的ZnO-NPs暴露3d后,分別測定不同種類揮發(fā)酸的濃度,結(jié)果如圖 3所示.由圖 3可知,不同濃度 ZnO-NPs暴露下,總揮發(fā)酸的濃度在1860~1990mg-COD/L之間.不同種類揮發(fā)酸在不同濃度 ZnO-NPs暴露下濃度無顯著差異(P>0.05),由此可知,ZnO-NPs對污泥消化過程中水解酸化階段的影響較小,這與Mu等[20]的研究結(jié)果一致.同時,有關(guān)研究表明,產(chǎn)酸菌對金屬毒性的敏感程度低于產(chǎn)甲烷菌.因此,較高濃度(>2mg/g-VSS)暴露情況下,ZnO-NPs可能主要影響了乙酸到甲烷的生物轉(zhuǎn)化過程.
圖4 不同濃度ZnO-NPs對污泥厭氧消化揮發(fā)酸產(chǎn)生量的影響Fig.4 the concentrations of volatile fatty acids(VFAs) products with time of 3d under exposure to various concentrations of ZnO-NPs
2.3 ZnO-NPs對厭氧消化過程中有機物降解的影響
VSS/TSS值反映了污泥中揮發(fā)性有機物所占的比例,而有機物的多少直接關(guān)系到消化反應(yīng)的進行,有機物多表示該樣品的可生化性強. R(VSS/TSS)表示是 VSS/TSS值的減少量,即消化反應(yīng)中有機物的減少量,反映了有機物的去除效果.因此以 R(VSS/TSS)作為評價指標來判斷厭氧消化反應(yīng)的程度,R(VSS/TSS)值越大說明有機物被降解的越多,厭氧消化反應(yīng)進行的越完全.
R(VSS/TSS)的定義為:
式中:(VSS/TSS)0表示未經(jīng)處理的原污泥樣品的VSS/TSS值.
圖5 ZnO-NPs對污泥厭氧消化過程中有機物降解效率(A)和有機物減少量(B)的影響Fig.5 Organic matter degradation efficiency(A), R(VSS/TSS)( B) of sludge in anaerobic digestion under exposure to various concentrations of ZnO-NPs
由圖5(A)可以看出,隨著ZnO-NPs濃度的升高,有機物降解效率逐漸減少.當 ZnO-NPs濃度較低(2mg/g-VSS)時,對 COD去除率影響較小,SCOD去除率和TCOD去除率均為對照組的95%左右;而后隨著ZnO-NPs濃度的升高,SCOD去除率和TCOD去除率減小,在ZnO-NPs濃度達到 120mg/g-VSS后達到穩(wěn)定,SCOD去除率和TCOD去除率分別減少到對照組的3%和36.5%.從整體來看,對照組與所有 ZnO-NPs 暴露組有顯著差異(P<0.05).由圖 5(B)可知,對照組R(VSS/TSS)值最高,達到23.01%,而后隨著ZnO-NPs暴露濃度的升高,R(VSS/TSS)值減小,在 ZnO-NPs濃度為120mg/g-VSS后,達到穩(wěn)定,約為17%.對照組與所有 ZnO-NPs暴露組均有顯著差異(P<0.05).
由以上結(jié)果推測高濃度的ZnO-NPs可能導(dǎo)致部分微生物死亡,進而影響厭氧消化的效率.類似地,Mei 等[22]研究發(fā)現(xiàn)ZnO-NPs會抑制MBR對NaAc的降解,暴露濃度越大抑制作用越強,加ZnO-NPs之前基質(zhì) 4h可完全降解,而加入13.6mg/L ZnO-NPs后則需6h.
2.4 ZnO-NPs對污泥減量效果的影響
圖6 ZnO-NPs對污泥厭氧消化系統(tǒng)污泥減量率的影響Fig.6 Reduction of sludge during sludge anaerobic digestion under exposure to various concentrations of ZnO-NPs
由于發(fā)酵時間的限制,厭氧消化過程只能分解部分有機組分.有機物的降解效率和 VSS的減少量通常作為一個重要參數(shù)來評價污泥厭氧消化的效果[23].從圖 6可以看出,厭氧消化反應(yīng)前VSS的含量為11.52g/L,發(fā)酵20d結(jié)束后,對于ZnO-NPs投加量為0、2、30、60、90、120和150mg/g-VSS濃度的暴露組VSS含量分別降低到 8.45、8.78、8.77、8.95、9.28、9.95和10.95g/L .隨著ZnO-NPs濃度的升高,污泥減量率逐級減小,2和30mg/g-VSS的ZnO-NPs濃度污泥減量率在在23%左右,當ZnO-NPs濃度在 30~ 150mg/g-VSS時,污泥減量率隨濃度下降較快,而當ZnO-NPs的濃度為150mg/g-VSS時,污泥減量下降至 4.8%左右,污泥減量效果下降.對照組與所有 ZnO-NPs暴露組有顯著差異(P<0.05).
3.1 ZnO-NPs能使污泥厭氧消化過程的產(chǎn)氣量減少并且暴露濃度與產(chǎn)氣量變化呈一定的量劑-抑制效應(yīng)關(guān)系;
3.2 不同濃度 ZnO-NPs暴露下,總揮發(fā)酸的濃度在1860~1990mg-COD/L之間,且ZnO-NPs在不同暴露濃度下,不同種類揮發(fā)酸濃度無顯著差異(P>0.05);較高暴露濃度情況下,ZnO-NPs可能主要影響乙酸到甲烷的生物轉(zhuǎn)化過程;
3.3 ZnO-NPs對有機物降解效率和污泥減量率存在明顯抑制作用,且隨著 ZnO-NPs濃度的升高,SCOD去除率、TCOD去除率和R(VSS/TSS)值降低,在ZnO-NPs濃度升高到120mg/g-VSS時達到最大,SCOD去除率、TCOD去除率和R(VSS/TSS)值分別減少到對照組的3%、36.5%和74%.污泥減量率隨著 ZnO-NPs濃度的升高逐級減小,2, 30mg/g-VSS的 ZnO-NPs濃度污泥減量率在23%左右,當ZnO-NPs 濃度在30~150mg/g-VSS時,污泥減量率隨濃度下降較快,而當 ZnO-NPs濃度為 150mg/g-VSS時,污泥減量率下降至4.8%左右.
[1] Yang Yu, Zhang Chiqian, Hu Zhiqiang. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion [J]. Environmental Science: Processes & Impacts, 2013,15:39-48.
[2] Maynard A, Aitken R J, Butz T, et al. Safe handling of nanotechnology [J]. Nature, 2006,444:267.
[3] Brar S K, Verma M, Tyagi R D, et al. Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts [J]. Waste Management, 2010,30:504-520.
[4] Brayner R, Ferrari-Iliou R, Brivois N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultra fine ZnO nano particles colloidal medium [J]. Nano Letters, 2006,6(4):866-870.
[5] Thill A, Zeyons O, Spalla O, et al. Cytotoxicity of CeO2nanoparticles for Escherichia coli. Physieo-chemieal insight of the cytotoxicity mechanism [J]. Environmental Science & Technology, 2006,40,19,6151-6156.
[6] Zheng X, Chen Y., Wu R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge [J]. Environ Sci Technol, 2011,45(17):7284-7290.
[7] 李素萍.納米ZnO對SBR系統(tǒng)活性污泥活性及硝化作用的影響[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2014.
[8] Zheng X, Wu R, Chen Y. Effects of ZnO Nanoparticles on wastewater biological nitrogen and phosphorus removal [J]. Environmental Science &Technology, 2011,45(7):2826-2832.
[9] Koray Sakarya, ?a?r? Akyol, Burak Demirel. The effect of shortterm exposure of engineered nanoparticles on methane production during mesophilic anaerobic digestion of primary sludge [J]. Water Air Soil Pollut, 2015,226:100.
[10] 楊曉楠.水中納米TiO2特性及對SBR活性污泥系統(tǒng)穩(wěn)定性的影響研究 [D]. 哈爾濱:哈爾濱工業(yè)大學(xué)市政工程, 2013.
[11] Westerhoff P. Occurrence and removal of titanium at full scale wastewater treatment plants:implications for TiO2nanomaterials [J]. Journal of Environmental Monitoring, 2011(13):1195-1203.
[12] Ma X W, Weng H X, Zhang J J. Regional characteristics and trend of heavy metals and nutrients of sewage sludge in China [J]. China Environmental Science, 2011,31:1306-1313.
[13] Ma H B,Phillip L W, Stephen A D. Ecotoxicity of manufactured ZnO nanoparticles-a review [J]. Environ. Pollut., 2013,172:76-85.
[14] Mu Hui, Zheng Xiong, Chen Yinguang, et al. Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment [J]. Environmental Science & Technology, 2012,46:5997?6003.
[15] Jorge Gonzalez-Estrella, Reyes Sierra-Alvarez, James A. Field. Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge [J]. Journal of Hazardous Materials, 2013,260:278–285.
[16] Yang Y, Chen Q, Wall J D, et al. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations [J]. WaterResearch, 2012,46(4):1176-1184.
[17] Jones N B, Ray K T. Ranjit,et al.Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms [J]. FEMS Microbiol Lett, 2008,279(1):71-76.
[18] 嚴 杰,羅海波,陸德源.現(xiàn)代微生物學(xué)試驗技術(shù)及其應(yīng)用 [M].北京:人民衛(wèi)生出版社, 1997.
[19] S W Wong, Leung P T, Djurisi? A B, et al. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry, 2010, 396(2):609-618.
[20] Mu Hui, Chen Yinguang. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion [J]. Water Rwasearch, 2011,45:5612-5620.
[21] Wang Qunhui, Kuninobub M, Ogawa H I. Degradation of volatile fatty acids in highly efficient anaerobic digestion [J]. Biomass and Bioenergy, 1999,16:407-416.
[22] Mei Xiaojie, Wang Zhiwei, Zheng Xiang, et al. Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles [J]. Journal of Membrane Science, 2014,451:169-176.
[23] Arnaiz C, Gutierrez J C, Lebrato J. Biomass stabilization in the anaerobic digestion of wastewater sludges [J]. Bioresource Technology, 2006,97:1179–1184.
Effect of Zinc oxide nanoparticles on anaerobic digestion of excess activated sludge.
WANG Shu-tao1*, CHEN Ling-bo1, ZHANG Zhen-rui1, WU Chuan1, JIANG Rui2, YOU Hong1
(1.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;2.Heilongjiang Research Academy of Environmental Sciences, Harbin 150056, China). China Environmental Science, 2017,37(1):174~180
The impact of Zinc oxide nanoparticles (ZnO-NPs) (0, 2, 30, 60, 90, 120 and 150mg/g-VSS) on the anaerobic digestion of excess activated sludge was investigated and the possible dose-effect relationship was achieved. Results indicated that less adverse effects of ZnO-NPs were found on anaerobic digestion of excess activated sludge at the low exposure concentration (2mg/g-VSS). However, significant effects were observed on the anaerobic digestion including biogas production, degradation efficiency of organics as well as reduction rate of sludge, but no significant effects was found on the volatile fatty acids (VFAs). The average daily gas production plummeted when the exposure concentration of ZnO-NPs was increased from 30mg/g-VSS to 120mg/g-VSS, but no obvious decrease of daily gas production was observed as the concentration was increased from 120mg/g-VSS to 150mg/g-VSS. In additon, ZnO-NPs could significantly inhibit the degradation efficiency of organic matter and the sludge reduction rate, and with the increasing of ZnO-NPs concentration from 30mg/g-VSS to 120mg/g-VSS, soluble chemical oxygen demand (SCOD) removal rate, total chemical oxygen demand (TCOD) removal rate and R(VSS/TSS)value was decreased to 3%, 36.5% and 74% of the control. Sludge reduction rate was reduced from 23% to 4.8% of the control when the ZnO-NPs concentration increased from 2mg/g-VSS to 150mg/g-VSS. The results help evaluating the inhibitory effects of nanoparticles on anaerobic digestion process.
Zinc oxide nanoparticles;biological toxicity;nludge anaerobic digestion;sludge reduction
X703
A
1000-6923(2017)01-0174-07
王樹濤(1975-),男,黑龍江哈爾濱人,博士,講師,主要研究方向為環(huán)境毒理學(xué)和催化氧化法污水深度處理理論與技術(shù).
2016-05-14
教育部留學(xué)回國科研啟動基金;哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國家重點實驗室開放基金(QA201608)
* 責(zé)任作者, 講師, wshutao@hit.edu.cn