楊海洋,杜 星,甘振東,李圭白,梁 恒
(城市水資源與水環(huán)境國家重點實驗室(哈爾濱工業(yè)大學(xué)),哈爾濱150090)
混凝-助凝-超濾工藝處理地表水膜污染
楊海洋,杜 星,甘振東,李圭白,梁 恒
(城市水資源與水環(huán)境國家重點實驗室(哈爾濱工業(yè)大學(xué)),哈爾濱150090)
為考查混凝劑種類對混凝-助凝-超濾工藝處理較高濁度地表水時膜污染的影響,采用動態(tài)測絮體粒徑的馬爾文粒度儀和微型超濾系統(tǒng)研究聚合氯化鋁(PACl)和三氯化鐵(FeCl3)與助凝劑聚丙烯酰胺(PAM)聯(lián)用形成的絮體對超濾膜污染的影響.結(jié)果表明,固定混凝劑投量(PACl 和 FeCl3為3 mg/L),當(dāng)PAM投量在0~0.4 mg/L時,絮體粒徑增至1 000 μm,相對于單一投加PACl(3~370 μm)和FeCl3(360~420 μm)時增長明顯,且隨投量增加比通量增大(PACl:0.56~0.64;FeCl3:0.71~0.76)、濾餅層阻力減小(PACl:由0.90×10-11降至0.52×10-11m-1;FeCl3:由0.47×10-11降至0.28×10-11m-1);然而當(dāng)PAM投量增大為1.0 mg/L時,比通量明顯減小至0.48,而濾餅層阻力顯著增加至1.55×10-11m-1.因此,助凝劑PAM存在最優(yōu)投量(0.4 mg/L)膜污染最小.結(jié)合納米粒度儀和掃描電鏡證明濾餅是主要污染機理,但膜孔堵塞在PAM投量高時明顯.
聚合氯化鋁;三氯化鐵;聚丙烯酰胺;超濾;膜污染
超濾膜作為城市凈水技術(shù),由于其截留懸浮物、細(xì)菌、病毒及出水水質(zhì)等方面優(yōu)于傳統(tǒng)工藝,近年來在中國城市凈水廠中的應(yīng)用越來越廣[1].膜污染是制約超濾工藝應(yīng)用的關(guān)鍵因素,因為膜污染與超濾膜系統(tǒng)運行能耗相關(guān)聯(lián)[2].混凝作為膜前預(yù)處理中最有效的工藝可改善膜前水質(zhì),顯著減緩膜污染[3-5].由于絮體受混凝劑種類與投量、顆粒濃度等因素影響,常與無機混凝劑配合使用[6-7].針對高濁水投加助凝劑可減緩膜污染,但投量過大時反而引發(fā)膜污染加劇[8].為進一步研究上述現(xiàn)象,本實驗通過改變混凝劑及助凝劑的投加,考察其生成絮體顆粒大小的差異,通過膜通量變化分析后續(xù)超濾過程中膜污染變化情況,并結(jié)合納米粒度分布以及掃描電鏡對膜污染機理進行探究.
1.1 實驗水質(zhì)
實驗用水由自來水、高嶺土及腐殖酸(8 mg/L,天津市光復(fù)精細(xì)化工研究所)配制而成.其中,自來水在使用前靜置24 h,水中余氯經(jīng)鄰聯(lián)甲苯胺比色法測定由0.2 mg/L降至0 mg/L.腐殖酸母液(2 g/L)配方如下:稱取2.0 g腐殖酸溶解于pH為12的NaOH溶液中,置于磁力攪拌器上連續(xù)攪拌24 h,用NaOH和HCl溶液將pH調(diào)至7.5,離心去除沉淀物后定容于1 L容量瓶中,避光保存于4 ℃冰箱內(nèi).混凝劑采用聚合氯化鋁(PACl)和三氯化鐵(FeCl3),助凝劑采用聚丙烯酰胺(PAM).其中PACl(Al2O328%)儲備液濃度為0.4 mol/L(以Al3+計);FeCl3儲備液質(zhì)量濃度為0.3 mol/L(以Fe3+計);PAM儲備液質(zhì)量濃度為1 g/L,于4 ℃冰箱內(nèi)保存.實驗期間溫度為15~19 ℃,其他水質(zhì)指標(biāo)如表1所示.
表1 原水及出水水質(zhì)指標(biāo)Tab.1 Water quality of influent and effluents in coagulation-aid-coagulation systems
1.2 實驗裝置與方法
實驗采用ZR4-6(深圳中潤)攪拌機進行混凝劑(PACl和FeCl3)的絮凝過程.具體操作是將原水加入到1 L的攪拌杯中并分別投加混凝劑PACl(0、2、3、4、6和8 mg/L)及FeCl3(0、2、3、4、6 和8 mg/L),同時啟動混凝攪拌程序:以200 r/min快速混合1 min,然后以50 r/min慢速攪拌15 min,靜沉30 min后于水面下3 cm處取樣測定其余濁,并經(jīng)0.45 μm的微孔濾膜過濾測定其TOC、UV254值.分析上述實驗結(jié)果,固定混凝劑投量為3 mg/L,進行如上前16 min的混凝攪拌程序,并于混凝開始后的第5分鐘投加PAM(0、0.2、0.4、0.5、1.0 和1.5 mg/L),測定動態(tài)情況下絮體粒徑、Zeta電位、余濁、UV254及膜通量變化.
動態(tài)絮體粒徑大小由馬爾文粒度儀 (Malvern Mastersizer 2000,英國) 監(jiān)測.如圖1(a)所示,將1 L實驗配水加入到攪拌杯中,加入混凝劑的同時開啟混凝程序和蠕動泵,混合液經(jīng)內(nèi)徑為5 mm的管道由蠕動泵循環(huán)送入馬爾文粒度儀內(nèi)進行粒徑測量,進水管位于攪拌杯頂端,出水管位于攪拌杯側(cè)面底部,實驗中每30 s進行一次粒徑測量,數(shù)據(jù)自動傳送并保存于電腦內(nèi).其中采用d50表示絮體平均粒徑.
圖1 實驗裝置示意Fig.1 Schematic diagram of the experimental set-up
1.3 不同水力阻力測定
水力阻力(Rt)測定方法應(yīng)用很廣泛[9-10],可以通過下列方式計算:
(1)
式中膜的阻力(Rm)可以通過純水在過濾前測定,即
(2)
式中J0為純水通量,μ0為純水的運動黏滯系數(shù).當(dāng)過濾停止時,膜組件取出,采用海綿輕輕去除膜表面的濾餅.此時,Rf可通過去除濾餅前后阻力的差值得到,即
(3)
Rc=Rt-Rm-Rf.
(4)
膜污染阻力(Rmf)可以通過下列公式計算:
Rmf=Rt-Rm.
(5)
式中:pTM(Pa)為跨膜壓差,μ (Pa·s)為水的運動黏滯系數(shù),Rt(m-1)為總阻力,Rm(m-1)為膜的阻力,Rmf(m-1)為膜的污染阻力,Rc(m-1) 為濾餅阻力,Rf(m-1)為吸附或堵塞的污染阻力.
1.4 分析儀器與方法
濁度:濁度儀(HACH 2100N,美國);電導(dǎo)率:電導(dǎo)率儀(SevenCompact S230,瑞士);DOC:TOC儀(multi N/C 2100S,德國);UV254:紫外/可見分光光度計(T6新世紀(jì),中國);Zeta電位:Zeta電位儀(Malvern,英國);Al3+、Fe3+含量:ICP-OES(Varian 700 -ES,美國),水樣測定前經(jīng)0.45 μm膜過濾;pH:pH計(Sartorius PB-21,德國);溫度:在線溫度計.
2.1 混凝劑投量對絮體粒徑影響
圖2為不同混凝劑不同投量下絮體粒徑隨時間變化.由圖2(a)可知,當(dāng)投加PACl 2~4 mg/L時,絮體粒徑顯著增長時間延后(2 mg/L(1.5~5 min);3 mg/L(2~6 min);4 mg/L(3.5~8 min)),最終穩(wěn)定時粒徑增長顯著(3 mg/L以內(nèi):3~280 μm;4 mg/L:3~370 μm).當(dāng)投量為6 mg/L時,絮體顆粒在第8分鐘才顯著增長,在第15分鐘形成穩(wěn)定絮體且達到只投加PACl時的最大粒徑(400 μm).然而,當(dāng)繼續(xù)增大投量至8 mg/L時,混凝過程(16 min)結(jié)束后絮體粒徑僅為80 μm.如圖2(b)所示,當(dāng)投加FeCl32~4 mg/L時,絮體粒徑增長時間延后的趨勢與圖2(a)一致,不同的是,不同投量下絮體粒徑在第6~8分鐘后不再增長,且均穩(wěn)定在360~420 μm.而當(dāng)投量增至6~8 mg/L時,測得水中顆粒物的粒徑與原水相近(約5 μm),可認(rèn)為并未生成絮體.在pH為7左右時混凝以電中和為主導(dǎo)(表1中投加混凝劑后Zeta值在0附近),投加適量的鋁鹽和三價鐵鹽,其水解產(chǎn)物在混合過程中會吸附微小顆粒物,并使其脫穩(wěn)絮凝成粒徑為幾百微米的絮體[11];但投加過量時,膠體會產(chǎn)生再穩(wěn)現(xiàn)象,不利于絮體形成.投加FeCl3時出水pH低于投加PACl時(表1),其水解后生成高電荷的羥基多核配合物,同時水中有機物的質(zhì)子化程度高,因此,更利于有機物吸附到水解產(chǎn)物上[12-13],生成絮體顆粒粒徑較投加PACl時大.
對比圖2(a)、(b)可知,投加少量混凝劑(2~4 mg/L)可顯著增強混凝效果;但投量過大時混凝延遲或不明顯,甚至沒有混凝效果.
圖2 不同混凝劑不同投量下絮體平均粒徑隨時間的變化
Fig.2 Effect of different coagulants on the formation of aggregates at varied dosage
2.2 助凝劑投量對絮體粒徑影響
圖3為不同混凝劑對應(yīng)助凝劑不同投量下絮體粒徑分布平均粒徑隨時間變化.由圖3(a)可知,當(dāng)PAM投量為0.2 mg/L時,絮體粒徑僅由240 μm增至400 μm;投量為0.4~1.0 mg/L時,生成粒徑在730~900 μm的大顆粒絮體;繼續(xù)增大投量至1.5 mg/L時,粒徑在680~1 000 μm,可見最終穩(wěn)定時絮體顆粒大小隨PAM投量的增大而顯著增長.圖3(b)所示的粒徑變化整體趨勢與圖3(a)相似,當(dāng)投量為0.2 mg/L時絮體粒徑由430 μm小幅度增長至630 μm;投加0.4~1.0 mg/L時,絮體顆粒迅速增長至800~1 200 μm;高投量情況下(1.5 mg/L),絮體測量數(shù)據(jù)波動明顯,這是因為大顆粒絮體聚集并沉于攪拌杯底部中央位置,難以隨管道進入測定腔體而準(zhǔn)確測定其粒徑大小.
對比圖3(a)、(b)可知,雖然投加混凝劑種類不同且在投加PAM之前微絮體顆粒大小不同,投加PAM均可達到助凝效果,且投加PAM的3 min內(nèi)絮體粒徑顯著增長并未發(fā)生破碎現(xiàn)象,可見PAM助凝效果迅速、顯著且穩(wěn)定.PAM水解后形成長鏈的高分子物質(zhì),通過吸附架橋作用鏈結(jié)絮體顆粒,當(dāng)PAM投量較少時,微絮體顆粒鏈結(jié)不完全,因而顆粒僅有小幅度增長[8].
2.3 混凝劑投量對膜污染的影響
圖4為不同混凝劑在不同投量時比通量與膜阻力大小.如圖4(a)所示,在大投量6~8 mg/L時,比通量(0.331~0.332)明顯小于2~4 mg/L時(0.591~0.708),但均遠(yuǎn)大于原水直接過濾時(0.148).由圖4(b)可知,F(xiàn)eCl3在小投量2~4 mg/L時比通量增大明顯,由0.508增至0.593;6 mg/L時比通量明顯減小僅為0.419;而當(dāng)投量增大為8 mg/L時僅為0.100,甚至小于原水時(0.148).
圖4 不同混凝劑不同投量時比通量及膜阻力大小Fig.4 Flux and membrane filtration resistance under different coagulants at varied dosage
由圖4(c)、(d)可知,影響膜通量的幾個因素中濾餅層阻力變化最大,堵塞阻力無顯著差異且其最大值仍不超過0.1×10-11m-1,可認(rèn)為其并不是影響膜通量的主要因素.原水直接過濾時濾餅層阻力為5.15×10-11m-1,此時膜阻力和堵塞阻力僅為0.85×10-11和0.04×10-11m-1.由圖4(c)可知,投加PACl 2~8 mg/L時濾餅層阻力(0.28×10-11~1.99×10-11m-1)均小于原水直接過濾時,而投量在2~4 mg/L時濾餅層阻力遠(yuǎn)小于其他情況.圖4(d)表明,F(xiàn)eCl3投量在2~6 mg/L時的濾餅層阻力與PACl相似,范圍為0.59×10-11~1.27×10-11m-1均遠(yuǎn)小于原水直接過濾對應(yīng)值;而當(dāng)投量過高達8 mg/L時,濾餅層阻力為7.41×10-11m-1遠(yuǎn)遠(yuǎn)大于原水直接過濾時.在混凝過程中,腐殖質(zhì)通過與帶正電的金屬鹽混凝劑中和,或者被金屬氫氧化物吸附而去除[14].隨混凝劑的投加Zeta值上升而pH下降(表1),當(dāng)混凝劑投加過量時,低pH抑制其水解并使膠體再穩(wěn),導(dǎo)致水中小顆粒物質(zhì)含量增高而顯著提升膜阻力[15],且當(dāng)FeCl3投量過高時,混凝沉淀后余濁(107)甚至高于原水濁度(103).綜合圖2和4,在較小投量(2~4 mg/L)下,絮體粒徑、比通量均大于大投量(6~8 mg/L)時,但其濾餅層阻力卻小于后者.
這與Feng[16]及Ma[17]等的研究結(jié)果相似,以Al鹽和Fe鹽作為混凝劑,在電中和情況下投量不足會導(dǎo)致腐殖酸去除率較低并產(chǎn)生更多的小顆粒,濾餅層阻力增大;投量過高時混凝劑的水解產(chǎn)物又會直接造成濾餅層阻力增加的結(jié)論相符,也可證實Zhang等[18-20]推測認(rèn)為濾餅層是產(chǎn)生膜污染的主要原因.
2.4 助凝劑投量對膜污染的影響
圖5為不同PAM投量時比通量及膜阻力大小.由圖5(a)可知,當(dāng)投加PAM 0.2~0.4 mg/L比通量分別增長至0.562和0.641;而提高投量到1.0 mg/L 時,比通量(0.475)甚至小于未投加PAM時;由圖5(b)表明,投加PAM 0.2~0.4 mg/L時比通量分別為0.709和0.764,均高于未投加PAM時比通量(0.685);繼續(xù)增大投量至1.0 mg/L時比通量值明顯降低(僅0.585).
圖5 不同投量PAM時比通量和膜阻力大小Fig.5 Flux and membrane filtration resistance with varied PAM dosage
由圖5(c)可知,未投加PAM時濾餅層阻力為0.90×10-11m-1,此時堵塞阻力為0.08×10-11m-1;PAM投量為0.2~0.4 mg/L時,濾餅層阻力分別下降至0.66×10-11和0.52×10-11m-1,此時堵塞阻力并沒有顯著變化;當(dāng)投量增至1.0 mg/L時,濾餅層阻力和堵塞阻力顯著增長至1.55×10-11和0.42×10-11m-1,其中堵塞阻力甚至是未投加PAM時的5倍.由圖5(d)可見,混凝劑為FeCl3時膜阻力情況與PACl相似,未投加PAM時濾餅層阻力為0.47×10-11m-1,堵塞阻力為0.11×10-11m-1;投加0.2~0.4 mg/L時的濾餅層阻力分別降至0.35×10-11和0.28×10-11m-1,堵塞阻力分別為0.18×10-11及0.08×10-11m-1;當(dāng)投量高達1.0 mg/L時,濾餅層阻力增至0.62×10-11m-1,堵塞阻力也增加到0.24×10-11m-1.
雖然混凝劑種類不同,投加PAM均在小投量0.2~0.4 mg/L時比通量隨投量的增大而升高,濾餅層阻力隨投量增大而減?。欢咄读?.0 mg/L對應(yīng)濾餅層阻力和堵塞阻力急劇增大.Guo等[21]在之前的研究中也發(fā)現(xiàn)PAM投量增大而膜污染顯著加劇的現(xiàn)象.這可能有以下幾種原因:一方面由于PAM水解后碳鏈上的活性基團與高嶺土顆粒產(chǎn)生專性吸附而形成無定形松散絮體[22],而PAM分子中高活性的酰胺基(CONH2)水解,加強了絮凝效果[23],此時測得Zeta值下降、pH上升,同時絮體粒徑增長顯著(圖3). PAM分子濃度過高時,高嶺土顆粒表面聚合物分子過飽和而引發(fā)膜污染加?。涣硪环矫嫠袩o機納米粒度顆粒(高嶺土)會改變膜表面活化能,使膜孔易于堵塞[22];此外Li等[24]的研究也表明高投量下PAM分子會促進絮體在膜表面的聚集和疊加.
2.5 膜污染機理討論
膜污染主要由水中的顆粒物、有機物和微生物引起,其中顆粒物會形成濾餅層并導(dǎo)致膜孔堵塞[25-26].當(dāng)顆粒尺寸小于膜孔尺寸時,污染物會沉積于膜孔壁上使膜孔收縮;顆粒尺寸較大時則沉積于膜表面而形成濾餅層[26];當(dāng)顆粒尺寸與膜孔大小相近時會形成膜孔堵塞而引發(fā)嚴(yán)重的膜污染[8].為了探究本實驗?zāi)の廴緳C理,采用納米粒度儀進行膜前顆粒表征.圖6為經(jīng)0.45 μm膜過濾后出水的納米粒度分布,可見原水在過濾后的粒度約為100 nm,在投加混凝劑及助凝劑后其粒度(3 nm)遠(yuǎn)小于超濾膜的膜孔徑(約10 nm).結(jié)合表1測得混凝或混凝-助凝后DOC和UV254去除率分別為45.6%、70.6%和83.9%、85.0%,認(rèn)為混凝過程可以去除水中部分有機物,但仍有殘余的腐殖酸可能會穿過膜孔.同時,Ma等[27]認(rèn)為混凝劑存在臨界投量,投量過多會引發(fā)納米粒度的微絮體生長而堵塞膜孔,這也可以解釋圖4和5中混凝劑及PAM投量達到一定值而繼續(xù)增加時膜污染加劇現(xiàn)象.
圖6 出水經(jīng)0.45 μm膜過濾后納米粒度分布
Fig.6 Nano particle size distribution of effluents through a 0.45 μm cellulose acetate membrane
由圖7的掃描電鏡表征可以看出,當(dāng)原水直接過濾時(圖7(b))高嶺土顆粒未形成絮體,因而顆粒散碎均勻地分布在膜表面且不團聚,在膜表面形成了致密的濾餅層而導(dǎo)致膜通量下降迅速(圖4).對比圖7(c)、(f)可知明顯形成了由小顆粒聚集而成的具有松散結(jié)構(gòu)的絮體;由圖7(d)、(e)、(g)和(h)可知,投加PAM 0.4 mg/L,絮體顆粒進一步增大同時膜孔并未被堵塞;而投加PAM 1.0 mg/L,絮體顆粒雖進一步增大但膜孔被堵塞,這和膜通量數(shù)據(jù)變化的結(jié)果(圖2、3和4)一致.
圖7 掃描電鏡表征Fig.7 SEM images of membrane surface
綜上,超濾膜在混凝-超濾過程和混凝-助凝-超濾過程中膜污染機理如圖8所示.首先,部分小分子有機物由于粒度小可穿過膜孔(圖6).在混凝-超濾過程中(圖8(a)),混凝形成的絮體沉積在膜表面上形成濾餅層(圖7),而膜孔堵塞小(圖4(c)、(d)).在混凝-助凝-超濾過程中(圖8(b)),PAM水解后將更多小顆粒通過吸附架橋作用絮凝成大的松散絮體(圖7),投量小時,膜孔堵塞小,投量大時膜孔堵塞嚴(yán)重,但濾餅堵塞仍是主要污染(圖4(c)、(d)).
圖8 超濾膜污染生成機理Fig.8 Schematic diagram of membrane fouling mechanism
1)投加混凝劑通過生成粒徑較大的絮體而去除原水中顆粒物質(zhì)和有機物,而混凝劑種類和投量對絮體的生成有顯著影響.
2)混凝-助凝-超濾工藝可以明顯強化混凝效果,且助凝劑的投量對后續(xù)膜污染有顯著影響,投量過多或過少均無法緩解、甚至加劇膜污染.
3)濾餅層阻力是形成膜污染的主要原因,投加適量的混凝劑和助凝劑聯(lián)用可大幅度減少濾餅層阻力,但助凝劑投加過量可能引起嚴(yán)重的膜孔堵塞而加劇膜污染.
[1] XIA S, LI X, ZHANG Q, et al. Ultrafiltration of surface water with coagulation pretreatment by streaming current control [J].Desalination,2007,204(1/2/3):351-358.
[2] XU W, YUE Q, GAO B, et al. Impacts of organic coagulant aid on purification performance and membrane fouling of coagulation/ultrafiltration hybrid process with different Al-based coagulants [J].Desalination,2015,363:126-133.
[3] PEIRIS R H, JAKLEWICZ M, BUDMAN H, et al. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems [J].Water Research,2013,47(10):3364-3374.
[4] WRAY H E, ANDREWS R C, BERUBE P R. Ultrafiltration organic fouling control: Comparison of air-sparging and coagulation [J].Journal-American Water Works Association,2014,106(2):41-42.
[5] KONIECZNY K, RAJCA M, BODZEK M, et al. Water treatment using hybrid method of coagulation and low-pressure membrane filtration [J].Environment Protection Engineering,2009,35(1):5-22.
[6] WANG S, LIU C, LI Q. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: Controlling factors and mechanisms [J].Water Research,2011,45(1):357-365.
[7] STOLLER M. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction [J].Desalination,2009,240(1):209-217.
[8] YU W Z, LIU H J, XU L, et al. The pre-treatment of submerged ultrafiltration membrane by coagulation:Effect of polyacrylamide as a coagulant aid [J].Journal of Membrane Science,2013,446:50-58.
[9] LIU Y, HE G, LI B, et al. A comparison of cake properties in traditional and turbulence promoter assisted microfiltration of particulate suspensions [J].Water Res,2012,46(8):2535-2544.
[10]BAI L, QU F, LIANG H, et al. Membrane fouling during ultrafiltration (UF) of surface water: Effects of sludge discharge interval (SDI) [J].Desalination,2013,319:18-24.
[11]YU W Z, GREGORY J, GRAHAM N. Regrowth of broken hydroxide flocs: effect of added fluoride [J].Environmental Science & Technology,2016,50(4):1828-1833.
[12]GAO B, LIU B, CHEN T, et al. Effect of aging period on the characteristics and coagulation behavior of polyferric chloride and polyferric chloride-polyamine composite coagulant for synthetic dying wastewater treatment [J].Journal of Hazardous Materials,2011,187(1):413-420.
[13]MATILAINEN A, VEPS L,INEN M,et al. Natural organic matter removal by coagulation during drinking water treatment: A review [J].Advances in Colloid and Interface Science,2010,159(2):189-197.
[14]LIU H, HU C, ZHAO H, et al. Coagulation of humic acid by PACl with high content of Al13: The role of aluminum speciation [J].Separation and Purification Technology,2009,70(2):225-230.
[15]ZHAO B, WANG D, LI T, et al. Influence of floc structure on coagulation-microfiltration performance: Effect of Al speciation characteristics of PACls [J].Separation and Purification Technology,2010,72(1):22-27.
[16]FENG L, ZHAO S, SUN S, et al. Effect of pH with different purified aluminum species on coagulation performance and membrane fouling in coagulation/ultrafiltration process [J].Journal of Hazardous Materials,2015,300:67-74.
[17]MA B, YU W, LIU H, et al. Comparison of iron (III) and alum salt on ultrafiltration membrane fouling by alginate [J].Desalination,2014,354:153-159.
[18]DIZGE N, KOSEOGLU-IMER D Y, KARAGUNDUZ A, et al. Effects of cationic polyelectrolyte on filterability and fouling reduction of submerged membrane bioreactor (MBR) [J].Journal of Membrane Science,2011,377(1/2):1751-1781.
[19]ZHANG M, PENG W, CHEN J, et al. A new insight into membrane fouling mechanism in submerged membrane bioreactor: Osmotic pressure during cake layer filtration [J].Water Research,2013,47(8):2777-2786.
[20]LIN H J, XIE K, MAHENDRAN B, et al. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs) [J].Water Research,2009,43(15):3827-3837.
[21]GUO H, XIAO L, YU S, et al. Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis [J].Desalination,2014,346:46-53.
[22]YI X S, SHI W X, YU S L, et al. Comparative study of anion polyacrylamide (APAM) adsorption-related fouling of a PVDF UF membrane and a modified PVDF UF membrane [J].Desalination,2012,286:254-262.
[23]YUAN S J, SUN M, SHENG G P, et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity [J].Environmental Science & Technology,2010,45(3):1152-1157.
[24]LI J, WU J, SUN H, et al. Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation [J].Desalination,2016,380:43-51.
[25]GAO W, LIANG H, MA J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: A review [J].Desalination,2011,272(1/2/3):1-8.
[26]IRITANI E. A review on modeling of pore-blocking behaviors of membranes during pressurized membrane filtration [J].Drying Technology,2013,31(2):146-162.
[27]MA B, YU W Z, LIU H J, et al. Effect of low dosage of coagulant on the ultrafiltration membrane performance in feedwater treatment [J].Water Research,2014,51:277-283.
Membrane fouling on coagulation/aid-coagulation/ultrafiltration process for drinking water treatment
YANG Haiyang, DU Xing, GAN Zhendong, LI Guibai, LIANG Heng
(State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China)
To examine the effects of different coagulants on membrane fouling in the coagulation/aid-coagulation/ultrafiltration process for high turbidity surface water purification, Malvern laser particle size analyzer and micro-scale ultrafiltration unit were used to investigate membrane fouling caused by the flocs formed by coagulants (i.e. aluminium polychlorid (PACl), ferric trichloride (FeCl3)) and aid-coagulant (polyacrylamide (PAM)). The results indicated that, with the constant dosage of combined coagulants (PACl=FeCl3=3 mg/L), the PAM dosage of 0-0.4 mg/L rendered the d50 of flocs exhibited an obvious increase (eventually reached to 1 000 μm) compared to those with single coagulant dosage of PACl(3-370 μm) or FeCl3(360-420 μm). With the dosage of PAM increased, specific membrane flux increased (PACl:0.56-0.64; FeCl3: 0.71-0.76) and cake resistance decreased (PACl:0.90×10-11-0.52×10-11m-1; FeCl3:0.47×10-11-0.28×10-11m-1). However, when the dosage of PAM increased to 1.0 mg/L, the membrane flux decreased significantly to 0.48 while cake resistance increased to 1.55×10-11m-1. An optimum flocculant dosage (0.4 mg/L) that caused the minimum membrane fouling was confirmed. Furthermore, the results obtained from Nanoseries Zetasizer and scanning electron microscopy (SEM) demonstrated that cake layer was the dominant fouling mechanism under different conditions and membrane pore blocking was severe with higher PAM dosage.
aluminium polychlorid; ferric trichloride; polyacrylamide; ultrafiltration; membrane fouling
10.11918/j.issn.0367-6234.2017.02.003
2016-05-25
國家自然科學(xué)基金優(yōu)青項目(51522804);新世紀(jì)優(yōu)秀人才支持計劃(NCET-13-0169)
楊海洋(1992—),女,碩士研究生; 李圭白(1931—),男,教授,中國工程院院士; 梁 恒(1979—),男,教授,博士生導(dǎo)師
梁 恒,hitliangheng@163.com
X703
A
0367-6234(2017)02-0013-07