亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        禽畜廢水厭氧反應(yīng)動(dòng)力學(xué)研究

        2017-02-08 01:15:31蓋希坤張良佺
        關(guān)鍵詞:模型

        蓋希坤 張良佺

        (1.浙江科技學(xué)院生物與化學(xué)工程學(xué)院, 杭州 310023;2.浙江省廢棄生物質(zhì)循環(huán)利用與生態(tài)處理技術(shù)重點(diǎn)實(shí)驗(yàn)室, 杭州 310023)

        禽畜廢水厭氧反應(yīng)動(dòng)力學(xué)研究

        蓋希坤1,2張良佺1,2

        (1.浙江科技學(xué)院生物與化學(xué)工程學(xué)院, 杭州 310023;2.浙江省廢棄生物質(zhì)循環(huán)利用與生態(tài)處理技術(shù)重點(diǎn)實(shí)驗(yàn)室, 杭州 310023)

        為開(kāi)發(fā)禽畜廢水厭氧處理技術(shù),利用外循環(huán)反應(yīng)裝置開(kāi)展了畜禽廢水厭氧反應(yīng)動(dòng)力學(xué)研究,以溫度、基質(zhì)COD值以及pH值為因素,設(shè)計(jì)了三因素三水平正交試驗(yàn);引入溫度參數(shù),改進(jìn)了Monod方程,建立了基質(zhì)消耗、產(chǎn)物生成動(dòng)力學(xué)模型;經(jīng)線性、非線性回歸,獲得了模型參數(shù),建立了相應(yīng)的動(dòng)力學(xué)方程,揭示了反應(yīng)溫度、基質(zhì)COD值對(duì)反應(yīng)速率的影響規(guī)律。研究表明:對(duì)基質(zhì)消耗速率而言,反應(yīng)活化能很低,可以忽略溫度對(duì)反應(yīng)速率的影響;溫度對(duì)產(chǎn)物CH4和CO2的生成反應(yīng)速率有影響,溫度越高,越有利于CO2的生成。建立的禽畜廢水厭氧反應(yīng)動(dòng)力學(xué)模型能夠較好地?cái)M合試驗(yàn)數(shù)據(jù),對(duì)厭氧反應(yīng)器的開(kāi)發(fā)設(shè)計(jì)具有參考價(jià)值。

        禽畜廢水; 厭氧反應(yīng); 動(dòng)力學(xué)模型; 內(nèi)循環(huán)厭氧反應(yīng)器

        引言

        隨著經(jīng)濟(jì)的快速發(fā)展和人民生活水平的提高,養(yǎng)殖業(yè)得到了快速發(fā)展,同時(shí)產(chǎn)生了大量的禽畜廢水。如何對(duì)禽畜廢水進(jìn)行有效處理成為當(dāng)前亟待解決的問(wèn)題[1],其中,厭氧處理技術(shù)被公認(rèn)是合乎環(huán)境可持續(xù)發(fā)展要求、最有前景的廢水處理技術(shù)之一[2-3]。禽畜廢水厭氧處理工藝的核心是厭氧反應(yīng)器的開(kāi)發(fā)[4]。當(dāng)前針對(duì)厭氧反應(yīng)器的研究主要集中在反應(yīng)器啟動(dòng)及運(yùn)行特性方面[5-10],對(duì)厭氧反應(yīng)動(dòng)力學(xué)研究相對(duì)較少,且主要采用厭氧消化1號(hào)模型(ADM1)[11-14]。ADM1模型是一個(gè)結(jié)構(gòu)性方程,模型中涉及到26個(gè)動(dòng)態(tài)濃度變量、19個(gè)生化動(dòng)力學(xué)過(guò)程、3個(gè)氣-液轉(zhuǎn)換動(dòng)力學(xué)過(guò)程以及8個(gè)隱式代數(shù)變量。由于禽畜廢水體系基質(zhì)及中間產(chǎn)物的多樣性造成了模型參數(shù)取值的較大隨意性,該模型應(yīng)用到具體厭氧反應(yīng)體系時(shí),必須要進(jìn)行模型的驗(yàn)證及參數(shù)的重新修正。

        由于禽畜廢水成分復(fù)雜,且營(yíng)養(yǎng)成分隨時(shí)變化,難以準(zhǔn)確控制;同時(shí)課題組在厭氧反應(yīng)器開(kāi)發(fā)過(guò)程中發(fā)現(xiàn),氣體的產(chǎn)生對(duì)反應(yīng)器的流型影響較大,而中間產(chǎn)物對(duì)反應(yīng)器流型的影響則不明顯[15],為了能夠合理描述和模擬厭氧反應(yīng)過(guò)程,有效指導(dǎo)實(shí)際生產(chǎn)中工藝參數(shù)的優(yōu)化和反應(yīng)器的設(shè)計(jì),本文建立禽畜廢水厭氧反應(yīng)動(dòng)力學(xué)模型。在基質(zhì)消耗動(dòng)力學(xué)方面采取虛擬集總的方法,通過(guò)引入溫度的影響,改進(jìn)Monod方程,建立新型氣體生成動(dòng)力學(xué)模型。試驗(yàn)方法上,采用外循環(huán)無(wú)梯度厭氧反應(yīng)器進(jìn)行動(dòng)力學(xué)測(cè)定,建立基質(zhì)消耗和產(chǎn)物生成動(dòng)力學(xué)方程,為厭氧反應(yīng)器的開(kāi)發(fā)奠定基礎(chǔ)。

        1 試驗(yàn)

        1.1 試驗(yàn)原料

        接種污泥為浙江省杭州市某啤酒廠UASB反應(yīng)器中活性污泥;營(yíng)養(yǎng)液參照產(chǎn)甲烷活性測(cè)定營(yíng)養(yǎng)液配制方法進(jìn)行配制;禽畜廢水為禽畜糞便經(jīng)過(guò)淘洗、過(guò)濾去除大顆粒泥沙以及部分懸浮物后所得的液體,糞便取自杭州市蕭山區(qū)某豬場(chǎng)。

        1.2 試驗(yàn)流程

        試驗(yàn)采取外循環(huán)無(wú)梯度反應(yīng)器進(jìn)行動(dòng)力學(xué)數(shù)據(jù)的測(cè)定,相比于間歇反應(yīng)器,具有可以直接獲得基質(zhì)消耗速率和對(duì)基質(zhì)濃度分析精度要求相對(duì)較低的優(yōu)點(diǎn)。試驗(yàn)流程圖如圖1所示。

        圖1 試驗(yàn)流程圖Fig.1 Flow chart of experiment1.計(jì)量器 2.集氣瓶 3.氣體流量計(jì) 4.恒溫夾套 5.反應(yīng)器6.循環(huán)泵 7.緩沖瓶 8.廢液輸送泵 9.排放液流量計(jì) 10.循環(huán)液流量計(jì) 11.新鮮液緩沖瓶 12.新鮮液輸送泵 13.新鮮液流量計(jì) 14.換熱器

        將一定量、一定濃度的禽畜廢水裝入三口燒瓶中,廢水由進(jìn)口泵輸送,并由流量計(jì)進(jìn)行計(jì)量,新鮮液與循環(huán)液在流量計(jì)的出口處混合,混合液經(jīng)過(guò)換熱器進(jìn)入帶有恒溫夾套的厭氧反應(yīng)器的底部。反應(yīng)器由上、下2部分組成,下部為反應(yīng)區(qū),直徑為60 mm,高280 mm,上部為三相分離區(qū),直徑為60 mm,高160 mm。反應(yīng)器反應(yīng)區(qū)中裝填一定量的含產(chǎn)甲烷菌的活性污泥,反應(yīng)后的氣、液兩相在分離區(qū)實(shí)現(xiàn)分離,氣體通過(guò)氣體流量計(jì)進(jìn)入集氣瓶,并用排水法計(jì)量體積。液體經(jīng)過(guò)三通閥一部分由廢液泵排出,并通過(guò)流量計(jì)控制流量;另一部分經(jīng)過(guò)三通閥流入緩沖瓶中,緩沖瓶中循環(huán)液由循環(huán)泵輸送,經(jīng)過(guò)流量計(jì),然后與新鮮液進(jìn)行混合。

        1.3 動(dòng)力學(xué)模型建立

        厭氧反應(yīng)過(guò)程中,基質(zhì)消耗主要用于3方面:細(xì)胞生長(zhǎng)和繁殖,維持細(xì)胞生命活動(dòng),合成產(chǎn)物。忽略細(xì)胞生命活動(dòng)所消耗的基質(zhì),基質(zhì)的比消耗速率qs可表示為

        qs=λsμ+λpCH4qpCH4+λpCO2qpCO2

        又有qpCH4=λ′pCH4μ,qpCO2=λ′pCO2μ,可得

        qs=λsμ+λpCH4λ′pCH4μ+λpCO2λ′pCO2μ=

        (λs+λpCH4λ′pCH4+λpCO2λ′pCO2)μ=λμ

        其中

        λ=λs+λpCH4λ′pCH4+λpCO2λ′pCO2

        式中qs——基質(zhì)的比消耗速率,min-1qpCH4——CH4比生成速率,min-1qpCO2——CO2比生成速率,min-1λs——基質(zhì)的產(chǎn)物得率λ′——細(xì)胞的產(chǎn)物得率λpCH4——CH4的產(chǎn)物得率λpCO2——CO2的產(chǎn)物得率μ——比生成速率,min-1

        根據(jù)Monod方程,細(xì)胞比生成速率μ為

        式中μmax——最大比生成速率,min-1-rs——基質(zhì)消耗速率,g/(L·min)Cs——基質(zhì)COD值,g/LKs——飽和系數(shù),g/LCx——細(xì)胞質(zhì)量濃度,g/Lrp——生成速率,g/(L·min)rpCH4——CH4生成速率,g/(L·min)rpCO2——CO2生成速率,g/(L·min)

        由于所取污泥為某廠長(zhǎng)期運(yùn)行的活性污泥,試驗(yàn)周期不是太長(zhǎng),可認(rèn)為產(chǎn)甲烷菌等微生物濃度Cx基本不變,現(xiàn)令

        rsmax=λμmaxCxrpCH4max=λ′pCH4μmaxCx
        rpCO2max=λμmaxCx

        (1)

        (2)

        (3)

        式(1)~(3) 3個(gè)動(dòng)力學(xué)方程中共有4個(gè)參數(shù),分別為Ks、rsmax、rpCH4max和rpCO2max,變化因素則有基質(zhì)COD值Cs和溫度,為獲得模型參數(shù),必須要進(jìn)行有關(guān)的動(dòng)力學(xué)試驗(yàn)測(cè)定,即通過(guò)改變不同因素值,獲得不同因素下的反應(yīng)速率,再通過(guò)線性或非線性數(shù)學(xué)回歸方法求出模型參數(shù)。因此,必須求取以不同組分表示的反應(yīng)消耗或生成速率。

        對(duì)COD值作物料衡算

        (4)

        對(duì)生成物CH4作物料衡算

        (5)

        對(duì)生成物CO2作物料衡算

        (6)

        式中vf——出口流量,L/minCs0——反應(yīng)器進(jìn)口基質(zhì)COD值,g/LCsf——反應(yīng)器出口基質(zhì)COD值,g/LVR——反應(yīng)器有效體積,LWCH4——CH4質(zhì)量,gt——時(shí)間,minWCO2——CO2質(zhì)量,g

        由式(4)~(6)即可求出基質(zhì)消耗速率和產(chǎn)物生成速率。

        1.4 試驗(yàn)設(shè)計(jì)

        為獲得動(dòng)力學(xué)方程式(1)~(3)中的模型參數(shù),現(xiàn)以溫度T、基質(zhì)COD值以及廢液pH值為因素,各取3個(gè)水平,如表1所示,進(jìn)行正交試驗(yàn)設(shè)計(jì)。在三水平參數(shù)選取時(shí),要滿足試驗(yàn)采用的產(chǎn)甲烷菌的適應(yīng)范圍,其中,溫度范圍為303.15~313.15 K、基質(zhì)COD值小于4.3 g/L、pH值范圍為7.2~7.6。

        表1 因素水平表Tab.1 Factors and levels

        水平因素溫度/K基質(zhì)COD值/(g·L-1)pH值123303.15308.15313.153.23.64.07.67.47.2

        2 結(jié)果與討論

        2.1 反應(yīng)速率的計(jì)算

        根據(jù)正交試驗(yàn)設(shè)計(jì)表進(jìn)行一系列反應(yīng)動(dòng)力學(xué)試驗(yàn),試驗(yàn)結(jié)果列于表2。

        表中基質(zhì)消耗速率-rs,CH4、CO2生成速率rpCH4、rpCO2由計(jì)算獲得,現(xiàn)以試驗(yàn)1為例加以說(shuō)明。

        對(duì)生成物CH4、CO2氣體體積的量取是在室溫下進(jìn)行的,室溫取25℃,壓力為常壓。

        其余各組反應(yīng)速率依此類推,如表3所示。

        表2 正交試驗(yàn)結(jié)果
        Tab.2 Results of orthogonal experiment

        序號(hào)溫度T/KCs0/(g·L-1)pH值Csf/(g·L-1)(-rs)/(g·(min·L)-1)rpCH4/(g·(min·L)-1)rpCO2/(g·min-1·L-1)1303.153.10307.582.13654.3949×10-32.1113×10-41.5528×10-42303.153.75357.422.67064.9243×10-32.4371×10-41.6992×10-43303.153.99137.212.90244.9515×10-32.6713×10-41.9797×10-44308.153.29657.482.26574.6872×10-32.5011×10-41.9492×10-45308.153.54717.282.49414.7883×10-33.0612×10-42.2185×10-46308.153.90927.642.83724.8747×10-33.1921×10-42.4523×10-47313.152.99847.232.07384.2044×10-33.2853×10-42.4819×10-48313.153.55577.612.48114.8865×10-33.2066×10-42.5439×10-49313.154.28877.423.01185.8064×10-33.5313×10-42.7328×10-4

        表3 不同時(shí)間產(chǎn)物CH4和CO2體積分?jǐn)?shù)(試驗(yàn)1)
        Tab.3 CH4and CO2contents at different time (Test 1)

        參數(shù)時(shí)間t/d0.51.01.52.02.53.03.54.0氣體體積V/mL124.5130.6119.8108.7136.6121.3116.5127.8CH4體積分?jǐn)?shù)/%37.8331.9534.3728.8336.8831.1730.7432.76CO2體積分?jǐn)?shù)/%9.9211.588.117.798.187.638.558.97

        2.2 動(dòng)力學(xué)模型參數(shù)求解

        2.2.1 基質(zhì)消耗速率-rs方程模型

        (1)非線性法求解模型參數(shù)

        其中

        式中Es——活化能

        構(gòu)造函數(shù)

        Fs為非線性函數(shù),為求得參數(shù)a1、b1,必須滿足

        (7)

        (8)

        (9)

        式(7)~(9)非線性方程組需迭代法求解,即先假設(shè)Ks初始值,由方程式(7)、(8)求出a1、b1,再將a1、b1值代入式(9)進(jìn)行驗(yàn)證,若該式左邊值接近0,則停止迭代,否則繼續(xù)迭代過(guò)程,直至方程式(9)兩邊數(shù)值差在允許誤差范圍之內(nèi)時(shí)為止。迭代結(jié)束時(shí)各變量值列于表4。

        此時(shí):Ks=28.587 9 g/L,b1=1.792 2×10-4,a1=-2.849 6,式(9)左邊為-0.008 08,由于b1很小,故活化能Es很小,表明在試驗(yàn)溫度范圍內(nèi)(303.15~313.15 K),溫度對(duì)基質(zhì)消耗速率的影響很小,可忽略,速率方程為

        (2)線性法求解模型參數(shù)

        由于溫度對(duì)基質(zhì)消耗速率影響并不是很大,對(duì)上述動(dòng)力學(xué)方程可進(jìn)行線性處理,此時(shí)有

        (10)

        (11)

        其中

        求解式(10)、(11),最后得:Ks=3.328 6 g/L,rsmax=0.011 193,動(dòng)力學(xué)方程為

        表4 迭代結(jié)束中間計(jì)算數(shù)據(jù)
        Tab.4 Intermediate calculation data at the end of iteration

        序號(hào)1Ks+CsilnKs+CsiCsi1TilnKs+CsiCsi1Ks+Csiln1-rsi1Ti1Ks+Csi1Ks+CsilnKs+CsiCsi10.032552.66598.7940×1030.1767107.40.0867820.031992.46008.1148×1030.1700105.50.0787030.031762.38417.8644×1030.1686104.80.0757240.032412.61148.4745×1030.1738105.20.0846450.032172.52278.1867×1030.1718104.40.0811660.031822.40487.8041×1030.1694103.30.0765270.032612.69368.6017×1030.1784104.10.0878480.032192.52758.0713×1030.1713102.80.0813690.031652.35067.5064×1030.1630101.10.07440合計(jì)0.2891522.62067.34179×1041.5430938.60.72712

        (3)不同求解方法獲得的模型優(yōu)劣比較

        對(duì)基質(zhì)消耗動(dòng)力學(xué)方程,有2套模型參數(shù),2種不同形式的模型方程,現(xiàn)將2方程對(duì)動(dòng)力學(xué)試驗(yàn)數(shù)據(jù)進(jìn)行擬合,以比較其擬合情況的優(yōu)劣。結(jié)果如表5所示。

        表5 不同動(dòng)力學(xué)模型比較
        Tab.5 Comparison of different kinetic models

        序號(hào)Csi(-rs)s(-rs)j(-rs)j(-rs)N誤差/%(-rs)L誤差/%12.13654.3949×10-34.0241×10-38.444.3746×10-30.4622.67064.9243×10-34.9442×10-3-0.404.9813×10-3-1.1632.90244.9515×10-35.3338×10-3-7.725.2123×10-3-5.3042.26574.6872×10-34.2496×10-39.344.5320×10-33.3052.49414.7883×10-34.6436×10-33.024.7931×10-3-0.1062.83724.8747×10-35.2248×10-3-7.185.1491×10-3-5.6372.07384.2044×10-33.9140×10-36.914.2955×10-3-2.2082.48114.8865×10-34.6214×10-35.434.7788×10-32.2093.01185.8064×10-35.5156×10-35.015.3154×10-38.50

        表5中誤差為

        比較誤差可以發(fā)現(xiàn),線性模型優(yōu)于非線性模型,故最終取線性求解法獲得動(dòng)力學(xué)模型,即

        2.2.2 產(chǎn)物生成速率(-rpi)方程模型

        構(gòu)造函數(shù),得到

        (12)

        (13)

        動(dòng)力學(xué)方程

        同理可得

        從產(chǎn)物CH4、CO2生成速率式中可見(jiàn),溫度對(duì)生成速率有一定的影響,這與基質(zhì)消耗速率明顯不同。

        模型誤差列于表6,可以看出,生成物CH4、CO2的生成速率最大誤差為7.90%,說(shuō)明在試驗(yàn)范圍內(nèi),模型能夠較好地?cái)M合試驗(yàn)數(shù)據(jù),具有較好的相關(guān)性。

        3 結(jié)論

        (1)為了克服動(dòng)力學(xué)測(cè)定過(guò)程中COD值分析

        表6 產(chǎn)物CH4、CO2生成速率模型誤差計(jì)算結(jié)果
        Tab.6 Model error calculation of formation rates for CH4and CO2

        序號(hào)CH4CO2(rpCH4)s(rpCH4)j誤差/%(rpCO2)s(rpCO2)j誤差/%12.1113×10-42.1775×10-4-3.141.5528×10-41.5778×10-4-1.6122.4371×10-42.4795×10-4-1.741.6992×10-41.7966×10-4-5.7332.6713×10-42.5945×10-42.881.9797×10-41.8799×10-45.0442.5011×10-42.6911×10-4-7.601.9492×10-42.0198×10-4-3.6253.0612×10-42.8462×10-47.022.2185×10-42.1362×10-43.7163.1921×10-43.0575×10-44.222.4523×10-42.2948×10-46.4273.2853×10-43.0257×10-47.902.4819×10-42.3491×10-45.3583.2066×10-43.3661×10-4-4.972.5439×10-42.6134×10-4-2.7393.5313×10-43.7441×10-4-6.022.7328×10-42.9068×10-4-6.37

        所帶來(lái)的誤差,試驗(yàn)采用自行設(shè)計(jì)的外循環(huán)無(wú)梯度厭氧反應(yīng)器測(cè)定動(dòng)力學(xué)數(shù)據(jù),該反應(yīng)器可直接獲得反應(yīng)速率,因此,數(shù)據(jù)處理簡(jiǎn)單,能夠建立更為準(zhǔn)確的動(dòng)力學(xué)模型,為后續(xù)的反應(yīng)器設(shè)計(jì)打下堅(jiān)實(shí)的基礎(chǔ)。

        1 潘樂(lè)英.禽畜廢水的處理工藝及其改進(jìn)方法建議[J].資源節(jié)約與環(huán)保,2015(6):165.

        2 MCCARTY P L.The development of anaerobic treatment and its future[J].Water Science and Technology, 2001, 44(8):149-156.

        3 曹榕,謝麗,黃燕,等.豬糞廢水的厭氧處理工藝研究進(jìn)展[J].水處理技術(shù),2012,38(1):10-16. CAO Rong, XIE Li, HUANG Yan, et al.A review on anaerobic treatment of swine manure[J].Technology of Water Treatment, 2012,38(1):10-16. (in Chinese)

        4 徐恒,汪翠萍,王凱軍.廢水厭氧處理反應(yīng)器功能拓展研究進(jìn)展[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):238-248. XU Heng, WANG Cuiping, WANG Kaijun.Multifunctional role of anaerobic reactors in wastewater treatment[J].Transactions of the CSAE, 2014, 30(18): 238-248. (in Chinese)

        5 LI H, ZHOU S,MA W,et al.Fast start-up of ANAMMOX reactor: operational strategy and some characteristics as indicators of reactor performance[J].Desalination, 2012, 286:436-441.

        6 陳光輝,李軍,鄧海亮,等.包埋菌啟動(dòng)厭氧氨氧化反應(yīng)器及其動(dòng)力學(xué)性能[J].化工學(xué)報(bào),2015,66(4):1459-1466. CHEN Guanghui, LI Jun, DENG Hailiang, et al.Performance and kinetic characteristics of immobilized granules on start-up of Anammox bioreactor[J].CIESC Journal, 2015,66(4):1459-1466. (in Chinese)

        7 張海芹,陳重軍,王建芳,等.厭氧氨氧化啟動(dòng)過(guò)程及特性研究進(jìn)展[J].化工進(jìn)展,2014,33(8):2180-2186. ZHANG Haiqin, CHEN Chongjun, WANG Jianfang, et al.Start-up and related characteristics of anaerobic ammonia oxidation processes:a review[J].Chemical Industry and Engineering Progress,2014,33(8):2180-2186. (in Chinese)

        8 李道義,李樹(shù)君,劉天舒,等.牛糞高溫干式厭氧發(fā)酵產(chǎn)沼氣性能試驗(yàn)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(3):110-113,141. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20130320&flag=1. DOI:10.6041/j.issn.1000-1298.2013.03.020. LI Daoyi, LI Shujun, LIU Tianshu,et al.Dry thermophilic digestion performance test of dairy manure for biogas producing[J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3):110-113, 141. (in Chinese)

        9 吳樹(shù)彪,黎佳茜,李偉,等.沼液回流對(duì)牛糞厭氧發(fā)酵產(chǎn)氣特性及其動(dòng)力學(xué)的影響[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(10):241-246. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20151032&flag=1. DOI:10.6041/j.issn.1000-1298.2015.10.032. WU Shubiao, LI Jiaxi, LI Wei, et al. Effect of liquid digestate recirculation on biogas production and fermentation kinetics for anaerobic digestion of cattle manure[J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2015,46(10):241-246. (in Chinese)

        10 ALASTAIR J W, PHIL J H, PETER J H. Optimisation of the anaerobic digestion of agricultural resources[J].Bioresource Technology, 2008, 99(17):7928-7940.

        11 LEE M Y, SUH C W, AHN Y T, et al.Variation of ADM1 by using temperature-phased anaerobic digestion (TPAD) operation[J].Bioresource Technology, 2009, 100(11) : 2816-2822.

        12 RECEP K D, MUSTAFA E E, HALE O, et al.Applicability of anaerobic digestion model No.1 (ADM1) for a specific industrial wastewater: opium alkaloid effluents [J].Chemical Engineering Journal, 2010, 165(1): 89-94.

        13 KONRAD K, MANFRED L, TITO G, et al.Biogas from grass silage—measurements and modeling with ADM1[J].Bioresource Technology, 2010, 101(21): 8158-8165.

        14 FRANCIS M, OLIVIER B, MONIQUE R, et al.Modeling anaerobic digestion of microalgae using ADM1[J].Bioresource Technology, 2011, 102(13): 6823-6829.

        15 張良佺,胡偉蓮,陳紀(jì)忠.內(nèi)循環(huán)厭氧反應(yīng)器流動(dòng)模型及反應(yīng)過(guò)程模擬[J].環(huán)境科學(xué)學(xué)報(bào),2015,35(12): 3789-3796. ZHANG L Q, HU W L, CHEN J Z.The study of flow model and reaction process simulation of inner circulation anaerobic reactor[J].Acta Scientiae Circumstantiae, 2015, 35(12):3789-3796. (in Chinese)

        Kinetic Study on Anaerobic Reaction of Livestock Wastewater

        GAI Xikun1,2ZHANG Liangquan1,2

        (1.SchoolofBiologicalandChemicalEngineering,ZhejiangUniversityofScience&Technology,Hangzhou310023,China2.KeyLaboratoryofRecyclingandEco-treatmentofWasteBiomassofZhejiangProvince,Hangzhou310023,China)

        With the rapid development of economy and improvement of people’s living standard, aquaculture was developed rapidly over the past years. And a large amount of livestock wastewater was produced meanwhile. Thus effective treatment of livestock wastewater becomes the much urgent problem to be solved. Anaerobic treatment technology is recognized as one of the most promising wastewater treatment technologies in environmentally sustainable development. The design of anaerobic reactor is the key for developing anaerobic treatment technology of livestock wastewater. In order to describe and simulate the process of anaerobic reaction, guide the optimization of process parameters and design of reactor in the practical production, the kinetic model of livestock wastewater was established. The experiments were carried out in an external loop reactor. The orthogonal experiments with three factors and three levels were designed by taking temperature, matrix COD and pH value as factors. Temperature parameters were introduced to improve the Monod equation, and the dynamic models of matrix consumption and product formation were established. By linear and nonlinear regression, the model parameters and the corresponding dynamic equations were established, and the effects of reaction temperature and substrate concentration on reaction rate were revealed. The results showed that the reaction activation energy was very low, and the effect of temperature on reaction rate could be neglected. Temperature could affect the production rate of CH4and CO2. The production of CO2would be increased with the increase of temperature. The new livestock wastewater anaerobic reaction dynamics model could fit the experimental data well, which had positive significance for the development and design of new anaerobic reactor.

        livestock wastewater; anaerobic reaction; kinetic model; internal circulation anaerobic reactor

        10.6041/j.issn.1000-1298.2017.01.032

        2016-05-03

        2016-05-23

        國(guó)家國(guó)際科技合作專項(xiàng)(2014DFE90040)、浙江省公益技術(shù)應(yīng)用研究計(jì)劃項(xiàng)目(2015C32019、2015C33006)、浙江省廢棄生物質(zhì)循環(huán)利用與生態(tài)處理技術(shù)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(2016REWB13)和浙江科技學(xué)院交叉預(yù)研項(xiàng)目(2015JC05Y)

        蓋希坤(1982—),男,副教授,主要從事生物質(zhì)能源工藝與設(shè)備一體化研究,E-mail: gaixikun@163.com

        張良佺(1965—),男,教授,主要從事化學(xué)反應(yīng)器開(kāi)發(fā)及放大效應(yīng)研究,E-mail: zhlq816@163.com

        X713

        A

        1000-1298(2017)01-0245-07

        猜你喜歡
        模型
        一半模型
        一種去中心化的域名服務(wù)本地化模型
        適用于BDS-3 PPP的隨機(jī)模型
        提煉模型 突破難點(diǎn)
        函數(shù)模型及應(yīng)用
        p150Glued在帕金森病模型中的表達(dá)及分布
        函數(shù)模型及應(yīng)用
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        3D打印中的模型分割與打包
        午夜国产精品视频在线观看| 日韩精品无码一区二区三区四区| 人妻少妇无码精品视频区| 国产午夜视频在线观看| 日韩国产精品一本一区馆/在线| 国产一区二区三区精品成人爱| 粗大猛烈进出高潮视频大全| 久久99久久99精品中文字幕 | 成人免费无遮挡在线播放| 亚洲色偷拍区另类无码专区| 国产69精品一区二区三区| 亚洲六月丁香色婷婷综合久久| 亚洲成a人v欧美综合天堂| 久久免费的精品国产v∧| 亚洲白白色无码在线观看| 特级黄色毛片视频| 91精品91久久久久久| 亚洲精品中文字幕一二三 | 又大又粗又爽18禁免费看 | 一区视频在线观看免费播放.| 国产精品国产三级国产剧情 | 91久久精品无码人妻系列| 久久av少妇亚洲精品| 欧美男生射精高潮视频网站| 久久精品无码免费不卡| 亚洲无码视频一区:| 成人免费播放视频影院| 四川丰满妇女毛片四川话| 久久免费网国产AⅤ| 亚洲一区二区在线视频播放| 国产一区精品二区三区四区| 日本精品少妇一区二区三区| 日韩av无码成人无码免费| 日本国产在线一区二区| 中文字幕亚洲综合久久综合| а天堂中文在线官网| 狠狠躁天天躁无码中文字幕图| 国产一区二区三区av观看 | 四虎影视永久在线观看| 国产农村三片免费网站| 久久精品国产亚洲av四区|