黃語悠 房亞蘭 劉克建 趙詠梅
(首都醫(yī)科大學(xué)宣武醫(yī)院 北京市老年病醫(yī)療研究中心 神經(jīng)變性病教育部重點(diǎn)實(shí)驗(yàn)室 腦血管病轉(zhuǎn)化醫(yī)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100053)
· 腦血管病、認(rèn)知障礙的基礎(chǔ)及臨床研究 ·
一氧化氮及其衍生物在缺血性腦血管病中的作用
黃語悠 房亞蘭 劉克建 趙詠梅*
(首都醫(yī)科大學(xué)宣武醫(yī)院 北京市老年病醫(yī)療研究中心 神經(jīng)變性病教育部重點(diǎn)實(shí)驗(yàn)室 腦血管病轉(zhuǎn)化醫(yī)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100053)
缺血性卒中是導(dǎo)致死亡的主要原因,也是世界上最常見的致殘?jiān)蛑?。腦缺血損傷能促進(jìn)一氧化氮(nitric oxide, NO)的形成。過量的NO在缺血性腦損傷的發(fā)展過程中起著至關(guān)重要的作用。NO可能通過直接攻擊蛋白質(zhì)和脂質(zhì)等生物大分子、破壞線粒體功能,或間接影響細(xì)胞信號轉(zhuǎn)導(dǎo)通路和基因調(diào)控,從而加重缺血性腦損傷。過量的NO可能具有神經(jīng)毒性,導(dǎo)致興奮性神經(jīng)毒性級聯(lián)反應(yīng)、炎性反應(yīng)和細(xì)胞凋亡。然而,NO也可能在腦缺血過程中發(fā)揮神經(jīng)保護(hù)作用。本文擬對NO及其衍生物在腦缺血損傷中的作用進(jìn)行綜述。
一氧化氮;缺血性腦血管病;過氧亞硝基陰離子;三氧化二氮
一氧化氮(nitric oxide, NO)是一種無負(fù)荷、自由基性質(zhì)的小分子,作為生物信使分子,在動(dòng)物體內(nèi)發(fā)揮著重要作用。其化學(xué)結(jié)構(gòu)非常簡單,半衰期極短,性質(zhì)極為不穩(wěn)定。
因NO相對分子質(zhì)量小,且?guī)в胁怀蓪﹄娮樱H脂性強(qiáng),因而能夠以自由擴(kuò)散的方式通過細(xì)胞膜,進(jìn)而能夠特異地參與機(jī)體的生理及病理過程,是極為重要的信息分子。NO既能導(dǎo)致炎性反應(yīng)、興奮性毒性和凋亡,發(fā)揮神經(jīng)毒性作用,又能抑制血小板聚集、白細(xì)胞黏附,舒張血管,維持血流量[1]。
1.1 體內(nèi)NO的來源
1.1.1 經(jīng)NOS途徑產(chǎn)生的NO
根據(jù)NOS的來源和表達(dá)方式不同,NOS可分為3種類型:內(nèi)皮細(xì)胞型NOS(endothelial NOS, eNOS) 、神經(jīng)元型NOS(neuronal NOS, nNOS)和誘導(dǎo)型NOS(inducible NOS, iNOS)。
神經(jīng)組織內(nèi)nNOS和血管內(nèi)皮細(xì)胞中的eNOS在生理?xiàng)l件下即可廣泛表達(dá),產(chǎn)生的NO作為生物信使分子和血管活性因子,介導(dǎo)信息傳遞、記憶形成、調(diào)節(jié)腦血流等。而在病理?xiàng)l件下,炎性細(xì)胞、巨噬細(xì)胞和膠質(zhì)細(xì)胞等表達(dá)的iNOS大量增加,產(chǎn)生過量的NO,進(jìn)而在中樞神經(jīng)系統(tǒng)發(fā)揮神經(jīng)毒性作用,所以iNOS被認(rèn)為是一種“病理型”的酶[1]。
1.2 NO在體內(nèi)的作用
NO在體內(nèi)的作用可分為直接作用和間接作用[4]。當(dāng)NO的局部濃度低于μmol/L水平時(shí),可迅速與鳥苷酸環(huán)化酶等反應(yīng),發(fā)揮生理作用,即NO的直接作用。而NO的“毒性作用”是指病理?xiàng)l件下,局部NO濃度劇升,與周圍的氧自由基等反應(yīng)生成活性氮氧化合物,再由活性氮氧化合物發(fā)揮細(xì)胞毒性作用,造成組織損傷[5-6]。
1.3 介導(dǎo)NO間接作用的衍生物的生成
1.4 ONOO-與N2O3的氧化作用
1.4.1 ONOO-介導(dǎo)的氧化應(yīng)激
ONOO-是一種強(qiáng)氧化劑,可使許多重要的蛋白質(zhì)或酶失活,破壞線粒體結(jié)構(gòu),影響細(xì)胞代謝,并使DNA鏈斷裂,誘發(fā)脂質(zhì)過氧化,最終導(dǎo)致組織損傷[9]。3-硝基酪氨酸(3-nitrotyrosine,3-NT)是ONOO-氧化的穩(wěn)定產(chǎn)物,目前已在多種疾病中被檢測到,3-NT的多少與組織損傷成正相關(guān),故3-NT也可作為檢測組織內(nèi)NO及其衍生物含量的有效指標(biāo)。
1.4.2 N2O3及其衍生物介導(dǎo)的亞硝基化應(yīng)激
N2O3性質(zhì)不穩(wěn)定,能夠與氨基、巰基等發(fā)生反應(yīng),產(chǎn)生亞硝基胺和亞硝基硫醇等[10]。其中,亞硝基胺可破壞某些蛋白質(zhì)對于DNA的修復(fù)功能,導(dǎo)致DNA突變、受損,最終引起細(xì)胞死亡。而亞硝基硫醇的作用廣泛,它能生成NO,使血管舒張;也能通過對氧化態(tài)的NO基團(tuán)進(jìn)行轉(zhuǎn)移,進(jìn)而調(diào)控基因轉(zhuǎn)錄。并且亞硝基硫醇能夠抑制某些酶和蛋白的活性,干擾細(xì)胞代謝,誘導(dǎo)細(xì)胞死亡。
N2O3與不同的底物反應(yīng),導(dǎo)致不同的亞硝基化應(yīng)激,可以損傷細(xì)胞,也可以保護(hù)細(xì)胞。如脂多糖/干擾素-γ誘導(dǎo)小鼠原代巨噬細(xì)胞產(chǎn)生的氧化應(yīng)激并不強(qiáng),但會(huì)造成強(qiáng)烈的亞硝基化應(yīng)激,使蛋白質(zhì)亞硝基化水平顯著升高,造成細(xì)胞死亡[11-12]。此外,研究[13]顯示,NMDA引起神經(jīng)細(xì)胞損傷,但氧化態(tài)NO基團(tuán)可使NMDA受體亞硝基化,從而降低該受體活性,保護(hù)神經(jīng)元。
NO及其衍生物的測定對理解疾病的病理、生理過程有著重要的意義。但是由于細(xì)胞內(nèi)NO釋放量低,且釋放后的NO能夠迅速擴(kuò)散并與體內(nèi)其他分子發(fā)生反應(yīng),因此體內(nèi)NO的測定比較困難。
作為目前比較常見的NO熒光探針,DAF需要與氧化的NO產(chǎn)物進(jìn)行反應(yīng)。因此,DAF在缺氧條件下對NO的檢測效果不理想[18]。魯米諾法[19]測定NO則是通過將體內(nèi)NO氧化生成ONOO-后與魯米諾(3-氨基鄰苯二甲酰肼)反應(yīng)發(fā)出強(qiáng)光,此法的缺陷在于易受到體內(nèi)還原性物質(zhì)的影響。
配位化合物MNIP-Cu在富氧和缺氧條件下均可快速且特異性地與NO反應(yīng),產(chǎn)生具有藍(lán)色熒光的產(chǎn)物[20]。Horn等[21]通過自行合成的MNIP-Cu探針檢測冠狀動(dòng)脈粥樣硬化性心臟病(以下簡稱冠心病)病人血漿中NO濃度;將自行合成的MNIP-Cu溶液注入活體大鼠腦室,可于大腦切片中觀察到藍(lán)色熒光信號,且信號強(qiáng)度與腦中NO濃度成正比[22]。
3-NT是ONOO-使酪氨酸等氨基酸硝基化的產(chǎn)物,因此可以通過檢測3-NT來間接反映體內(nèi)ONOO-的水平。本課題組前期研究[24]通過檢測腦組織中3-NT,發(fā)現(xiàn)常壓高濃度氧可降低腦缺血后腦組織中的NO。用免疫組織化學(xué)法檢測SD大鼠胸主動(dòng)脈的3-NT表達(dá),發(fā)現(xiàn)老年鼠血管中3-NT的表達(dá)較年輕大鼠明顯升高[25]。減少過氧化氫誘導(dǎo)的NO和3-NT產(chǎn)生,對神經(jīng)細(xì)胞具有保護(hù)作用,可以減輕腦缺血再灌注損傷[26-27]。
3.1 腦缺血性損傷過程中NO的來源
在缺血超早期,eNOS產(chǎn)生的NO的毒性作用可被側(cè)支循環(huán)的增加抵消,故對缺血再灌注產(chǎn)生的影響很小。雖然nNOS和iNOS生成的NO均可導(dǎo)致神經(jīng)毒性損傷,但由于nNOS半衰期短,產(chǎn)生的NO較少,對神經(jīng)組織的損傷作用較小,因此在缺血再灌注后期影響甚微。用nNOS抑制劑—7-硝基吲唑?qū)Υ笫筮M(jìn)行預(yù)處理可將NOx產(chǎn)生峰延遲至30 min并減弱NOx的總量,說明缺血超早期主要通過上調(diào)nNOS表達(dá)產(chǎn)生NO[24]。病理?xiàng)l件下經(jīng)48 h方可誘導(dǎo)iNOS mRNA的表達(dá),產(chǎn)生大量的NO,且iNOS mRNA的半衰期很長,一經(jīng)誘導(dǎo)合成,即可持續(xù)翻譯合成iNOS,進(jìn)而促使大量的NO產(chǎn)生,引起遲發(fā)性腦損傷,因此在缺血再灌注中的作用至關(guān)重要[1,29]。使用iNOS基因敲除鼠制備大腦中動(dòng)脈梗死(middle cerebral artery occlusion, MCAO)模型或在小鼠MCAO模型中使用iNOS抑制劑,均可顯著減輕缺血半暗帶區(qū)的神經(jīng)損傷,減少梗死體積[30]。
3.2 缺血-再灌注過程中NO的變化規(guī)律
有研究[5,30]顯示,腦缺血后,nNOS和eNOS介導(dǎo)NO迅速升高,于5~15 min達(dá)到高峰,之后60 min內(nèi)下降至缺血前水平。若缺血繼續(xù),則NO繼續(xù)下降。到再灌注時(shí)NO又逐漸升高,至再灌注24 h達(dá)到高峰,再灌注7 d時(shí)NO仍高于缺血前水平。如果缺血時(shí)間超過6 h,炎性反應(yīng)細(xì)胞表達(dá)的iNOS可使NO再次升高[5,30]。研究[1,31]表明,不同的缺血方式引起iNOS表達(dá)的時(shí)間也不同。iNOS mRNA在永久性MCAO后6 h開始表達(dá),2 d達(dá)到高峰;而短暫性MCAO后,iNOS mRNA在再灌注后12 h即達(dá)到高峰,4 d左右恢復(fù)至缺血前水平。
3.3 缺血-再灌注時(shí)NO的作用及機(jī)制
研究[1,32]顯示,使用eNOS基因缺陷小鼠制備MCAO模型,其梗死體積比野生型小鼠增大,說明eNOS合成的NO具有保護(hù)腦缺血損傷的作用。局灶性腦缺血2 h再灌注早期(15 min),半暗帶區(qū)的神經(jīng)細(xì)胞及血管eNOS表達(dá)上調(diào),但未見iNOS表達(dá),說明此時(shí)腦內(nèi)的NO主要來源于eNOS,其可能通過抑制血小板聚集、白細(xì)胞黏附,舒張血管等功能增加側(cè)支循環(huán)、防止微血管堵塞,維持腦血流,減輕腦損傷。此外,NO也能抑制Ca2+通過NMDA受體內(nèi)流,進(jìn)而抑制谷氨酸的神經(jīng)毒性[33]。
NO及其衍生物在腦缺血損傷中發(fā)揮了重要作用,明確其在缺血性腦血管病中的作用機(jī)制,對探明腦缺血再灌注過程的病理生理變化具有重要意義,并可能為腦損傷與腦保護(hù)劑的研究開辟新視野。已有研究[30-35]表明,在腦缺血再灌注過程中,給予選擇性iNOS抑制劑或促進(jìn)eNOS活性,可以減少缺血再灌注損傷,保護(hù)半暗帶神經(jīng)元,這為缺血性腦血管病的治療提供了新思路。但關(guān)于NO及其衍生物,目前還有許多問題沒有闡明。NO及其衍生物在腦缺血損傷中的作用值得深入探索與研究。
[1] Liu H, Li J, Zhao F, et al. Nitric oxide synthase in hypoxic or ischemic brain injury[J].Rev Neurosci,2015,26(1):105-117.
[2] Miao J, Huo Y, Lv X, et al. Fast-response and highly selective fluorescent probes for biologic signaling molecule NO based on N-nitrosation of electron-rich aromatic secondary amines[J]. Biomaterials, 2016,78:11-19.
[3] Li H, Liu X, Cui H, et al.Characterization of the mechanism of cytochrome P450 reductase-cytochrome P450-mediatednitric oxide and nitrosothiol generation from organic nitrates[J]. J Biol Chem, 2006, 281(18):12546-12554.
[4] 孫素群,許霖水. 一氧化氮間接作用機(jī)制的研究進(jìn)展[J]. 生理科學(xué)進(jìn)展, 2002,33(2):167-169.
[5] Moro M A, Cárdenas A, Hurtado O, et al. Role of nitric oxide after brain ischaemia[J]. Cell Calcium, 2004,36(3-4):265-275.
[6] Magierowski M, Magierowska K, Kwiecien S, et al. Gaseous mediators nitric oxide and hydrogen sulfide in the mechanism of gastrointestinal integrity, protection and ulcer healing[J]. Molecules, 2015,20(5):9099-9123.
[7] Demicheli V, Moreno D M, Jara G E, et al. Mechanism of the reaction of human manganese superoxide dismutase with peroxynitrite: nitration of critical tyrosine 34[J]. Biochemistry, 2016,55(24):3403-3417.
[8] Carballal S, Bartesaghi S, Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite[J].Biochim Biophys Acta, 2014,1840(2):768-780.
[9] Islam B U, Habib S, Ahmad P, et al. Pathophysiological role of peroxynitriteinduced DNA damage in human diseases: aspecial focus on poly(ADP-ribose) polymerase (PARP) [J]. Indian J Clin Biochem, 2015,30(4):368-385.
[10]Roche C J, Cassera M B, Dantsker D, et al. Generating S-nitrosothiols from hemoglobin: mechanisms, conformational dependence, and physiological relevance[J]. J Biol Chem, 2013,288(31):22408-22425.
[11]Eu J P, Liu L, Zeng M, et al. An apoptotic model for nitrosativstress[J]. Biochemitry, 2000,39(5):1040-1047.
[12]Ridnour L A, Thomas D D, Mancardi D, et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations[J]. Biol Chem, 2004,385(1):1-10.
[13]Watanabe A, Sasaki T, Yukami T, et al. Serine racemase inhibition induces nitric oxide-mediated neurovascular protection during cerebral ischemia[J]. Neuroscience, 2016,339:139-149.
[14]Oehlschl?ger S, Albrecht S, Hakenberg O W, et al. Measurement of free radicals and NO by chemiluminescence to identify the reperfusion injury in renal transplantation[J]. Luminescence, 2002,17(2):130-132.
[15]Saito M, Miyagawa I. Real-time monitoring of nitric oxide in ischemia-reperfusion rat kidney[J]. Urol Res, 2000,28(2):141-146.
[16]Lui S L, Chan L Y, Zhang X H, et al. Effect of mycophenolatemofetil on nitric oxide production and inducible nitric oxide synthase gene expression during renal ischaemia-reperfusion injury[J]. Nephrol Dial Transplant, 2001,16(8):1577-1582.
[17]Okamoto M, Tsuchiya K, Kanematsu Y, et al. Nitrite-derived nitric oxide formation following ischemia-reperfusion injury in kidney[J]. Am J Physiol Renal Physiol, 2005,288(1):F182-F187.
[18]Ouyang J, Hong H, Shen C, et al. A novel fluorescent probe for the detection of nitric oxide in vitro and in vivo[J]. Free Rad Biol Med, 2008,45 (10):1426-1436.
[19]周李承,章林慧,梁桂媛,等. 魯米諾-過氧化氫化學(xué)發(fā)光法動(dòng)態(tài)監(jiān)測硝普鈉在小鼠體內(nèi)釋放NO過程[J]. 華中科技大學(xué)學(xué)報(bào),2003,32(4):378-380.
[20]Jain P, David A, Bhatla S C. A novel protocol for detection of nitric oxide in plants[J]. Method Mol Biol, 2016,1424:69-79.
[21]Horn P, Cortese-Krott M M, Amabile N, et al. Circulating microparticles carry a functional endothelial nitric oxide synthase that is decreased in patients with endothelial dysfunction[J]. J Am Heart Assoc, 2012,2(1): e003764.
[22]楊流海,陳江寧,張峻峰. 新型熒光探針應(yīng)用于帕金森病模型中 NO 的檢測[J].東南大學(xué)學(xué)報(bào):醫(yī)學(xué)版, 2014,(5):555-560.
[23]Peng T, Wong N K, Chen X, et al. Correction to “molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues”[J]. J Am Chem Soc, 2016,18,138(19):6311.
[24]Yuan Z, Liu W, Liu B, et al. Normobarichyperoxia delays and attenuates early nitric oxide production in focal cerebral ischemic rats[J]. Brain Res, 2010,1352:248-254.
[25]馬語曼, 孫琪, 董玉, 等. 硝化應(yīng)激參與衰老血管內(nèi)皮功能障礙[J]. 首都醫(yī)科大學(xué)學(xué)報(bào), 2015, (6):908-914.
[26]Zhao H, Tao Z, Wang R, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion[J]. Brain Res, 2014,1592:65-72.
[27]Zhao H, Wang R, Tao Z, et al. Activation of T-LAK-cell-originated protein kinasemediatedantioxidation protects against focal cerebral ischemia-reperfusion injury[J]. FEBS J, 2014,281(19):4411-4420.
[28]Vanin A F, Bevers L M, Slama-Schwok A, et al. Nitric oxide synthase reduces nitrite to NO under anoxia[J]. Cell Mol Life Sci, 2007,64(1):96-103.
[29]Yang P S, Lin P Y, Chang C C, et al. Antrodiacamphoratapotentiates neuroprotection against cerebral ischemia in rats via downregulation of iNOS/HO-1/Bax and activated caspase-3 and inhibition of hydroxyl radical formation[J]. Evid Based Complement Alternat Med, 2015,2015:232789.
[30]del Zoppo G, Ginis I, Hallenbeck J M, et al. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia[J].Brain Pathol, 2000,10(1):95-112.
[31]Kidd G A, Hong H, Majid A, et al.Inhibition of brain GTP cyclohydrolase I and tetrahydrobiopterin attenuates cerebral infarction via reducing inducible NO synthase and peroxynitrite in ischemic stroke[J]. Stroke, 2005,36(12):2705-2711.
[32]Kim J H, Choi K H, Jang Y J, et al.Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice[J].PLoS One, 2013, 8(2):e56736.
[33]Fujikawa D G.The role of excitotoxic programmed necrosis in acute brain injury[J].Comput Struct Biotechnol J, 2015,13:212-221.
[34]Piazza M, Futrega K, Spratt D E, et al. Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic CaM mutation[J]. Biochemistry, 2012,51(17):3651-3661.
[35]Zheng L, Ding J, Wang J, et al. Effects and mechanism of action of inducible nitric oxide synthase on apoptosis in a rat model of cerebral ischemia-reperfusion injury[J]. Anat Rec:Hoboken, 2016, 299(2):246-255.
[36]Brown C M, Dela Cruz C D, Yang E, et al.Inducible nitric oxide synthase and estradiol exhibit complementary neuroprotective roles after ischemic brain injury[J]. Exp Neurol, 2008,210(2):782-787.
[37]邵正凱, 劉爽,王雪峰. 一氧化氮/環(huán)磷酸鳥苷信號與蛛網(wǎng)膜下腔出血后腦血管痙攣相關(guān)機(jī)制的研究進(jìn)展[J]. 中國腦血管病雜志,2016,13(3) :165-168.
[38]劉云, 高曉瑩,戚思華. 缺血后處理腦保護(hù)作用的研究進(jìn)展[J]. 中國腦血管病雜志. 2015,12(3) :160-164.
編輯 慕 萌
Role of nitric oxide and its derivatives in ischemic cerebrovascular disease
Huang Yuyou, Fang Yalan, Liu Kejian, Zhao Yongmei*
(XuanwuHospital,CapitalMedicalUniversity,BeijingGeriatricMedicalResearchCenter,KeyLaboratoryofNeurodegenerativeDiseasesofMinistryofEducation,BeijingKeyLaboratoryofTranslationalMedicineforCerebrovascularDiseases,Beijing100053,China)
Ischemic stroke is the major cause of death and remains as one of the most common causes of disability worldwide. It is well known that cerebral ischemic injury enhances the formation of nitric oxide (NO). It is believed that excessive NO production plays an important role in the development of ischemic brain injury. NO probably contribute to ischemic injury by attacking macromolecules directly, including proteins and lipids, and disrupting mitochondrial function, or indirectly affecting cellular signaling pathways and gene regulation. Excessive production of NO may be neurotoxic, which leads to cascade reactions of excitotoxicity, inflammation and apoptosis. However, NO may also play a neuroprotective role in brain ischemia processes. In this paper, the role of NO and its derivatives in cerebral ischemic injury are reviewed.
nitric oxide (NO); ischemic stroke; peroxynitrite;N2O3
國家自然科學(xué)基金(8161001163),北京市自然科學(xué)基金(7122036)。This study was supported by National Natural Science Foundation of China (8161001163), Natural Science Foundation of Beijing (7122036).
時(shí)間:2017-01-17 23∶54
http://www.cnki.net/kcms/detail/11.3662.R.20170117.2354.054.html
10.3969/j.issn.1006-7795.2017.01.014]
R 743.31
2016-11-28)
*Corresponding author, E-mail:yongmeizhao@hotmail.com