王世金,魏彥強(qiáng)
(1.中國(guó)科學(xué)院西北生態(tài)環(huán)境資源研究院冰凍圈科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730000;2.中國(guó)科學(xué)院西北生態(tài)環(huán)境資源研究院甘肅省遙感重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730000)
生態(tài)安全閾值研究述評(píng)與展望
王世金1,魏彥強(qiáng)2
(1.中國(guó)科學(xué)院西北生態(tài)環(huán)境資源研究院冰凍圈科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730000;2.中國(guó)科學(xué)院西北生態(tài)環(huán)境資源研究院甘肅省遙感重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730000)
隨著全球變化的加劇,生態(tài)環(huán)境不斷受到干擾和損害,生態(tài)安全問(wèn)題日益突出。21世紀(jì)以來(lái),生態(tài)系統(tǒng)風(fēng)險(xiǎn)或安全評(píng)估已成為全球變化和生態(tài)學(xué)研究的國(guó)際前沿和熱點(diǎn),其不同尺度不同類型生態(tài)安全閾值的判別和認(rèn)知是生態(tài)系統(tǒng)風(fēng)險(xiǎn)或安全評(píng)估的關(guān)鍵和核心,更是全球變化脅迫下生態(tài)系統(tǒng)適應(yīng)性管理的基礎(chǔ)。本研究以生態(tài)系統(tǒng)不同脅迫要素為切入點(diǎn),對(duì)生態(tài)安全閾值研究理論與實(shí)踐發(fā)展進(jìn)行了綜述,大量文獻(xiàn)顯示通過(guò)提高生態(tài)安全閾值的判別和預(yù)估水平,不僅可揭示生態(tài)系統(tǒng)穩(wěn)態(tài)轉(zhuǎn)化與氣候變化、碳氮循環(huán)、土地和草地利用、區(qū)域政策制度等脅迫因子的相互作用關(guān)系,而且對(duì)于退化生態(tài)系統(tǒng)修復(fù)及其生態(tài)環(huán)境保護(hù)與管理意義重大。當(dāng)然,鑒于不同脅迫因子及其不同類型生態(tài)系統(tǒng)結(jié)構(gòu)健康性及服務(wù)功能可持續(xù)性判別的復(fù)雜性,生態(tài)安全閾值厘定和預(yù)測(cè)能力極為有限,仍存在很大不確定性。
生態(tài)系統(tǒng);安全閾值;述評(píng)與展望
生態(tài)安全一般有廣義和狹義的兩種理解。狹義生態(tài)安全是指生態(tài)系統(tǒng)自身安全,包括生態(tài)系統(tǒng)初級(jí)生產(chǎn)力、結(jié)構(gòu)與功能、生物多樣性、生態(tài)承載力等。廣義生態(tài)安全是除自身安全外的生態(tài)系統(tǒng)服務(wù)功能可持續(xù)狀況,包括氣候及水文調(diào)節(jié)、養(yǎng)分循環(huán)、水源凈化、水土保持、水源涵養(yǎng)、防風(fēng)固沙、光合固碳氮、食物及資源供給、環(huán)境凈化、生態(tài)旅游及文化娛樂(lè)功能及作用等[1]??傮w上,生態(tài)安全與生態(tài)系統(tǒng)結(jié)構(gòu)健康狀態(tài)及其服務(wù)功能可持續(xù)性之間存在內(nèi)在聯(lián)系。生態(tài)系統(tǒng)結(jié)構(gòu)的健康、完整性是生態(tài)系統(tǒng)自身安全的關(guān)鍵,更是生態(tài)系統(tǒng)為人類提供服務(wù)的基礎(chǔ),生態(tài)系統(tǒng)服務(wù)功能的可持續(xù)性則在很大程度上由生態(tài)系統(tǒng)自身結(jié)構(gòu)得以表征。
隨著全球生態(tài)環(huán)境的惡化和可持續(xù)發(fā)展問(wèn)題的日益突出,21世紀(jì)以來(lái),生態(tài)系統(tǒng)風(fēng)險(xiǎn)或安全評(píng)估已成為全球變化和生態(tài)學(xué)研究的國(guó)際前沿和熱點(diǎn)。特別地,近期“未來(lái)地球”國(guó)際計(jì)劃將地球生命承載力極限與臨界點(diǎn)研究作為其重要的研究問(wèn)題之一,強(qiáng)調(diào)對(duì)全球環(huán)境變化對(duì)人類的食物、水、健康和能源等需求進(jìn)行早期預(yù)警[2]。國(guó)內(nèi)外許多學(xué)者從不同角度對(duì)生態(tài)安全基本概念及內(nèi)涵進(jìn)行了系統(tǒng)闡述,并基于不同尺度對(duì)其不同生態(tài)系統(tǒng)安全風(fēng)險(xiǎn)進(jìn)行了評(píng)估[3-5]。為維護(hù)國(guó)家或區(qū)域生態(tài)安全,我國(guó)已將“生態(tài)紅線”制度和“生態(tài)文明”建設(shè)上升為國(guó)家戰(zhàn)略[6-7]。生態(tài)系統(tǒng)面臨風(fēng)險(xiǎn)強(qiáng)度及時(shí)空格局的系統(tǒng)評(píng)估是全球變化背景下生態(tài)系統(tǒng)風(fēng)險(xiǎn)適應(yīng)性管理的基礎(chǔ),而生態(tài)安全閾值的判別和厘定則是生態(tài)系統(tǒng)風(fēng)險(xiǎn)或安全評(píng)估的關(guān)鍵和核心[8]。目前,國(guó)內(nèi)外生態(tài)安全閾值研究方興未艾[9-13]。20世紀(jì)70年代以來(lái),隨著生態(tài)安全內(nèi)涵及外延的擴(kuò)展,生態(tài)安全閾值理論也不斷受到生態(tài)學(xué)和經(jīng)濟(jì)學(xué)界與政界的廣泛關(guān)注,其研究已經(jīng)在不同尺度、不同生態(tài)系統(tǒng)類型廣泛開(kāi)展,其概念、研究方法及實(shí)踐應(yīng)用也在不斷完善之中。通過(guò)提高生態(tài)系統(tǒng)安全閾值的判別水平,不僅可揭示生態(tài)系統(tǒng)安全閾值與氣候變化及土地利用、放牧活動(dòng)和政策制度等影響因子間的相互作用關(guān)系,而且對(duì)于發(fā)展和完善生態(tài)系統(tǒng)科學(xué)管理體系也具有一定理論意義。
20世紀(jì)70年代,May[14]對(duì)生態(tài)系統(tǒng)多穩(wěn)態(tài)轉(zhuǎn)換與閾值的描述,首次提出生態(tài)閾值概念,認(rèn)為閾值反應(yīng)生態(tài)系統(tǒng)可能發(fā)生狀態(tài)變化的臨界點(diǎn)。Westoby等[15]亦認(rèn)為生態(tài)系統(tǒng)存在多個(gè)不平衡狀態(tài), 而這些狀態(tài)之間具有一定閾值。Friedel[16]認(rèn)為生態(tài)閾值是生態(tài)系統(tǒng)兩種不同狀態(tài)在時(shí)空上的界限。在沒(méi)有管理干預(yù)背景下,在實(shí)際時(shí)間尺度上,兩種生態(tài)系統(tǒng)狀態(tài)的時(shí)空界限是不可逆轉(zhuǎn)的。Schaeffer等[17]提出生態(tài)系統(tǒng)功能閾值,認(rèn)為人類對(duì)環(huán)境資源的開(kāi)發(fā)利用和社會(huì)經(jīng)濟(jì)的發(fā)展不能超過(guò)此閾值。Brown等[18]認(rèn)為生態(tài)閾值的確定旨在低投入條件下能夠可持續(xù)性地管理森林、灌木和草地,從而獲得最大生態(tài)和經(jīng)濟(jì)收益。Muradian[19]定義生態(tài)閾值為獨(dú)立生態(tài)變量的關(guān)鍵值,在此關(guān)鍵值前后生態(tài)系統(tǒng)發(fā)生一種狀態(tài)向另一種狀態(tài)的轉(zhuǎn)變。Wiens等[20]認(rèn)為生態(tài)閾值是生態(tài)系統(tǒng)的轉(zhuǎn)變帶,而非一系列的離散點(diǎn)。國(guó)際性學(xué)術(shù)組織“恢復(fù)力聯(lián)盟”(Resilience Alliance)定義生態(tài)閾值為生態(tài)系統(tǒng)的不同生態(tài)特性、功能狀態(tài)之間的分歧點(diǎn)[21]。Larsson[22]在研究草地水資源的分配時(shí)指出,生態(tài)閾值決定環(huán)境質(zhì)量和生物的數(shù)量與物種數(shù)目。Bennett等[23]認(rèn)為生態(tài)閾值是生態(tài)系統(tǒng)從一種狀態(tài)快速轉(zhuǎn)變?yōu)榱硪粻顟B(tài)的某個(gè)點(diǎn)或一段區(qū)間,推動(dòng)這種轉(zhuǎn)變的動(dòng)力來(lái)自某個(gè)或多個(gè)關(guān)鍵生態(tài)因子微弱的附加改變。Kinzig等[24]認(rèn)為持續(xù)的外來(lái)脅迫會(huì)降低生態(tài)系統(tǒng)的恢復(fù)力,從而使其超過(guò)閾值的范圍并發(fā)生穩(wěn)態(tài)轉(zhuǎn)換。李和平等[25]認(rèn)為生態(tài)閾值是一個(gè)生物或生態(tài)系統(tǒng)與環(huán)境相對(duì)應(yīng)的一系列質(zhì)變點(diǎn)和由此發(fā)生的質(zhì)變軌跡,而不只是死亡或存活的臨界點(diǎn),可以是“點(diǎn)”、“線”或“面”。Scheffer等[26]認(rèn)為生態(tài)閾值是復(fù)雜生態(tài)系統(tǒng)中生態(tài)系統(tǒng)發(fā)生崩潰或者積極方向改變的臨界點(diǎn)。Larsen等[27]認(rèn)為生態(tài)閾值代表了生態(tài)過(guò)程或參數(shù)發(fā)生突變的一個(gè)點(diǎn),此突變點(diǎn)響應(yīng)于一個(gè)驅(qū)動(dòng)力相對(duì)較小的變化。生態(tài)系統(tǒng)狀態(tài)變化與環(huán)境壓力(驅(qū)動(dòng)力)之間存在3種假定關(guān)系,前一種為線性關(guān)系(圖1a),后二者為非線性(突變)關(guān)系,且后二者過(guò)程為可逆過(guò)程(圖1b,c)。
圖1 在環(huán)境變化或人為干擾條件下生態(tài)系統(tǒng)狀態(tài)變化的假設(shè)軌跡[27]Fig.1 Hypothetical trajectories of change in the ecosystem state as a function of changes in environmental conditions or anthropogenic disturbance 生態(tài)狀態(tài)反映了一種生態(tài)系統(tǒng)的特性,如物種多樣性、生物量產(chǎn)量及其一些所需的生態(tài)系統(tǒng)服務(wù)。其中,a顯示了一種線性響應(yīng),且無(wú)閾值發(fā)生。b顯示僅當(dāng)一個(gè)特定環(huán)境閾值(向下的粗箭頭)到達(dá)時(shí)生態(tài)系統(tǒng)將產(chǎn)生一個(gè)戲劇性變化,且這個(gè)變化是可逆的,并且將伴隨同一路徑。c顯示生態(tài)系統(tǒng)變化軌跡(實(shí)線)和恢復(fù)軌跡(虛線)具有不同路徑,即具有滯后效應(yīng)。 Ecological state indicates an ecosystems’ properties such as species diversity, biomass production, or some desired ecosystem service. In a the response is linear and shows no threshold behaviour. In b the ecosystem shows a dramatic response only when a specific threshold is reached (thick downward arrow). In this model the change is reversible and will follow the same path. In c the ecosystem shows a hysteretic response, where the trajectories of change (continuous line) and recovery (dashed line) follow different paths.
國(guó)內(nèi)外生態(tài)閾值概念描述不同,缺乏統(tǒng)一定義,其主要原因是不同尺度不同類型生態(tài)系統(tǒng)平衡狀態(tài)很難確定, 同時(shí)涉及生態(tài)系統(tǒng)自身結(jié)構(gòu)、功能以及外界脅迫因素過(guò)多,其安全閾值呈動(dòng)態(tài)變化特征。然而,多數(shù)學(xué)者公認(rèn)的是,生態(tài)系統(tǒng)具有一定自我調(diào)節(jié)和恢復(fù)性能,生態(tài)破壞一旦超過(guò)其自身恢復(fù)的“生態(tài)閾限”,生態(tài)系統(tǒng)則發(fā)生穩(wěn)態(tài)轉(zhuǎn)換[28],其系統(tǒng)結(jié)構(gòu)功能和穩(wěn)定性則難以恢復(fù)至退化前的原始狀態(tài),其長(zhǎng)期的恢復(fù)或修復(fù)將付出高昂代價(jià)。按劃分標(biāo)準(zhǔn)的不同,其生態(tài)安全閾值類型各異。按生態(tài)系統(tǒng)突變和漸變轉(zhuǎn)化原則,可將生態(tài)安全閾值劃分為生態(tài)安全閾值點(diǎn)和生態(tài)安全閾值帶。按評(píng)估對(duì)象的不同尺度和規(guī)模特征,可分為個(gè)體生態(tài)閾值、種群生態(tài)安全閾值、群落生態(tài)安全閾值、景觀生態(tài)安全閾值、區(qū)域(流域)生態(tài)安全閾值及復(fù)合生態(tài)系統(tǒng)安全閾值等。按脅迫因子類型,可分為生態(tài)系統(tǒng)自身要素脅迫閾值、氣候變化脅迫閾值、人類活動(dòng)脅迫閾值、生源要素脅迫閾值以及多源要素脅迫閾值等。生態(tài)安全閾值大小取決于生態(tài)系統(tǒng)本身的結(jié)構(gòu)(系統(tǒng)物種的多樣性、等級(jí)層次、營(yíng)養(yǎng)結(jié)構(gòu)和聯(lián)結(jié)方式)、功能(生產(chǎn)功能如第一性生產(chǎn)力、碳蓄積能力等)和成熟程度等。
以往生態(tài)閾值研究在草原、森林、湖泊、沼澤、濕地、河流、海洋等不同生態(tài)系統(tǒng)以及在個(gè)體、群落、景觀、生態(tài)系統(tǒng)、區(qū)域(流域)等不同尺度開(kāi)展了廣泛研究,同時(shí)在物種保護(hù)、生態(tài)修復(fù)、生物多樣性保護(hù)、生態(tài)管理等方面也做了大量研究,其進(jìn)展顯著,且通過(guò)建立不同的數(shù)學(xué)模型求解出系統(tǒng)中某一因子的生態(tài)安全閾值,從而判定相關(guān)系統(tǒng)的安全狀態(tài)[29-34]。不同類型、不同尺度生態(tài)系統(tǒng)各脅迫因子相互作用、相互制約,各脅迫因子隨時(shí)空變化而變化,當(dāng)生態(tài)系統(tǒng)自身要素或環(huán)境脅迫因子變化(主要控制變量)超過(guò)一定閾限,將導(dǎo)致整個(gè)生態(tài)系統(tǒng)狀態(tài)變量的巨大變化,這個(gè)閾限便是“脅迫閾限”(stress threshold)。本研究從生態(tài)閾值的脅迫對(duì)象出發(fā),對(duì)生態(tài)安全閾值研究進(jìn)行系統(tǒng)述評(píng)。
2.1 自身要素脅迫閾值
生態(tài)系統(tǒng)群落特征、物種豐富度、生物多樣性、生物量等結(jié)構(gòu)與系統(tǒng)服務(wù)功能安全之間相互作用,相互影響,共同構(gòu)成生態(tài)系統(tǒng)安全體系。生態(tài)系統(tǒng)自身結(jié)構(gòu)越完善,系統(tǒng)安全程度就越高,受外界脅迫影響就越小[35]。例如,Andre’n[36]認(rèn)為在低于10%~30%的棲息地蓋度下,鳥(niǎo)類和哺乳動(dòng)物的物種豐富度會(huì)急劇下降。Hanski等[37]指出,棲息地喪失過(guò)程中存在一個(gè)閾值點(diǎn),到達(dá)這一點(diǎn)時(shí),種群滅絕概率將迅速升高,此“滅絕閾值”取決于有機(jī)體的繁殖率、離開(kāi)棲息地的遷移率以及棲息地的環(huán)境狀況等。在生態(tài)系統(tǒng)尺度上,大量實(shí)驗(yàn)已經(jīng)證明了棲息地大小影響生物多樣性的生態(tài)閾值的存在。當(dāng)植被覆蓋率下降到10%~30%范圍內(nèi),會(huì)發(fā)生物種不呈比例的消失,其30%就是生境破壞的底線[38-39]。例如,外蒙古荒漠草原植被覆蓋度低于30%[40]、福建紅壤林地植被覆蓋度低于20%時(shí)[41],生態(tài)系統(tǒng)就會(huì)持續(xù)退化,自然狀態(tài)下無(wú)法實(shí)現(xiàn)自我修復(fù)。Twardochleb等[42]認(rèn)為,入侵種和捕食者之間的關(guān)系也受到各自種群密度的影響,新西蘭蝸牛(Potamopyrgusantipodarum)入侵過(guò)程與其天敵小龍蝦(Pacifastacusleniusculus)密度密切相關(guān),在小龍蝦密度較小(<0.2個(gè)/m2)環(huán)境下,蝸??梢猿晒θ肭?,而當(dāng)小龍蝦密度超過(guò)0.2個(gè)/m2時(shí),蝸牛則很難建群。同時(shí),生態(tài)系統(tǒng)結(jié)構(gòu)改變影響其生態(tài)服務(wù)功能。Tilman等[43]田間試驗(yàn)表明,提高生物多樣性可以顯著增加植物生產(chǎn)力和資源利用率。王秋生[44]通過(guò)植被控制土壤侵蝕模型得出喬木郁閉度大于0.3,灌草覆蓋度大于40%可達(dá)到最佳水土保持效果。郭忠升[45]通過(guò)植被蓋度與土壤流失量的關(guān)系式計(jì)算得出植被群落最大水土保持作用的臨界蓋度為80%。焦菊英等[46]認(rèn)為黃土高原地區(qū)林草措施要發(fā)揮水土保持作用,林地有效覆蓋度在最大坡度(35°)下為75.5%,相應(yīng)的草地有效覆蓋度為82.6%。另外,生態(tài)系統(tǒng)蟲(chóng)(鼠)等脅迫閾值的確定對(duì)其生態(tài)系統(tǒng)管理意義也很重大。生態(tài)閾值對(duì)于生態(tài)系統(tǒng)蟲(chóng)(鼠)害防御也具有重要作用。駱有慶等[47]研究表明,森林生態(tài)系統(tǒng)中楊樹(shù)天牛的防治生態(tài)閾值為4.8個(gè)羽化孔,并指出對(duì)于以生態(tài)防護(hù)效益為主的防護(hù)林來(lái)說(shuō)經(jīng)濟(jì)閾值具有局限性,而應(yīng)以生態(tài)閾值作為害蟲(chóng)防治的參考依據(jù)。美國(guó)農(nóng)業(yè)部及動(dòng)植物健康檢驗(yàn)局[48]對(duì)美國(guó)西部每年蝗蟲(chóng)成蟲(chóng)種群調(diào)查,認(rèn)為蝗蟲(chóng)種群大于等于9.6頭/m2時(shí)蝗蟲(chóng)暴發(fā)。廉振民等[49]對(duì)甘肅省祁連山東段草地蝗蟲(chóng)復(fù)合防治指標(biāo)進(jìn)行研究,指出在牧草受損量達(dá)到28頭/m2時(shí)進(jìn)行防治。韓崇選等[50]通過(guò)實(shí)驗(yàn)證實(shí),嚙齒動(dòng)物主要危害10年以下幼樹(shù)。徐滿厚等[51]對(duì)單株梭梭(Haloxylonammodendron)整株危害程度與其冠下鼠洞總數(shù)進(jìn)行數(shù)據(jù)擬合,得出二者呈指數(shù)函數(shù)關(guān)系,進(jìn)而得到梭梭鼠害防治生態(tài)閾值鼠洞總數(shù)為5個(gè)/株。
2.2 氣候變化脅迫閾值
未來(lái)50~100年,全球氣候?qū)⒗^續(xù)向增暖的方向發(fā)展[52],在未來(lái)氣候變化情景下,全球變化對(duì)生態(tài)系統(tǒng)風(fēng)險(xiǎn)將進(jìn)一步加劇。氣溫、降水和干旱對(duì)生態(tài)系統(tǒng)脅迫影響最為重要,這3個(gè)關(guān)鍵要素是確定生態(tài)安全閾值的重要指標(biāo),直接或間接影響著生態(tài)系統(tǒng)結(jié)構(gòu)、功能及其植被群落的分布與組分[53-54]。溫度變化直接影響植物光合、呼吸、蒸騰等生理作用。Bachelet等[55]采用生物地理模型(MAPSS)和動(dòng)態(tài)全球植被模型(MC1)相結(jié)合模擬,結(jié)果表明,若溫度升高4.5 ℃,將使美國(guó)主要生態(tài)系統(tǒng)面臨干旱的威脅,并將此值定為溫度影響生態(tài)系統(tǒng)的安全閾值。Scholze等[5]將16種不同GCM模式輸入動(dòng)態(tài)植被模型LPJ,對(duì)氣候變化影響全球生態(tài)系統(tǒng)的風(fēng)險(xiǎn)評(píng)估表明:即使大氣成分保持不變,在全球增暖情景下未來(lái)200年的生態(tài)風(fēng)險(xiǎn)將持續(xù)增加,尤其是增溫>3 ℃時(shí),21世紀(jì)全球碳匯轉(zhuǎn)化為碳源的風(fēng)險(xiǎn)為44%,徑流增加的風(fēng)險(xiǎn)(80%)大于減少。Scheffera等[56]揭示在不同氣候狀態(tài)下寒帶(45°-70° N)森林覆蓋頻率分布存在明顯的替代模式。在寒帶北端和在干燥的大陸南端,無(wú)樹(shù)苔原和干草原分別是該區(qū)唯一可能存在狀態(tài)。當(dāng)溫度超過(guò)一個(gè)顯著的中間范圍,這些無(wú)樹(shù)狀態(tài)則與寒區(qū)森林(大約75%的森林覆蓋率)和兩個(gè)以上稀疏林地(大約20%和45%的森林覆蓋率)共存。然而,中間森林覆蓋率(大約10%、30%、60%的森利覆蓋率)則比較少見(jiàn),表明這3種狀態(tài)可能是瞬時(shí)存在的不穩(wěn)定狀態(tài)。假如該推斷正確,氣候變化將引起寒帶生物群落巨大的非線性變化。Cavanaugh等[57]利用1984-2011年多年遙感影像和氣象數(shù)據(jù)證實(shí),沿美國(guó)佛羅里達(dá)州東北海岸的紅樹(shù)林面積呈增加態(tài)勢(shì),在這個(gè)區(qū)域紅樹(shù)林面積的增加對(duì)應(yīng)于極端冷事件頻率的降低,并且確定-4 ℃為與溫度相關(guān)的生態(tài)閾值,該結(jié)論暗示紅樹(shù)林區(qū)域景觀規(guī)模的增加也許會(huì)在氣溫脅迫閾值超過(guò)-4 ℃的其他區(qū)域出現(xiàn)。氣溫直接影響水體溫度,不同浮游植物其最適溫度各不相同,大多數(shù)浮游植物最適生長(zhǎng)溫度在18~25 ℃之間,藻類優(yōu)勢(shì)種群隨著溫度的變化而改變[58]。Baker等[59]證實(shí),區(qū)域海水表面溫度0.1 ℃的上升已導(dǎo)致有記錄以來(lái)珊瑚漂白區(qū)域數(shù)量35%的增加,而大規(guī)模珊瑚漂白事件即發(fā)生在0.2 ℃及以上溫度海域。Li等[60]對(duì)干旱區(qū)生物土壤結(jié)皮中隱花植物多樣性的維持機(jī)制進(jìn)行了探討,認(rèn)為在區(qū)域尺度上,降水梯度決定著其種類的分布和蓋度,如降水大于300 mm 的科爾沁和毛烏素沙區(qū)發(fā)育以蘚類為優(yōu)勢(shì)的結(jié)皮,而在降水小于200 mm 的穩(wěn)定沙丘發(fā)育以地衣為優(yōu)勢(shì)的結(jié)皮。Li等[61]研究發(fā)現(xiàn):5和30 mm降水事件是荒漠區(qū)植被NDVI開(kāi)始響應(yīng)和發(fā)生較大響應(yīng)的閾值。其中,>30 mm降水事件后NDVI的增長(zhǎng)率是<30 mm降水事件的3~6倍。Phillips等[62]通過(guò)研究極端干旱氣候事件影響亞馬遜熱帶雨林生態(tài)系統(tǒng)固碳服務(wù)功能,結(jié)果表明:2005年夏天爆發(fā)嚴(yán)重干旱,林冠層發(fā)生巨幅改變、生物量大幅降低,碳損失達(dá)到1.2 Pg,對(duì)干旱脅迫非常敏感,碳截獲能力降低。Wang等[63]對(duì)太湖地區(qū)氮磷濕沉降動(dòng)態(tài)進(jìn)行了研究,結(jié)果顯示,太湖地區(qū)每年濕沉降輸入全氮(TN)、全磷(TP)分別為30.2和1.1 kg/hm2,且所有降雨中溶解氮濃度均大于水體富營(yíng)養(yǎng)化閾值,92.5%的降雨中溶解磷大于水體富營(yíng)養(yǎng)化閾值。
2.3 生源要素脅迫閾值
生態(tài)系統(tǒng)生源要素包括水、光、風(fēng)、氮、二氧化碳、磷、鉀、鈣、鎂、硫、微量金屬及其他資源。根據(jù)生境和物種的不同,其生源要素限制各異,其中陸地生境最普通的限制性生源要素為水分、鹽分、養(yǎng)分[64]。對(duì)于生源要素脅迫閾值,國(guó)內(nèi)外學(xué)者已在細(xì)胞、組織、器官和個(gè)體等不同尺度上開(kāi)展大量研究。研究表明:水分對(duì)凈初級(jí)生產(chǎn)力的調(diào)控是驅(qū)動(dòng)生態(tài)系統(tǒng)功能的重要因素。李新榮等[65]認(rèn)為干旱區(qū)植物細(xì)根季節(jié)動(dòng)態(tài)明顯受到土壤水分影響,如果土壤含水量低于2.75%(油蒿,Artemisiaordosica)和2.60%(檸條,Caraganakorshinskii)左右時(shí),油蒿或檸條根系將在一個(gè)月后出現(xiàn)生長(zhǎng)高峰,然而高于該值時(shí),根系均不會(huì)出現(xiàn)高峰值,說(shuō)明這一含水量可能是細(xì)根生長(zhǎng)采取不同生態(tài)策略的閾值。崔保山等[66]分析了黃河三角洲鹽地堿蓬(Suaedaglauca)對(duì)水埋深和土壤鹽分環(huán)境梯度變化的響應(yīng),結(jié)果顯示,鹽地堿蓬生長(zhǎng)的最佳水位埋深約為-0.42 m,其最適生態(tài)閾值區(qū)間在-0.67~-0.17 m。王擺等[67]利用高斯模型定量,計(jì)算遼河三角洲大凌河口濕地生態(tài)系統(tǒng)翅堿蓬種群沿土壤水分和鹽分的生態(tài)閾值,認(rèn)為翅堿蓬最適土壤鹽分生態(tài)閾值區(qū)間為8.58~15.70 g/kg,最適土壤水分生態(tài)閾值區(qū)間為40.92%~78.72%。張華兵等[68]以江蘇省鹽城海濱濕地典型區(qū)域?yàn)榘咐?,確定了海濱濕地蘆葦(Phragmitescommunis)沼澤、堿蓬、米草(Spartina)、光灘景觀土壤水分和鹽度的閾值分別為<42.33%和<0.75%、38.84%~46.60%和0.40%~1.31%、>39.48%和>0.40%、>41.55%和>0.66%。
除水分、養(yǎng)分、鹽分外,碳氮磷也是影響自然生態(tài)系統(tǒng)穩(wěn)定性和物種多樣性的關(guān)鍵要素。一般認(rèn)為,大氣CO2濃度上升及由此而引起的全球變化被認(rèn)為將促進(jìn)植物生產(chǎn)力和生物量的增加,CO2濃度上升對(duì)植物將起著“肥效”作用,但增幅超過(guò)一定閾值,固碳功能將隨之減小。Taub等[69]實(shí)驗(yàn)研究表明,CO2濃度的提高在一定程度上增強(qiáng)了植物對(duì)高溫的適應(yīng)性,提高了其引起生理活性衰變的閾值。氮沉降的增加能在短期內(nèi)提高植物地上部生物量,但其長(zhǎng)期效應(yīng)卻是引起生物多樣性下降和生態(tài)系統(tǒng)功能的退化[70-71]。在歐洲,基于量化閾值相關(guān)的生態(tài)系統(tǒng)功能的具體變化,氮沉降臨界載荷已被設(shè)定在了不同生態(tài)系統(tǒng)。例如,基于地面植物變化的考慮,石灰?guī)r區(qū)森林(calcareous forests)氮沉降閾值基本上被設(shè)定為15~20 kg N/(hm2·年),而基于植物多樣性損失考慮的中等營(yíng)養(yǎng)沼澤氮沉降閾值則基本上被設(shè)定為20~30 kg N/(hm2·年)[72]。研究表明,不同區(qū)域不同類型生態(tài)系統(tǒng)氮沉降對(duì)生物多樣性產(chǎn)生顯著影響的閾值。目前,氮沉降對(duì)各種生態(tài)系統(tǒng)產(chǎn)生顯著影響的臨界值或閾值成為國(guó)際關(guān)注熱點(diǎn)[73]。Clark等[74]發(fā)現(xiàn),北美溫帶草原氮沉降對(duì)生物多樣性產(chǎn)生顯著影響的閾值更低,即氮沉降升高10 kg N/(hm2·年)會(huì)導(dǎo)致草原物種數(shù)減少17%。Bai等[75]通過(guò)長(zhǎng)期氮素添加實(shí)驗(yàn),研究不同組織水平(植物種、功能群、群落)上氮素添加對(duì)內(nèi)蒙古典型草原成熟和退化草地群落生物多樣性和生態(tài)系統(tǒng)功能的影響,發(fā)現(xiàn)我國(guó)內(nèi)蒙古溫帶草原氮素升高引起草原物種數(shù)顯著下降的臨界值為17.5 kg N/(hm2·年),達(dá)到飽和的氮素添加量105 kg N/(hm2·年)。李艾芬等[76]對(duì)浙江省茶葉主產(chǎn)區(qū)159個(gè)樣點(diǎn)土壤分析表明,土壤有效磷超過(guò)55 mg/kg時(shí),土壤水溶性磷和磷的釋放潛力迅速增強(qiáng),建議把該值作為茶園土壤磷肥施用限制的參考指標(biāo)。
2.4 人類活動(dòng)脅迫閾值
生態(tài)系統(tǒng)結(jié)構(gòu)及功能的穩(wěn)定性需要人類活動(dòng)進(jìn)行適當(dāng)調(diào)控。然而,人類活動(dòng)干擾強(qiáng)度過(guò)大時(shí),生態(tài)系統(tǒng)安全將受到很大影響[77-78]。人類活動(dòng)包括土地利用、草地利用、重大工程(如交通干線、輸油管道、大壩、退田還湖等)、農(nóng)林牧副漁產(chǎn)業(yè)、旅游活動(dòng)、污染等。Reid[79]曾開(kāi)展全球生態(tài)系統(tǒng)健康調(diào)查,結(jié)果顯示,人類活動(dòng)對(duì)地球生態(tài)系統(tǒng)構(gòu)成了潛在威脅。特別是在人為活動(dòng)占優(yōu)勢(shì)的景觀內(nèi),不同土地、草地利用方式和強(qiáng)度產(chǎn)生的生態(tài)影響具有區(qū)域性和累計(jì)性特征,并可直觀地反映在生態(tài)系統(tǒng)的結(jié)構(gòu)和組成上。Noy-Meir[80]、Schwinning等[81]利用生態(tài)閾值確定了草原生態(tài)系統(tǒng)自我維持、保持相對(duì)平衡狀態(tài)時(shí)供應(yīng)反芻動(dòng)物取食的閾值是可利用草地面積的5%,這為人類活動(dòng)干預(yù)下草原退化與恢復(fù)演替的研究,特別為確定天然草原放牧強(qiáng)度的生態(tài)閾值提供了依據(jù)。Westman[82]通過(guò)利用原油對(duì)沼澤草地做多次處理,發(fā)現(xiàn)原油對(duì)草地脅迫時(shí)間越長(zhǎng),會(huì)出現(xiàn)一個(gè)使得草地?zé)o法恢復(fù)的閾值。Cooper等[29]以草地生態(tài)系統(tǒng)生態(tài)因子及社會(huì)經(jīng)濟(jì)因素相互作用為關(guān)聯(lián)基礎(chǔ),用數(shù)學(xué)模型評(píng)價(jià)了草地生態(tài)系統(tǒng)在連續(xù)放牧條件下得以維持基本生態(tài)功能的生態(tài)閾值。Newman等[83]、Hose等[84]利用累積概率分布函數(shù)擬合污染物的毒理學(xué)數(shù)據(jù),建立其物種敏感性分布曲線(即,物種敏感性分布法,SSD),依據(jù)不同的保護(hù)程度(風(fēng)險(xiǎn)水平)獲取曲線上不同百分點(diǎn)所對(duì)應(yīng)的濃度值作為基準(zhǔn)值(即生態(tài)安全閾值)。Hughes等[85]研究發(fā)現(xiàn),因受人類過(guò)度捕撈,水質(zhì)下降,大量食草性魚(yú)類消失,導(dǎo)致大量海藻的劇烈產(chǎn)生,嚴(yán)重抑制珊瑚的發(fā)育、補(bǔ)充和生存,從而使世界范圍內(nèi)珊瑚礁經(jīng)歷了相移交替和退化組合過(guò)程。另外,生態(tài)閾值及其相關(guān)景觀穩(wěn)定性總體上由社會(huì)經(jīng)濟(jì)生態(tài)系統(tǒng)(SES)共同決定,特別是制度變遷對(duì)生態(tài)安全閾值強(qiáng)迫巨大[86]。因此,生態(tài)系統(tǒng)利益相關(guān)者(人類活動(dòng))在預(yù)防生態(tài)系統(tǒng)恢復(fù)力和穩(wěn)態(tài)轉(zhuǎn)變中起著重要的作用。
2.5 多源要素脅迫閾值
一個(gè)處于穩(wěn)定狀態(tài)的生態(tài)系統(tǒng)到另一個(gè)狀態(tài)會(huì)存在一個(gè)明顯的變化,這個(gè)變化出現(xiàn)的閾值不一定是單個(gè)影響因素造成,而是多個(gè)因素綜合的結(jié)果。例如,增溫同時(shí)減少降水能顯著增加生態(tài)系統(tǒng)CO2的排放,增加碳的丟失,而增溫和增加降水之間存在非疊加的耦合效應(yīng)且對(duì)生態(tài)系統(tǒng)結(jié)構(gòu)和過(guò)程影響顯著[87]。溫度的升高對(duì)N2O產(chǎn)生和排放的生物學(xué)過(guò)程也有著重要影響,增溫顯著增加了森林土壤N2O的排放,強(qiáng)度甚至達(dá)到了兩倍[88]。增溫能減少積雪覆蓋影響土壤凍融過(guò)程進(jìn)而影響N2O排放,尤其是凍土生態(tài)系統(tǒng)。氮沉降促進(jìn)土壤硝化和反硝化過(guò)程,向陸地表面輸入1000 kg活性氮,就能產(chǎn)生10~50 kg N2O[89]。李和平等[25]針對(duì)內(nèi)蒙古毛烏素沙地典型荒漠化草原區(qū),基于水資源-草地生態(tài)-社會(huì)經(jīng)濟(jì)復(fù)合系統(tǒng)耦合機(jī)理,綜合考慮水資源對(duì)地區(qū)人口、資源、環(huán)境和經(jīng)濟(jì)協(xié)調(diào)發(fā)展的支撐能力,應(yīng)用目標(biāo)規(guī)劃法建立區(qū)域性“水-草-畜”系統(tǒng)平衡優(yōu)化決策數(shù)學(xué)模型,提出了研究區(qū)草地生態(tài)系統(tǒng)管理的閾值水平。梁銘忠等[90]對(duì)廣西都安瑤族自治縣的6個(gè)鄉(xiāng)鎮(zhèn)石漠化程度演變進(jìn)行研究,運(yùn)用回歸統(tǒng)計(jì)原理和數(shù)學(xué)擬合方法建立脅迫閾值模型,結(jié)果顯示,人均GDP閾限值最大,其次為植物群落結(jié)構(gòu)、社會(huì)綜合指標(biāo)、土壤綜合指標(biāo)、植被綜合指標(biāo)以及植被覆蓋率,說(shuō)明這些脅迫因子使石漠化程度類型從量變到質(zhì)變的過(guò)程相對(duì)較長(zhǎng)。
總體上,國(guó)內(nèi)外生態(tài)安全閾值理論在生物多樣性與生態(tài)系統(tǒng)功能、全球變化與生態(tài)系統(tǒng)響應(yīng),以及在生態(tài)建設(shè)、生態(tài)恢復(fù)與保護(hù)、環(huán)境管理、物種保護(hù)、棲息地管理、生態(tài)系統(tǒng)適應(yīng)性管理等應(yīng)用方面取得了很大進(jìn)展[91-95]。生態(tài)閾值的判別方法,主要有個(gè)體與群落小尺度上單要素觀測(cè)與實(shí)驗(yàn)、對(duì)比分析、回歸統(tǒng)計(jì),以及基于景觀、生態(tài)系統(tǒng)、區(qū)域及其全球大尺度多要素的生態(tài)過(guò)程模型、綜合評(píng)價(jià)方法、景觀格局模型、系統(tǒng)動(dòng)力學(xué)模型等[96-98]??v觀國(guó)內(nèi)外研究進(jìn)展,生態(tài)系統(tǒng)干擾因素頻度高、外界環(huán)境變化快,其時(shí)空動(dòng)態(tài)趨勢(shì)具有復(fù)雜性、非線性、多穩(wěn)態(tài)性,動(dòng)態(tài)預(yù)測(cè)難度較大,其生態(tài)安全閾值的確定始終都是一個(gè)難點(diǎn),至今無(wú)一有效評(píng)價(jià)方法和模型。已有生態(tài)安全閾值多參照已有相關(guān)標(biāo)準(zhǔn)值或直接依據(jù)現(xiàn)狀值進(jìn)行估算,忽略了閾值時(shí)空動(dòng)態(tài)性特征,且以此為參考標(biāo)準(zhǔn)確定閾值存在一定主觀性。以往生態(tài)系統(tǒng)安全閾值研究多針對(duì)小尺度單一要素展開(kāi),且多關(guān)注于特定生物種群或者特定監(jiān)測(cè)指標(biāo),而利用生態(tài)過(guò)程模型與景觀格局、氣候模型、碳氮磷模型耦合或嵌套方法對(duì)大尺度生態(tài)系統(tǒng)多要素安全閾值的判定相對(duì)較少,且未得到足夠重視。同時(shí),基于關(guān)鍵物種、群落、生態(tài)系統(tǒng)、區(qū)域多尺度生態(tài)安全閾值判別的綜合集成研究仍處于空白狀態(tài)。特別地,目前大部分生態(tài)閾值的實(shí)驗(yàn)觀測(cè)都局限于對(duì)已發(fā)生穩(wěn)態(tài)轉(zhuǎn)換的分析,無(wú)法對(duì)預(yù)期發(fā)生的生態(tài)系統(tǒng)穩(wěn)態(tài)轉(zhuǎn)換進(jìn)一步變化做出判定、預(yù)測(cè)和預(yù)警。
不同生態(tài)系統(tǒng)不同生態(tài)因子相互作用復(fù)雜,氣候及人類活動(dòng)脅迫因子同樣復(fù)雜,加之多種因子間的相互作用和制約,生態(tài)安全閾值的性質(zhì)及其在不同空間尺度上的表現(xiàn)等方面仍存在很大不確定性。當(dāng)然,不管當(dāng)時(shí)氣候變化是否能導(dǎo)致閾值轉(zhuǎn)變,以及外界環(huán)境驅(qū)動(dòng)因子異常組合怎樣能影響這些閾值轉(zhuǎn)變的可能性,但生態(tài)安全閾值研究對(duì)于理解外界環(huán)境脅迫怎樣影響生態(tài)系統(tǒng)結(jié)構(gòu)、恢復(fù)力、服務(wù)功能方面具有重要作用。
隨著氣候變化、碳氮循環(huán)、人類活動(dòng)等環(huán)境因子的改變,我國(guó)生態(tài)系統(tǒng)植被分布格局和穩(wěn)定性等正發(fā)生急劇變化,生態(tài)系統(tǒng)物種、生長(zhǎng)形態(tài)組成、空間植被分布、入侵物種現(xiàn)狀等的改變,以及生態(tài)閾值發(fā)生后優(yōu)勢(shì)種的消失均將逆轉(zhuǎn)其生態(tài)閾值。如何厘定氣候變化及人類活動(dòng)雙重脅迫下不同尺度生態(tài)系統(tǒng)的動(dòng)態(tài)安全閾值,如何將小尺度生態(tài)安全閾值轉(zhuǎn)換至大尺度區(qū)域生態(tài)系統(tǒng)風(fēng)險(xiǎn)評(píng)估,是正確評(píng)估區(qū)域生態(tài)系統(tǒng)風(fēng)險(xiǎn)及其時(shí)空格局的關(guān)鍵環(huán)節(jié)。
總體而言,生態(tài)管理者必須同時(shí)考慮在穩(wěn)定狀態(tài)內(nèi)兩個(gè)連續(xù)性植被動(dòng)態(tài)以及在多狀態(tài)內(nèi)不連續(xù)性的植被變化(安全閾值)。在穩(wěn)定狀態(tài)內(nèi),植被管理可使資源健康,以更改閾值的發(fā)生。特別地,完全由偶發(fā)事件驅(qū)動(dòng)的植被動(dòng)態(tài)變化,人們往往忽視,從而降低了對(duì)其適應(yīng)性管理的動(dòng)機(jī)。因此,不僅加強(qiáng)小尺度生態(tài)系統(tǒng)單要素脅迫因子和生態(tài)因子的長(zhǎng)期監(jiān)(觀)測(cè),還要加強(qiáng)偶發(fā)事件驅(qū)動(dòng)的不同尺度不同時(shí)空生態(tài)系統(tǒng)穩(wěn)態(tài)變化態(tài)勢(shì)的監(jiān)(觀)測(cè)、預(yù)警以及模擬研究。在模擬過(guò)程中,要加強(qiáng)外界脅迫因子對(duì)不同尺度生態(tài)系統(tǒng)的影響機(jī)制研究,以及生態(tài)系統(tǒng)狀態(tài)對(duì)這些脅迫因子的響應(yīng)機(jī)理,以提高模擬模型的結(jié)果精度與普適性。另外,生態(tài)安全主要圍繞區(qū)域和國(guó)家乃至全球宏觀生態(tài)問(wèn)題的產(chǎn)生而提出。因此,生態(tài)安全閾值的研究必須立足于大尺度生態(tài)問(wèn)題。通過(guò)加強(qiáng)各站點(diǎn)單要素監(jiān)測(cè)或觀測(cè)力度,力求使站點(diǎn)單要素生態(tài)閾值精確化,通過(guò)尺度轉(zhuǎn)換方法,以宏觀生態(tài)學(xué)理論為指導(dǎo),將站點(diǎn)生態(tài)閾值與區(qū)域生態(tài)安全閾值結(jié)合起來(lái),強(qiáng)調(diào)不同尺度生態(tài)安全閾值的綜合集成。
References:
[1] Fu B J, Lv Y H, Gao G Y. Major research progresses on the ecosystem service and ecological safety of main terrestrial ecosystems in China. Chinese Journal of Nature, 2012, 34(5): 261-272. 傅伯杰, 呂一河, 高光耀. 中國(guó)主要陸地生態(tài)系統(tǒng)服務(wù)與生態(tài)安全研究的重要進(jìn)展. 自然雜志, 2012, 34(5): 261-272.
[2] Future Earth. Future Earth initial design: Report of the transition team. Paris, FRA: International Council for Science (ICSU)[EB/OL]. (2014-12-26). http://www.icsu.org/future-earth/mediacentre/relevant_publications.
[3] Xiao D N, Chen W B, Guo F L. On the basic concepts and contents of ecological security. Chinese Journal of Applied Ecology, 2002, 13(3): 355-358. 肖篤寧, 陳文波, 郭福良. 論生態(tài)安全的基本概念和研究?jī)?nèi)容. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(3): 355-358.
[4] Li W H. Ecological Ecurity and Ecological Construction[M]. Beijing: China Meteorological Press, 2002. 李文華. 生態(tài)安全與生態(tài)建設(shè)[M]. 北京: 氣象出版社, 2002.
[5] Scholze M, Knorr W, Arnell N,etal. A climate-change risk analysis for world ecosystems. PNAS, 2006, 103: 13116-13120.
[6] Gao J X. Ecological protection red line: “Lifeline” of maintain ecological safety. Environment Protection, 2014, (6): 18-21. 高吉喜. 生態(tài)保護(hù)紅線:維護(hù)國(guó)家生態(tài)安全的“生命線”. 環(huán)境保護(hù), 2014, (6): 18-21.
[7] Zhang X S. Ecological restoration is the core of ecological civilization construction. Chinese Science: Life Sciences, 2014, 44(3): 221-222. 張新時(shí). 生態(tài)重建是生態(tài)文明建設(shè)的核心. 中國(guó)科學(xué): 生命科學(xué), 2014, 44(3): 221-222.
[8] Andersen T, Carstensen J, Hernandez-Garcia E,etal. Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology and Evolution, 2009, 24: 49-57.
[9] Soltania A, Khooieb F R, Ghassemi-Golezanib K,etal. Thresholds for chickpea leaf expansion and transpiration response to soil water. Field Crops Research, 2000, 68: 205-210.
[10] Mitchell R A C, Mitchell V J, Lawlor D W. Response of wheat canopy CO2and water gas exchange to soil water content under ambient and elevated CO2. Global Change Biology, 2001, 7: 599-611.
[11] Toms J D, Lesperance M L. Piecewise regression: a tool for identifying ecological thresholds. Ecology, 2003, 84: 2034-2041.
[12] Huggett A J. The concept and utility of ecological thresholds in biodiversity conservation. Biological Conservation, 2005, 124: 301-310.
[13] Haffmann W A, Geiger E L, Gotsch S Q,etal. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecological Letters, 2012, 15: 759-768.
[14] May R M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 1977, 269: 471-477.
[15] Westoby M, Walker B, Noy-Meir I. Opportunistic management for rangelands not at equilibrium. Journal of Range Management, 1989, 42: 266-274.
[16] Friedel M H. Range condition assessment and the concept of thresholds: a view point. Journal of Range Management, 1991, 44(5): 422-426.
[17] Schaeffer D J, Cox D K. Establishing ecosystem threshold criteria[M]//Norton B G, Costanza R, Haskell B. Ecosystem Health: New Goals for Environmental Management. Washington D.C.: Island Press, 1992: 157-169.
[18] Brown J R, Herrick J. Managing low output agro-ecosystems sustainably: the importance of ecological thresholds. Canadian Journal of Forest Research, 1999, 29(7): 1112-1119.
[19] Muradian R. Ecological thresholds: a survey. Ecological Economics, 2001, 38: 7-24.
[20] Wiens J A, Van Horne B, Noon B R. Integrating landscape structure and scale into natural resource management[M]//Liu J, Taylor W W, Eugene P,etal. Integrating Landscape Ecology into Natural Resource Management.UK: Cambridge University Press, 2002: 23-67.
[21] Walker B H and Meyers J A. Thresholds in ecological and social-ecological systems: a developing database. Ecology and Society, 2004, 9(2): 3.
[22] Larsson H. Water distribution, grazing intensity and alterations in vegetation around different water points, in Ombuga Grassland, Northern Namibia. Minor Field Studies International Office, Swedish University of Agricultural Sciences, 2003, (225): 540.
[23] Bennett A, Radford J. Know your ecological thresholds. Thinking Bush, 2003, 2: 3.
[24] Kinzig A P, Ryan P, Etienne M,etal. Resilience and regime shifts: assessing cascading effects. Ecology and Society, 2006, 11(1): 20.
[25] Li H P, Shi H B, Guo Y Y,etal. Study on sustainable utilization of water-grass resources and ecological threshold of pastoral area. Journal of Hydraulic Engineering, 2005, 36(6): 693-699. 李和平, 史海濱, 郭元裕, 等. 牧區(qū)水草資源持續(xù)利用與生態(tài)系統(tǒng)閾值研究. 水利學(xué)報(bào), 2005, 36(6): 693-699.
[26] Scheffer M, Carpenter S R, Lenton T M,etal. Anticipating critical transitions. Science, 2012, 338(6105): 344-348.
[27] Larsen S, Alp M. Ecological thresholds and riparian wetlands: an overview for environmental managers. Limnology, 2015, 16:1-9.
[28] Hastings A, Wysham D B. Regime shifts in ecological systems can occur with no warning. Ecology Letters, 2010, 13(4): 464-472.
[29] Cooper K D, Huffaker R, LoFaro T. The resilience of grassland ecosystems. The UMAP Journal, 1999, 20: 29-46.
[30] Liu Z K, Wang J W, Luo S M,etal. On the safety threshold of wetlands based on water ecological element-Taking wetlands in Sanjiang Plain as an example. Chinese Journal of Applied Ecology, 2002, 13(12): 845-851. 劉振乾, 王建武, 駱世明, 等. 基于水生態(tài)因子的沼澤安全閾值研究——以三江平原沼澤為例. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(12): 845-851.
[31] Groffman P M, Baron J S, Blett T. Ecological thresholds: The key to successful environmental management or an important. Ecosystems, 2006, 9: 1-13.
[32] Wang C L, Ning F G, Zhang J Q,etal. Determination of drought disaster risk threshold value of various growth stages of maize in northwestern Liaoning Province. Journal of Catastrophology, 2011, 26(1): 43-47. 王翠玲, 寧方貴, 張繼權(quán), 等. 遼西北玉米不同生長(zhǎng)階段干旱災(zāi)害風(fēng)險(xiǎn)閾值的確定. 災(zāi)害學(xué), 2011, 26(1): 43-47.
[33] Hou D. Study on Succession and Ecological Thresholds of Natural Ecosystem in Yellow River Delta[D]. Taian: Shandong Agricultural University, 2011: 37. 侯棟. 黃河三角洲天然濕地生態(tài)系統(tǒng)演替及生態(tài)閾值研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2011: 37.
[34] Daily J P, Hitt N P, Smith D R,etal. Experimental and environmental factors affect spurious detection of ecological thresholds. Ecological, 2012, 93(1): 17-23.
[35] Maestre F T, Quero J L, Gotelli N J,etal. Plant species richness and ecosystem multifunctionality in global drylands. Science, 2012, 335: 214-217.
[36] Andre’n H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos, 1994, 71: 355-366.
[37] Hanski I, Moilanen A, Gyllenberg M. Minimum viablemeta population size. American Naturalist, 1996, 147: 527-541.
[38] Lindenmayer D B, Luck G. Synthesis: Thresholds in conservation and management. Biological Conservation, 2005, 124: 351-354.
[39] Radford J Q, Bennett A F, Cheers G J. Landscape-level thresholds of habitat cover for woodland-dependent birds. Biological Conservation, 2005, 124: 317-337.
[40] Gao Y, Zhong B, Yue H,etal. A degradation threshold for irreversible soil productivity loss in southeastern China: results of a long-term case study in Changting County. Journal of Applied Ecology, 2011, 48: 1145-1154.
[41] Sasaki T, Kudoh J, Ebihara T,etal. Sequence analysis of filaggrin gene by novel shotgun method in Japanese atopic dermatitis. Journal of Dermatological Science, 2008, 51: 113-120.
[42] Twardochleb L A, Novak M, Moore J W. Using the functional response of a consumer to predict biotic resistance to invasive prey. Ecological Applications, 2012, 22: 1162-1171.
[43] Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441(7093): 629-632.
[44] Wang Q S. Mathematical model for controlling soil erosion by vegetation and its application. Journal of Soil and Water Conservation, 1991, 5(4): 68-70. 王秋生. 植被控制土壤侵蝕的數(shù)學(xué)模型及其應(yīng)用. 水土保持學(xué)報(bào), 1991, 5(4): 68-70.
[45] Guo Z S. Research on effective cover rate and its determining method for soil and water conservation forest. Journal of Soil Erosion and Soil and Water Conservation, 1996, 2(3): 68-71. 郭忠升. 水土保持林有效覆蓋率及其確定方法的研究. 土壤侵蝕與水土保持學(xué)報(bào), 1996, 2(3): 68-71.
[46] Jiao J Y, Wang W Z, Li J. Effective cover rate of woodland and grassland for soil and water conservation. Acta Phytoecologica Sinica, 2000, 24(5): 608-612. 焦菊英, 王萬(wàn)中, 李靖. 黃土高原林草水土保持有效蓋度分析. 植物生態(tài)學(xué)報(bào), 2000, 24(5): 608-612.
[47] Luo Y Q, Zhu G W, Liu R G,etal. Preliminary study on ecological threshold of poplar longicorn beetle. Journal of Beijing Forestry University, 1999, 21(6): 45-51. 駱有慶, 朱廣巍, 劉榮光, 等. 楊樹(shù)大牛生態(tài)閾值的初步研究. 北京林業(yè)大學(xué)學(xué)報(bào), 1999, 21(6): 45-51.
[48] USDA-APHIS (Animal and Plant Health Inspection Service-United States Department of Agriculture). Introduction of organisms and products altered or produced through genetic engineering which are plant pests or which there is reason to believe are plant pests. Federal Register, 1987, 52: 22892-22915.
[49] Lian Z M, Su X H. Research on integrated control index of pasture locusts. Journal of Plant Protection, 1995, 22(2): 171-175. 廉振民, 蘇曉紅. 牧場(chǎng)蝗蟲(chóng)復(fù)合防治指標(biāo)的研究. 植物保護(hù)學(xué)報(bào), 1995, 22(2): 171-175.
[50] Han C X, Yang X J, Wang M C,etal. A study on the ecological threshold in the forest bandicoot community management. Chinese Journal of Applied Ecology, 2005, 20(1): 156-161. 韓崇選, 楊學(xué)軍, 王明春, 等. 林區(qū)嚙齒動(dòng)物群落管理中的生態(tài)閾值研究. 西北林學(xué)院學(xué)報(bào), 2005, 20(1): 156-161.
[51] Xu M H, Liu T, Jiang L. Study on the harm characteristics of rodents toHaloxylonammodendromand its control for ecological threshold value in the south of Gurbantonggut Desert. Journal of Arid Land Resources and Environment, 2012, 26(60): 126-132. 徐滿厚, 劉彤, 姜莉. 古爾班通古特沙漠南部梭梭鼠害特征及防治生態(tài)閾值研究. 干旱區(qū)資源與環(huán)境, 2012, 26(60): 126-132.
[52] IPCC. Summary for policymakers[M]//Stocker T F,Qin D, Plattner G K,etal. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 5.
[53] Rebetez M, Dobbertin M. Climate change may already threaten scots pine stands in the Swiss Alps. Theoretical and Applied Climatology, 2004, 79(1/2): 1-9.
[54] Rutherford T A, Webster J M. Distribution of pine wilt disease with respect to temperature in North America, Japan, and Europe. Canadian Journal of Forest Research, 1987, 17: 1050-1059.
[55] Bachelet D, Neilson R P, Lenihan J M,etal. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems, 2001, 4: 164-185.
[56] Scheffera M, Hirota M, Holmgren M,etal. Thresholds for boreal biome transitions. Pnas, 2012, 109(52): 21384-21389. doi:10.1073/pnas.1219844110/-/DCSupplemental.
[57] Cavanaugh K C, Kellner J R, Forde A J,etal. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. PNAS, 2014, 111(2): 723-727.
[58] Su J Q, Wang Y X, Yang Z F. Lake eutrophication modeling in considering climatic factors change: A review. Chinese Journal of Applied Ecology, 2012, 23(11): 3119-3201. 蘇潔瓊, 王搖烜, 楊志峰. 考慮氣候因子變化的湖泊富營(yíng)養(yǎng)化模型研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(11): 3119-3201.
[59] Baker A C, Glynn P W, Riegl B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 2008, 80: 435-471.
[60] Li X R, He M Z, Zerbe S,etal. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surface Processes and Landforms, 2010, 35: 932-940.
[61] Li F, Zhao W, Liu H. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of Northwest China. PLoS ONE, 2013, 8(9): e73003. doi:10.1371/journal.pone.0073003.
[62] Phillips O L, Arag?o L E O C, Lewis S L,etal. Drought sensitivity of the Amazon Rainforest. Science, 2009, 323: 1344.
[63] Wang X Z, Yin W Q, Shan Y H,etal. Nitrogen and phosphorus input from wet deposition in Taihu Lake region: a case study in Changshu Agro-ecological Experimental Station. Chinese Journal of Applied Ecology, 2009, 20(10): 2487-2492.
[64] Tilman D, Lehman C. Human-caused environmental change: Impacts on plant diversity and evolution. Pnas, 2001, 98(10): 5433-5440.
[65] Li X R, Zhang Z S, Huang L,etal. The artificial vegetation economic in desert of China—study on hydrological process and mutual feedback model. Chinese Science Bulletin, 2013, 58: 397-410. 李新榮, 張志山, 黃磊, 等. 我國(guó)沙區(qū)人工植被系統(tǒng)生態(tài)-水文過(guò)程和互饋機(jī)理研究評(píng)述. 科學(xué)通報(bào), 2013, 58: 397-410.
[66] Cui B S, He Q, Zhao X S. Ecological thresholds ofSuaedasalsato the environmental gradients of water table depth and soil salinity. Acta Ecologica Sinica, 2008, 28(4): 1408-1418. 崔保山, 賀強(qiáng), 趙欣勝. 水鹽環(huán)境梯度下翅堿蓬(Suaedasalsa)的生態(tài)閾值. 生態(tài)學(xué)報(bào), 2008, 28(4): 1408-1418.
[67] Wang B, Han J B, Zhou Z C,etal. Ecological thresholds ofSuadeaheteropteraunder gradients of soil salinity and moisture in Daling River estuarine wetland. Chinese Journal of Ecology, 2014, 33(1): 71-75. 王擺, 韓家波, 周遵春, 等. 大凌河口濕地水鹽梯度下翅堿蓬的生態(tài)閾值. 生態(tài)學(xué)雜志, 2014, 33(1): 71-75.
[68] Zhang H B, Liu H Y, LI Y F,etal. The studying of key ecological factors and threshold of landscape evolution in Yancheng Coastal wetland. Acta Ecologica Sinica, 2013, 33(21): 6975-6983. 張華兵, 劉紅玉, 李玉鳳, 等. 鹽城海濱濕地景觀演變關(guān)鍵土壤生態(tài)因子與閾值研究. 生態(tài)學(xué)報(bào), 2013, 33(21): 6975-6983.
[69] Taub D R, Seemann J R, Coleman J S,etal. Growth in elevated CO2protects photosyn thesis against high temperature damage. Plant, Cell and Environment, 2000, 23: 649-656.
[70] Dupre C, Stevens C J, Ranke T,etal. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Global Change Biology, 2010, 16: 344-357.
[71] Song L, Bao X, Liu X,etal. Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences, 2011, 8: 2341-2350.
[72] Emmett B A, Reynolds B. The role of models in addressing critical N loading to ecosystems[M]//Canham C D, Cole J J, Lauenroth W K. Models in Ecosystem Science. Princeton (NJ): Princeton University Press, 2003: 308-326.
[73] Payne R J, Dise N B, Stevens C J,etal. Impact of nitrogen deposition at the species level: implications for pollution policy. Pnas, 2013, 110(3): 984-987.
[74] Clark C M, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 2008, 451: 712-715.
[75] Bai Y F, Wu J G, Clark C M,etal. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16: 358-372.
[76] Li A F, Tao G C, Zhang M K. Accumulation and threshold values leaching of phosphorus in vegetable soils in major tea producing areas of Zhejiang province. Journal of Zhejiang Agricultural Sciences, 2014, (1): 31-33. 李艾芬, 陶國(guó)才, 章明奎. 浙江省茶葉主產(chǎn)區(qū)土壤磷的積累與淋失閾值研究. 浙江農(nóng)業(yè)科學(xué), 2014, (1): 31-33.
[77] Chapin F S, Robards M D, Huntington H P,etal. Directional changes in ecological communities and social-ecological systems: a framework for prediction based on Alaskan examples. American Naturalist, 2006, 168(Suppl 6): 36-49.
[78] Liu J G, Dietz T, Carpenter S R,etal. Complexity of coupled human and natural systems. Science, 2007, 317: 1513-1516.
[79] Reid W. The state of the planet. Nature, 2002, 417: 112-113.
[80] Noy-Meir I. Stability of grazing systems: an application of predator-prey graphs. Journal of Ecology, 1975, 63(2): 459-481.
[81] Schwinning S, Parsons A J. The stability of grazing systems revisited: spatial models and the role of heterogeneity. Functional Ecology, 1999, 13: 737-747.
[82] Westman W E. Ecology, Impact Assessment, and Environmental Planning[M]. New York: John Wiley and Sons, 1985: 532.
[83] Newman M C, Ownby D, Mezin L C A,etal. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environmental Toxicology and Chemistry, 2000, 19: 508-515.
[84] Hose G C, Vandenbrink P J. Confirming the species-sensitivity distribution concept for Endosulfan using laboratory, mescom, and field data. Archives of Environmental Contamination and Toxicology, 2004, 47: 511-520.
[85] Hughes T P, Rodrigues M J, Bellwood D R,etal. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 2007, 17: 360-365.
[86] Horan R D, Fenichel E P, Drury K L S,etal. Managing ecological thresholds in coupled environmental-human systems. Pnas, 2011, 108(18): 7333-7338.
[87] Ciais P, Reichstein M, Viovy N. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533.
[88] Groffman P M, Hardy J P, Driscoll C T,etal. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology, 2006, 12: 1748-1760.
[89] Crutzen P J, Mosier A R, Smith K A,etal. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 2007, 7(4): 11191-11205.
[90] Liang M Z, Hu B Q, Liao C M,etal. Study on relation between evolution and its stress factors of karst rocky desertification and its stress threshold value model—Taking du’an of Guangxi as an example. Research of Agricultural Modernization, 2011, 32(4): 492-497. 梁銘忠, 胡寶清, 廖赤眉, 等. 喀斯特石漠化演變脅迫變化關(guān)系及脅迫閾值模型研究——以廣西都安為例. 農(nóng)業(yè)現(xiàn)代化研究, 2011, 32(4): 492-497.
[91] Liu J, Taylor W W. Integrating Landscape Ecology into Natural Resource Management[M]. UK: Cambridge University Press, 2002: 23-67.
[92] Drinnan I N. The search for fragmentation thresholds in a southern Sydney suburb. Biological Conservation, 2005, 124: 339-349.
[93] Suding K N, Hobbs R J. Threshold models in restoration and conservation: a developing framework. Trends in Ecology and Evolution, 2009, 24(5): 271-277.
[94] Samhouri J F, Levin P S, Ainsworth C H. Identifying thresholds for ecosystem-based management. PLoS ONE, 2010, 5(1): doi:10.1371/journal.pone.0008907.
[95] Zhao H X, Wu S H, Jiang L G. Review on recent advances in ecological threshold research. Acta Ecologica Sinica, 2007, 27(1): 338-345. 趙慧霞, 吳紹洪, 姜魯光. 生態(tài)閾值研究進(jìn)展. 生態(tài)學(xué)報(bào), 2007, 27(1): 338-345.
[96] Wang Y J, Zhang X P. Pilot study of the theory of ecological threshold. Chinese Agricultural Science Bulletin, 2010, 26(12): 282-286. 王永杰, 張雪萍. 生態(tài)閾值理論的初步探究. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(12): 282-286.
[97] Fragoso C R, Marques D M L, Ferreira T F,etal. Potential effects of climate change and eutrophication on a large subtropical shallow lake. Environmental Modelling & Software, 2011, 26: 1337-1348.
[98] Afshar A, Saadatpour M, Marino M A. Development of a complex system dynamic eutrophication model: application to Karkheh Reservoir. Environmental Engineering Science, 2012, 29: 373-385.
Overview and prospects for ecological safety threshold research
WANG Shi-Jin1, WEI Yan-Qiang2
1.StateKeyLaboratoryofCryosphericSciences,NorthwestInstituteofEco-EnvironmentandResources,ChineseAcademyofSciences,Lanzhou730000,China; 2.KeyLaboratoryofRemoteSensingofGansuProvince,NorthwestInstituteofEco-EnvironmentandResources,ChineseAcademyofSciences,Lanzhou730000,China
With global change intensifying, the ecological environment has been disturbed and damaged, resulting in increasingly evident ecological security problems. During the 21st century, ecosystem risk (or safety) assessment has become an internationally recognized discipline at the forefront of global change and ecology research. A key object of ecological safety research is to identify and understand the tolerance threshold of the different types of ecosystems at various scales and the processes of adaptive management of ecosystems under global change stress. This paper takes the different elements affecting ecosystems as the starting point to review the theory and application of the ecological safety threshold concept. The literature reveals the interrelationship between ecological steady-state processes and perturbations of climate change, impacting on carbon and nitrogen cycles, with a consequent need for changes to land and grassland use, and regional policy regimes, among others. Furthermore, improving detection of ecological safety thresholds in major ecosystems and the precision of forecasts about their behavior is pivotal to restoration of degraded ecosystems and the protection and management of the ecological environment. Because of the complexity of the changes to ecosystem processes induced by the various stress factors, and gaps in knowledge about the processes themselves, especially in relation to defining health and sustainability in different types of ecosystem, the determination and predictive capability pertaining to the ecological safety threshold is currently very limited, and there is still great uncertainty.
ecosystem; safety threshold; overview and prospects
10.11686/cyxb2016075
http://cyxb.lzu.edu.cn
2016-03-03;改回日期:2016-04-07
國(guó)家自然科學(xué)基金委重大項(xiàng)目“中國(guó)冰凍圈服務(wù)功能形成過(guò)程及其綜合區(qū)劃研究”第三課題“中國(guó)冰凍圈過(guò)程與人文服務(wù)功能評(píng)估”(41690143),國(guó)家自然科學(xué)基金委面上項(xiàng)目(41671058),中國(guó)科學(xué)院寒區(qū)旱區(qū)環(huán)境與工程研究所科技服務(wù)網(wǎng)絡(luò)計(jì)劃(HHS-TSS-STS-1501)資助。
王世金(1975-),男,甘肅金昌人,副研究員。E-mail: xiaohanjin@126.com
王世金, 魏彥強(qiáng). 生態(tài)安全閾值研究述評(píng)與展望. 草業(yè)學(xué)報(bào), 2017, 26(1): 195-205.
WANG Shi-Jin, WEI Yan-Qiang. Overview and prospects for ecological safety threshold research. Acta Prataculturae Sinica, 2017, 26(1): 195-205.