王 陽,王朝元,李保明
?
蛋雞舍冬季CO2濃度控制標(biāo)準(zhǔn)與最小通風(fēng)量確定
王 陽1,2,王朝元1,3,李保明1,3※
(1. 中國農(nóng)業(yè)大學(xué)農(nóng)業(yè)部設(shè)施農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室,北京 100083;2. 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;3. 北京市畜禽健康養(yǎng)殖環(huán)境工程技術(shù)研究中心,北京 100083)
中國現(xiàn)行的蛋雞舍內(nèi)CO2濃度控制的農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)為1 500 mg/m3,主要適用于傳統(tǒng)的刮板式清糞雞舍。目前新建、改建雞舍都采用傳送帶清糞方式,雞舍內(nèi)的相對濕度和氨氣等有害氣體濃度均明顯減少,其冬季最小通風(fēng)量和舍內(nèi)CO2濃度參數(shù)標(biāo)準(zhǔn)均有待重新研究。該文通過總結(jié)分析國內(nèi)外相關(guān)學(xué)者對不同清糞方式蛋雞舍內(nèi)NH3、CO2濃度的測試數(shù)據(jù),提出傳送帶清糞蛋雞舍內(nèi)CO2濃度取值建議,并根據(jù)CO2濃度平衡原理,提出該類蛋雞舍冬季最小通風(fēng)量的取值建議。結(jié)果表明:傳送帶清糞蛋雞舍內(nèi)CO2濃度參數(shù)控制標(biāo)準(zhǔn)建議可取5 000 mg/m3;蛋雞舍冬季連續(xù)通風(fēng)最小通風(fēng)量為0.40~0.50 m3/(h·kg)。該研究為中國新建、改建傳送帶清糞模式蛋雞舍CO2濃度參數(shù)標(biāo)準(zhǔn)的取值以及調(diào)控蛋雞舍冬季通風(fēng)與保溫矛盾等問題提供了參考依據(jù)。
設(shè)施;環(huán)境控制;二氧化碳濃度;蛋雞舍;清糞方式;最小通風(fēng)量
冬季蛋雞舍通風(fēng)量影響舍內(nèi)溫度穩(wěn)定性和空氣質(zhì)量,進(jìn)而影響蛋雞的健康和生產(chǎn)性能[1-3]。冬季低溫氣候蛋雞舍通風(fēng)換氣所需要的通風(fēng)量,主要為排除蛋雞舍內(nèi)的污濁空氣,供給蛋雞足夠的氧氣。蛋雞舍冬季最小通風(fēng)量以CO2平衡原理設(shè)計計算,CO2的取值大小決定了雞舍的最小通風(fēng)量和雞舍的通風(fēng)耗熱量。依據(jù)最小通風(fēng)量和舍內(nèi)最低氣溫要求來設(shè)計雞舍圍護(hù)結(jié)構(gòu)的保溫性能,才能協(xié)調(diào)好保溫與通風(fēng)矛盾問題[3]。國外學(xué)者對用CO2濃度指標(biāo)確定畜禽舍冬季最小通風(fēng)量進(jìn)行了大量的研究[4-6],Pedersen等[6]分析了熱、濕和CO2濃度平衡3種通風(fēng)量計算方法,表明CO2平衡確定的通風(fēng)量與濕度平衡計算值之間的相關(guān)系數(shù)為0.95。中國蛋雞舍用CO2濃度平衡確定冬季通風(fēng)量的研究報道甚少,主要是測試分析了蛋雞舍內(nèi)CO2濃度的分布規(guī)律[7]。
中國傳統(tǒng)蛋雞舍主要是刮板式清糞系統(tǒng),清糞周期較長,且存在飲水器漏水、清糞不徹底等問題,易造成雞糞發(fā)酵,導(dǎo)致舍內(nèi)濕度、CO2、NH3濃度較高,蛋雞舍內(nèi)CO2濃度與NH3濃度顯著正相關(guān)[8],為保證舍內(nèi)NH3濃度不超標(biāo)(<15 mg/m3),不影響蛋雞的健康和生產(chǎn)性能,中國畜禽場環(huán)境質(zhì)量標(biāo)準(zhǔn)[9](NY/T 388-1999)規(guī)定蛋雞舍內(nèi)CO2質(zhì)量濃度環(huán)境衛(wèi)生指標(biāo)上限為1 500 mg/m3。近年來蛋雞養(yǎng)殖設(shè)備及環(huán)境調(diào)控技術(shù)發(fā)展迅速,蛋雞舍普遍采用傳送帶清糞且乳頭式飲水器質(zhì)量提高,舍內(nèi)清糞及時、通風(fēng)效率高,雞舍清糞不徹底、雞糞發(fā)酵等一般不發(fā)生,舍內(nèi)濕度和NH3濃度明顯減小[10],中國適用于刮板清糞方式的蛋雞舍內(nèi)CO2濃度控制標(biāo)準(zhǔn)為保證舍內(nèi)NH3濃度不超標(biāo),但對傳送帶清糞蛋雞舍內(nèi)NH3濃度較低環(huán)境條件下CO2濃度現(xiàn)行標(biāo)準(zhǔn)已明顯偏低。本文通過總結(jié)國內(nèi)外不同清糞方式蛋雞舍內(nèi)NH3、CO2濃度測試數(shù)據(jù)結(jié)合不同國家蛋雞舍內(nèi)CO2濃度的控制標(biāo)準(zhǔn),提出傳送帶清糞蛋雞舍內(nèi)CO2濃度參數(shù)調(diào)整建議,并根據(jù)CO2濃度平衡原理,確定蛋雞舍冬季最小通風(fēng)量,為解決北方寒冷地區(qū)蛋雞舍保溫與通風(fēng)的矛盾提供依據(jù)。
蛋雞舍通風(fēng)換氣是調(diào)節(jié)舍內(nèi)空氣環(huán)境的最主要方式,舍內(nèi)空氣質(zhì)量影響蛋雞的健康及生產(chǎn)性能[10-11],蛋雞舍內(nèi)CO2濃度代表舍內(nèi)空氣的污濁程度,而雞舍的有害氣體產(chǎn)生主要來源于雞糞,近年來傳送帶清糞技術(shù)的發(fā)展,實(shí)現(xiàn)了“糞不落地”即可每天及時傳送到舍外,顯著改善了舍內(nèi)的空氣質(zhì)量。通過總結(jié)國內(nèi)外學(xué)者對不同清糞方式蛋雞舍內(nèi)NH3、CO2濃度等進(jìn)行的大量試驗(yàn)研究(見表1)[12-22]可知:蛋雞舍內(nèi)CO2濃度與NH3濃度顯著相關(guān),傳送帶清糞蛋雞舍內(nèi)NH3濃度比刮板清糞雞舍明顯降低,合理組織通風(fēng)下舍內(nèi)CO2質(zhì)量濃度低于5 000 mg/m3時,舍內(nèi)NH3質(zhì)量濃度低于15 mg/m3。Liang等[13]通過對高床、傳送帶清糞蛋雞舍內(nèi)NH3濃度試驗(yàn)研究,舍內(nèi)NH3濃度隨舍外溫度降低、通風(fēng)量的減小而升高,且傳送帶清糞周期影響舍內(nèi)NH3濃度含量;為研究蛋雞舍內(nèi)有害氣體濃度相互關(guān)系以及對蛋雞健康、生產(chǎn)性能的影響,Kocaman等[8]對288只24周齡的蛋雞,連續(xù)2個月試驗(yàn)研究,結(jié)果表明蛋雞舍內(nèi)CO2濃度與NH3濃度顯著正相關(guān)(<0.01,=0.86)。
表1 蛋雞舍內(nèi)NH3、CO2濃度部分?jǐn)?shù)據(jù)總結(jié)表
Ni等[14]進(jìn)行連續(xù)兩年試驗(yàn)研究2種不同清糞蛋雞舍內(nèi)NH3、CO2等有害氣體濃度之間的變化規(guī)律,發(fā)現(xiàn)傳統(tǒng)高床清糞、傳送帶清糞蛋雞舍內(nèi)NH3、CO2濃度變化趨勢一致,與蛋雞通風(fēng)量顯著負(fù)相關(guān),舍內(nèi)NH3、CO2濃度同升同減,且舍內(nèi)CO2質(zhì)量濃度低于5 000 mg/m3時,舍內(nèi)NH3質(zhì)量濃度低于15 mg/m3,試驗(yàn)結(jié)果顯示傳送帶清糞兩棟蛋雞舍內(nèi)平均CO2質(zhì)量濃度分別為4 508.04、4 488.39 mg/m3,NH3質(zhì)量濃度分別為10.09、9.79 mg/m3;Chai等[21]對蛋雞舍內(nèi)不同測點(diǎn)研究表明NH3質(zhì)量濃度為8.65、9.11、7.51、7.44 mg/m3,CO2質(zhì)量濃度5 427.32、5 338.92、5 191.61、5 189.64 mg/m3;Lin等[15]研究高床清糞蛋雞舍、Alberdi等[16]模擬研究富集籠養(yǎng)傳送帶清糞蛋雞舍、Zhao等[17-19]對比研究傳統(tǒng)籠養(yǎng)、棲架飼養(yǎng)、富集籠養(yǎng)蛋雞舍(<0.05),舍內(nèi)NH3、CO2濃度變化規(guī)律驗(yàn)證了Kocaman[8]、Ni[14]等研究結(jié)論:蛋雞舍內(nèi)CO2濃度與NH3濃度之間顯著正相關(guān),傳送帶清糞蛋雞舍內(nèi)NH3濃度較低,且舍內(nèi)CO2質(zhì)量濃度低于5 000 mg/m3時,合理組織通風(fēng)舍內(nèi)NH3質(zhì)量濃度低于15 mg/m3。
國外學(xué)者Kocaman等[8]對蛋雞舍內(nèi)影響蛋雞生產(chǎn)性能因素的研究分析表明蛋雞舍內(nèi)CO2質(zhì)量濃度小于6 187 mg/m3、NH3質(zhì)量濃度小于15 mg/m3,蛋雞生產(chǎn)性能、健康、免疫力不受影響,驗(yàn)證了學(xué)者Ellen等[23-24]對舍內(nèi)CO2濃度、NH3濃度對蛋雞生產(chǎn)性能、健康等研究結(jié)論;國內(nèi)學(xué)者施正香等[25]對華北地區(qū)商品蛋雞舍冬季環(huán)境試驗(yàn)研究表明舍內(nèi)CO2質(zhì)量濃度小于5 000 mg/m3,對蛋雞健康及生產(chǎn)性能基本沒有影響;吳鵬威等[26]研究表明冬季傳送帶清糞蛋雞舍進(jìn)風(fēng)口、中間、出風(fēng)口位置CO2質(zhì)量濃度分別為5 700、5 798、5 983 mg/m3時,蛋雞舍進(jìn)風(fēng)口、中間、出風(fēng)口位置蛋雞產(chǎn)蛋率無顯著變化;國內(nèi)學(xué)者研究[27]表明蛋雞舍內(nèi)CO2質(zhì)量濃度為7 548~11 323 mg/m3時,蛋雞產(chǎn)蛋率下降、蛋殼變薄、蛋質(zhì)量變??;據(jù)試驗(yàn)報道[28]:蛋雞舍內(nèi)CO2質(zhì)量濃度為10 312~11 963 mg/m3時,雛雞出現(xiàn)輕微痛苦狀。
不同國家蛋雞舍內(nèi)允許的CO2濃度標(biāo)準(zhǔn)不同,CIGR[30](international commission of agricultural engineering)、OSHA[17](occupational safety and health administration)規(guī)定的蛋雞舍CO2質(zhì)量濃度分別為5 000、8 000 mg/m3,其他國家傳送帶清糞蛋雞舍內(nèi)CO2濃度標(biāo)準(zhǔn)見下表2。中國1999年制定的蛋雞舍內(nèi)CO2濃度標(biāo)準(zhǔn)[9],適用于NH3濃度較高的傳統(tǒng)刮板清糞蛋雞舍,隨著環(huán)境調(diào)控技術(shù)與設(shè)備的改進(jìn),蛋雞舍內(nèi)有害氣體濃度及通風(fēng)效率也發(fā)生了相應(yīng)的改變。根據(jù)國內(nèi)外NH3濃度、CO2濃度研究數(shù)據(jù)、行業(yè)標(biāo)準(zhǔn)以及對蛋雞健康、生產(chǎn)性能的研究[19-29]可知,中國傳送帶清糞蛋雞舍內(nèi)CO2質(zhì)量濃度參數(shù)標(biāo)準(zhǔn)提高到5000 mg/m3左右,合理的通風(fēng)組織下蛋雞舍內(nèi)NH3質(zhì)量濃度基本不會超過15 mg/m3,對蛋雞健康以及生產(chǎn)性能基本沒有影響。
表2 部分國家傳送帶清糞蛋雞舍CO2質(zhì)量濃度標(biāo)準(zhǔn)[29]
根據(jù)舍內(nèi)CO2濃度平衡原理[20],雞舍通風(fēng)量的計算公式(1)為
式中為冬季雞舍通風(fēng)量,m3/h;為舍內(nèi)蛋雞只數(shù),只;為每只蛋雞的CO2產(chǎn)量,L/(h·只);1為蛋雞舍內(nèi)空氣中CO2的濃度標(biāo)準(zhǔn),L/m3;2為舍外空氣中CO2含量,0.3 L/m3。
冬季蛋雞舍的適宜溫度[28]為13~24 ℃,蛋雞開產(chǎn)后質(zhì)量變化波動不大,蛋雞質(zhì)量約為1.3~1.8 kg,蛋雞舍CO2主要源自蛋雞的呼吸代謝以及糞便,Li等[32]研究表明對蛋雞舍通風(fēng)量的研究時糞尿產(chǎn)生CO2量可忽略不計,CIGR[31]估算各種畜禽每產(chǎn)熱單位(hpu,20 ℃時1 000 W總產(chǎn)熱量稱為1個產(chǎn)熱單位)的平均CO2產(chǎn)量為0.185 m3/h。根據(jù)CIGR[31]規(guī)定的蛋雞呼吸產(chǎn)生CO2量、產(chǎn)熱量計算式及修正(CIGR中修正公式(23)),當(dāng)?shù)半u舍內(nèi)CO2濃度標(biāo)準(zhǔn)為5 000 mg/m3時,得出維持舍內(nèi)不同溫度,傳送帶清糞蛋雞舍冬季最小通風(fēng)量計算式(2),維持蛋雞舍內(nèi)溫度下限為13 ℃[27-28],傳送帶清糞蛋雞舍冬季最小通風(fēng)量為0.40~0.50 m3/(h·kg)
式中為最小通風(fēng)量,m3/(h·kg);為產(chǎn)蛋性能,=0.05 kg/d;為每只蛋雞的質(zhì)量,kg/只;為冬季舍內(nèi)計算溫度,℃。
國外學(xué)者Li等[32-36]都對蛋雞舍冬季最小通風(fēng)量進(jìn)行了研究,研究數(shù)據(jù)表明:蛋雞質(zhì)量為1.5 kg左右,傳送帶清糞蛋雞舍內(nèi)冬季最小通風(fēng)量約為0.28~0.54 m3/(h·kg);中國[7,25]傳送帶清糞蛋雞舍冬季最小通風(fēng)量約為0.87~1.0 m3/(h·kg)。本研究通過CO2濃度平衡原理確定的蛋雞舍冬季最小通風(fēng)量約為0.40~0.50 m3/(h·kg),與國外蛋雞舍冬季最小通風(fēng)量基本一致,但明顯小于國內(nèi)蛋雞冬季最小通風(fēng)量,完善修訂傳送帶清糞蛋雞舍內(nèi)CO2濃度,合理組織蛋雞舍內(nèi)通風(fēng),才能有效解決雞舍保溫與通風(fēng)矛盾。
中國蛋雞舍冬季最小通風(fēng)量一般采用傳統(tǒng)經(jīng)驗(yàn)值、推薦值等,蛋雞舍冬季最小通風(fēng)量較大,冬季一般采用間歇通風(fēng)解決通風(fēng)與保溫的矛盾,間歇通風(fēng)造成舍內(nèi)溫差和溫度波動大,影響蛋雞生產(chǎn)性能與健康,蛋雞舍內(nèi)CO2濃度平衡確定的傳送帶清糞蛋雞舍冬季最小通風(fēng)量較小可保持蛋雞舍連續(xù)通風(fēng),維持蛋雞舍內(nèi)溫度穩(wěn)定,舍內(nèi)CO2濃度、NH3濃度不超標(biāo),可以降低蛋雞舍冬季保溫成本,協(xié)調(diào)蛋雞舍冬季通風(fēng)與保溫的矛盾。
1)雞舍的清糞方式是影響蛋雞舍內(nèi)空氣環(huán)境質(zhì)量的關(guān)鍵因素。傳統(tǒng)刮板清糞方式蛋雞舍內(nèi)NH3質(zhì)量濃度普遍較高,對于改建、新建蛋雞舍建議采用傳送帶清糞方式,利于減少雞舍冬季通風(fēng)換氣量、提高舍內(nèi)溫度,解決雞舍保溫與通風(fēng)矛盾。
2)中國1999年制定的農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)的蛋雞舍內(nèi)CO2質(zhì)量濃度為1 500mg/m3,適用于傳統(tǒng)高床定期清糞、刮板清糞蛋雞舍;對新的傳送帶清糞蛋雞舍內(nèi)CO2質(zhì)量濃度控制標(biāo)準(zhǔn)建議提高到5 000 mg/m3。
3)蛋雞舍內(nèi)CO2質(zhì)量濃度平衡確定的傳送帶清糞蛋雞舍冬季最小通風(fēng)量為0.40~0.50 m3/(h·kg)。雞舍圍護(hù)結(jié)構(gòu)的保溫性能設(shè)計應(yīng)維持蛋雞舍內(nèi)溫度下限為13 ℃,保持雞舍連續(xù)通風(fēng),舍內(nèi)污染物濃度不超標(biāo),以滿足雞舍冬季通風(fēng)與保溫的需要。
[1] Al-Saffar A A, Rose S P. Ambient temperature and the egg laying characteristics of laying fowl[J]. World’s Poultry Science Journal, 2002, 58(3): 317-331.
[2] Zhao Yang, Xin Hongwei, Shepherd Timothy A, et al. Modelling ventilation rate, balance temperature and supplemental heat need in alternative vs. conventional laying-hen housing systems[J]. Biosystems Engineering, 2013, 115(3): 311-323.
[3] 汪靖,江曉明,李輝. 不同季節(jié)種雞舍通風(fēng)系統(tǒng)的調(diào)控[J]. 中國家禽,2016(1):71-72.
[4] Van Ouverkerk E N J, Pedersen S?ren. Application of the carbon dioxide mass balance method to evaluate ventilation rates in livestock buildings[J]. Proc Xii Cigr'94, Italy, 1994.
[5] Koerkamp P W G G, Metz J H M, Uenk G H, et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe[J]. Journal of Agricultural Engineering Research, 1998, 70: 79-95.
[6] Pedersen S?ren, Takai Hisamitsu, Johnsen Jan Ove, et al. A comparison of three balance methods for calculating ventilation rates in livestock buildings[J]. Journal of Agricultural Engineering Research, 1998, 70(1): 25-37.
[7] 俞宏軍,李保明,施正香,等. 北京密閉式商品蛋雞舍冬季環(huán)境研究(初報)[J]. 農(nóng)業(yè)工程學(xué)報,1997,13(5):68-72.
Yu Hongjun, Li Baoming, Shi Zhengxiang, et al. Winter environment analysising on enclosed commercial layer housing in Beiing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1997, 13(5): 68-72. (in Chinese with English abstract)
[8] Kocaman Bahar, Esenbuga Nurinisa, Yildiz Ahmet, et al. Effect of environmental conditions in poultry houses on the performance of laying hens[J]. International Journal of Poultry Science, 2006, 5(1): 26-30.
[9] 畜禽場環(huán)境質(zhì)量標(biāo)準(zhǔn):NY/ T388-1999[S]. 1999.
[10] 程龍梅,吳銀寶,王燕,等. 清糞方式對蛋雞舍內(nèi)空氣環(huán)境質(zhì)量及糞便理化性質(zhì)的影響[J]. 中國家禽,2015(18):22-27.
[11] Green Angela R, Wesley Irene, Trampel Darrell W, et al. Air
quality and hen health status in three types of commercial laying hen houses:[C]//American Society of Agricultural and Biological Engineers: 2007 ASAE Annual Meeting, 2007.
[12] McQuitty J B, Feddes J J R, Leonard J J. Air quality in commercial laying barns[J]. Canadian Agricultural Engineering, 1985, 27(2): 13-19.
[13] Liang Yi, Xin Hongwei, Wheeler E F, et al. Ammonia emissions from US laying hen houses in Iowa and Pennsylvania[J]. Transactions of the ASAE, 2005, 48(5): 1927-1941.
[14] Ni Ji-Qin, Chai Lilong, Chen Lide, et al. Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses[J]. Atmospheric Environment, 2012, 57: 165-174.
[15] Lin X J, Cortus E L, Zhang R, et al. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses[J]. Atmospheric Environment, 2012, 46: 81-91.
[16] Alberdi Oier, Arriaga Haritz, Calvet Salvador, et al. Ammonia and greenhouse gas emissions from an enriched cage laying hen facility[J]. Biosystems Engineering, 2016, 144: 1-12.
[17] Zhao Yang, Shepherd Timothy A, Li Hong, et al. Environmental assessment of three egg production systems-Part I: Monitoring system and indoor air quality[J]. Poultry Science, 2015, 94(3): 518-533.
[18] Shepherd Timothy A, Zhao Yang, Li Hong, et al. Environmental assessment of three egg production systems: Part II. Ammonia, greenhouse gas, and particulate matter emissions[J]. Poultry science, 2015, 94(3): 534-543.
[19] Zhao Yang, Shepherd Timothy A, Xin Hongwei, et al. Concentrations of ammonia, greenhouse gases and particulate matters in conventional cage, aviary, and enriched colony laying-hen houses[C]//American Society of Agricultural and Biological Engineers: 2014 Montreal, Quebec Canada July 13-July 16, 2014, 2014
[20] Xin H, Gates R S, Green A R, et al. Environmental impacts and sustainability of egg production systems[J]. Poultry Science, 2011, 90(1): 263-277.
[21] Chai Li-Long, Ni Ji-Qin, Chen Yan, et al. Assessment of long-term gas sampling design at two commercial manure-belt layer barns[J]. Journal of the Air & Waste Management Association, 2010, 60(6): 702-710.
[22] Green Angela R, Xin Hongwei. Effects of stocking density and group size on heat and moisture production of laying hens under thermoneutral and heat-challenging conditions[J]. Transactions of the ASABE, 2009, 52(6): 2027.
[23] Ellen H H, Bottcher R W, Von Wachenfelt E, et al. Dust levels and control methods in poultry houses[J]. Journal of Agricultural Safety and Health, 2000, 6(4): 275.
[24] Kocaman Bahar, Yaganoglu A Vahap, Yanar Mete. Combination of fan ventilation system and spraying of oil-water mixture on the levels of dust and gases in caged layer facilities in Eastern Turkey[J]. Journal of Applied Animal Research, 2005, 27(2): 109-111.
[25] 施正香,俞宏軍,李保明,等. 華北地區(qū)商品蛋雞舍冬季環(huán)境管理[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,1997,2(6):71-75.
Shi Zhengxiang, Wen Shuxiang. Environmental management on commercial layer housing during winter in North China[J]. Journal of China Agricultural University, 1997, 2(6): 71-75. (in Chinese with English abstract)
[26] 吳鵬威. 半開放式雞舍不同季節(jié)環(huán)境參數(shù)變化規(guī)律及其對蛋雞生產(chǎn)性能影響的研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2013.
Wu Pengwei. Research About Variation of Semi-open Sheds in Different Seasons on Environmental Parameters and its Effect the Performance of Laying Hens[D]. Baoding: Hebei Agricultural University, 2013. (in Chinese with English abstract)
[27] 馬承偉,苗香雯. 農(nóng)業(yè)生物環(huán)境工程[M]. 中國農(nóng)業(yè)出版社,2005.
[28] 董紅敏,陶秀萍.畜禽養(yǎng)殖環(huán)境控制與通風(fēng)降溫[M]. 北京:中國農(nóng)業(yè)出版社,2007.
[29] Pedersen S?ren, Blanes-Vidal Victoria, Joergensen H, et al. Carbon dioxide production in animal houses: A literature review[J]. Agricultural Engineering International: CIGR Journal, 2008.
[30] Pedersen S, S?llvik K. Heat and moisture production at animal and house levels. 4th Report of, Working Group on Climatization of Animal Houses[J]. CIGR Horsens, 2002.
[31] Pedersen S, S?llvik K. Climatization of Animal Houses-Heat and Moisture production at animal and house level 4 th report of CIGR working group[J]. Research Centre Bygholm, Danish Insitute of Agricultural Sciences, Horsens, Demark, 2002.
[32] Li Hong, Xin Hongwei, Liang Yi, et al. Comparison of direct vs. indirect ventilation rate determinations in layer barns using manure belts[J]. Transactions of the ASAE, 2005, 48(1): 367-372.
[33] Li H, Liang Y, Xin H. Determination of ventilation rates for a manure-belt laying hen house using CO2balance[J]. Journal Agricultural & Food Chemistry, 2005, 95(1): 378-385.
[34] Chai L L, Ni J Q, Diehl C A, et al. Ventilation rates in large commercial layer hen houses with two-year continuous monitoring[J]. British Poultry Science, 2012, 53(1): 19-31.
[35] Feddes J J R, DeShazer J A. Feed consumption as a parameter for establishing minimum ventilation rates[J]. Transactions of the ASAE, 1991, 31(2): 571-575.
[36] Lim T T, Heber A J, Ni J Q. Air quality measurement at a laying hen house[C]//Ventilation Airflow Measurement: ASAE Meeting Paper, 2003.
Determination of carbon dioxide concentration standards and minimum ventilation rates of layer house in winter
Wang Yang1,2, Wang Chaoyuan1,3, Li Baoming1,3※
(1.,,100083,; 2.100083,;3.100083,)
The CO2concentration is required to be below 1500 mg/m3(Environmental Quality Standards for the Livestock and Poultry Farm of China, published in 1999) in layer hen houses where the manure is disposed by powered scraper, the litters generally need to remind and the drinking device has water leak. Consequently, moisture and NH3levels in such barns are much high. Also, air temperature is much lower in winter, because the minimum ventilation rate is large in winter. However, the manure is cleaned daily in new poultry house with manure convey belt. Meanwhile, the aerial pollutants (CO2and NH3) are reduced and the relative humidity is decreased. Indoor air quality in this kind of poultry house is dramatically improved. A new standard of CO2concentration and the minimum ventilation rate of layer house with manure convey belt should be reconsidered. Determining the CO2concentration standards for the manure convey belt in layer hen houses is needed. The objectives of this work were to draw a conclusion about the CO2concentration levels and use it as a reference to calculate the minimum ventilation rate in winter. This review summarized the recent measurements of the emission rates of aerial NH3and the CO2concentrations in poultry houses in which the laying hens were kept in cages. The relationship between CO2and NH3was also described based on the data got in the poultry houses with different manure removing way from the domestic and foreign study. In addition, the minimum ventilation rate is important for ensuring the ideal air quality in poultry house in winter. The optimum ventilation is one of the factors affecting poultry production and energy consumption. Considering the mass conservation under steady-state conditions in the layer hen building, there are 2 main sources of CO2in poultry house, and most of the CO2is produced by respiration processes of layer hens, if neglecting the amount of CO2emitted from manure. The minimum temperature value for layer houses was 13 ℃ in this study. The following conclusions were drawn in this study: 1) There was a positive and significant correlation between CO2and NH3concentration in layer houses based on analyzing the data of previous researches. The standards of CO2concentration and NH3concentration were suggested to be 5000 mg/m3and less than 15 mg/m3respectively in the layer hen houses with manure convey belt. This condition would not reduce the hen’s performance and defenses. Primary CO2concentration standards persisted when the feces were scraped by powered scraper to a cross conveyor at the end of the barn; 2) Average NH3concentrations in the layer house with manure convey belt was largely less than the traditional house with the scraper. Therefore, rebuilding new layer hen’s building equipped with the manure convey belt is crucial not only for indoor environment, but also for ventilation system; 3) Ventilation rate was calculated using the rate of laying hen in winter based on CO2mass balances from the literature. The constantly minimum ventilation rates were 0.40-0.50 m3/(h·kg) for the layer houses with manure convey belt. The new standards of CO2concentration and ventilation rate were beneficial for improving indoor environment control and ventilation energy efficiency, and saving constructional costs. Furthermore, the results of this paper provide the reference for solving the contradiction between ventilation and insulation system in layer house. Also, it can improve the versatility of poultry environment and provide the support for emission studies using the new standard of the CO2to evaluate the poultry building environment.
facilities; environmental control; carbon dioxide; layer house; manure belt; minimum ventilation rates
10.11975/j.issn.1002-6819.2017.02.033
S831.9; X512
A
1002-6819(2017)-02-0240-05
2016-04-22
2016-11-10
國家863課題任務(wù)(2013AA10230602);國家蛋雞產(chǎn)業(yè)技術(shù)體系(CARS-41);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項資金資助(2015SYL001)。
王陽,女,博士生,山東濰坊人,研究方向?yàn)樾笄萁】淡h(huán)境及其控制技術(shù)。北京中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院 100083。 Email:wangyang512@cau.edu.cn
李保明,男,教授,浙江縉云人,博士生導(dǎo)師,主要從事畜禽設(shè)施養(yǎng)殖工藝與環(huán)境研究。北京中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院 100083。Email:libm@cau.edu.cn
王 陽,王朝元,李保明. 蛋雞舍冬季CO2濃度控制標(biāo)準(zhǔn)與最小通風(fēng)量確定[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(2):240-244. doi:10.11975/j.issn.1002-6819.2017.02.033 http://www.tcsae.org
Wang Yang, Wang Chaoyuan, Li Baoming. Determination of carbon dioxide concentration standards and minimum ventilation rates of layer house in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 240-244. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.033 http://www.tcsae.org