白姍姍,賈智英,石連玉
(1.中國水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所,黑龍江 哈爾濱 150070;2.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306)
魚類免疫應(yīng)答機(jī)制研究進(jìn)展
白姍姍1,2,賈智英1,石連玉1
(1.中國水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所,黑龍江 哈爾濱 150070;2.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306)
魚類免疫應(yīng)答可以分為固有免疫和適應(yīng)性免疫,但固有免疫發(fā)揮主要作用。固有免疫對病原體的識別是通過模式識別受體PRR與病原相關(guān)分子模式PAMP的相互結(jié)合實(shí)現(xiàn),這與哺乳類相似。但為適應(yīng)水生生活,魚類固有免疫對PAMP的識別范圍更廣,免疫應(yīng)答的啟動條件更低。固有免疫的效應(yīng)細(xì)胞主要是單核/巨噬細(xì)胞、嗜中性粒細(xì)胞、自然殺傷細(xì)胞等,具有吞噬和殺傷功能,還可分泌多種免疫相關(guān)的細(xì)胞因子,介導(dǎo)發(fā)生炎癥反應(yīng)。適應(yīng)性免疫中,T淋巴細(xì)胞通過抗原提呈細(xì)胞分解吸收抗原,由主要組織相容性復(fù)合物(MHC)類分子遞送到細(xì)胞表面才能識別。B淋巴細(xì)胞分泌產(chǎn)生以免疫球蛋白IgM為主的抗體分子,而發(fā)揮抗體中和作用及免疫調(diào)理作用的IgG在魚類中比較少見,說明魚類抗體的免疫功能還處于較低水平。本文綜述了近二十年內(nèi)魚類免疫應(yīng)答機(jī)制的相關(guān)研究進(jìn)展,為進(jìn)一步了解魚類免疫應(yīng)答機(jī)制提供參考。
魚類;適應(yīng)性免疫;固有免疫;免疫應(yīng)答
我國魚類養(yǎng)殖歷史悠久,市場需求巨大,養(yǎng)殖過程中的病害問題也相當(dāng)突出。每年由各類真菌、細(xì)菌及病毒誘發(fā)的疾病,給我國魚類養(yǎng)殖業(yè)造成巨大的經(jīng)濟(jì)損失,因此研究魚類免疫應(yīng)答尤為重要。增強(qiáng)魚類免疫應(yīng)答水平,以提高機(jī)體抗病能力是研究魚類抗病免疫的重中之重。免疫應(yīng)答是指機(jī)體對于異己成分或者變異的自體成分做出的防御反應(yīng)。而免疫應(yīng)答的一般過程包括抗原呈遞與識別階段、活化增殖和分化階段、效應(yīng)階段。魚類免疫學(xué)研究證明,與哺乳動物等高等脊椎動物一樣,魚類免疫存在適應(yīng)性(特異性)免疫和固有(非特異性)免疫。但是,魚類是變溫水生動物,免疫應(yīng)答過程中固有免疫應(yīng)答機(jī)制起主要作用。
魚類固有免疫應(yīng)答具有種系內(nèi)穩(wěn)定遺傳、沒有特異性、免疫識別廣泛的特點(diǎn),與抗原的初次接觸即產(chǎn)生效應(yīng),不具有二次免疫功能,協(xié)助并參與適應(yīng)性免疫應(yīng)答。
由皮膚、鱗片、粘膜表皮層構(gòu)成魚類的基礎(chǔ)屏障是魚類的第一線防御。魚類表皮黏液中含有溶菌酶和糖蛋白等,能抑制細(xì)菌微生物的生長或使其失活。溶菌酶廣泛存在于淡、海水魚類的皮膚黏液、血清、淋巴組織和組織器官中[1],可以分解細(xì)菌細(xì)胞壁的肽聚糖。魚類黏液中存在特異性抗體(尤其是IgM)[2],可直接對入侵的病原體發(fā)揮免疫作用。
免疫應(yīng)答離不開對抗原的識別。魚類固有免疫對抗原的識別是通過模式識別分子和模式識別受體(PRR)識別病原體相關(guān)分子模式(PAMP)實(shí)現(xiàn)的。PRR與病原體表面的PAMP相互識別和作用是啟動固有免疫應(yīng)答的關(guān)鍵。值得注意的是,PAMP很少是蛋白質(zhì),蛋白質(zhì)類病原體主要為淋巴細(xì)胞識別,誘發(fā)適應(yīng)性免疫應(yīng)答[3]。
模式識別受體(PRR)包括吞噬性受體(可溶性受體)和信號受體(膜結(jié)合受體)。已證實(shí),魚類的前者包括C型凝集素受體(CLR)、清道夫受體(SR),后者則包括 Toll樣受體(TLR)、NOD樣受體(NLR)、RIG樣受體(RLR)。CLR主要識別糖類抗原,介導(dǎo)并調(diào)節(jié)細(xì)胞因子的產(chǎn)生、上調(diào)單核/巨噬細(xì)胞(Mo/MΦ)[4,5],并觸發(fā)激活Th細(xì)胞的抗真菌免疫應(yīng)答[6]。硬骨魚類尼羅羅非魚Oreochromis niloticus的CLR與哺乳類NK細(xì)胞受體同源[7]。SR主要有SRA和SRB兩種,SRB能與革蘭氏菌結(jié)合[8]。SRA參與細(xì)菌及RNA病毒引發(fā)的免疫應(yīng)答[9,10]。TLR是細(xì)胞膜表面識別受體,可以直接特異性結(jié)合病原體結(jié)構(gòu)[11],也可以激發(fā)NF-κB信號通路,而NF-κB通路是先天免疫系統(tǒng)中細(xì)胞信號通路激活的核心[12]。TLR信號轉(zhuǎn)導(dǎo)途徑為MyD88依賴途徑和非MyD88依賴途徑,分別參與炎癥反應(yīng)和抗病毒效應(yīng)[13,14]。目前在魚類中發(fā)現(xiàn)了十幾種TLR,其中TLR2、TLR5、TLR9可以專門識別細(xì)菌的PAMPs[15,16]。TLR4參與細(xì)菌和病毒引發(fā)的免疫應(yīng)答[17,18]。對魚類參與介導(dǎo)炎癥級聯(lián)反應(yīng)的NLR類型知之甚少,日本學(xué)者認(rèn)為LPS可能是NLR介導(dǎo)炎癥反應(yīng)的配體[19]。有學(xué)者推測,NLR在細(xì)胞調(diào)控、細(xì)胞凋亡及免疫應(yīng)答中有重要作用,硬骨魚類中普遍存在保守的NLR基因序列[20]。RLR屬于I型干擾素誘導(dǎo)蛋白[21],魚類的RLR對胞內(nèi)、外的各種病毒均有識別功能,誘發(fā)IFN信號通路以抵抗病毒感染[22,23]。
模式識別分子(PRM)參與炎癥反應(yīng)中病原體的清除。魚類PRM主要包括急性時相蛋白C反應(yīng)蛋白(CRP)、抗菌/通透性蛋白(BPI)和脂多糖結(jié)合蛋白(LBP)。CRP在炎癥信號及IL-6的激發(fā)下由肝臟產(chǎn)生,對入侵的異己成分做出免疫應(yīng)答[24]。因CRP參與補(bǔ)體的激活,常被作為炎癥反應(yīng)的生物標(biāo)志物[25]。魚感染嗜水氣單胞菌Aeromonas hydrophila后,血清中CRP含量增加[26,27]。哺乳動物在炎癥反應(yīng)和組織壞死的早期CRP含量也增加,這一現(xiàn)象在尼羅羅非魚中已被證實(shí)[28]。部分硬骨魚類中,證實(shí)了BPI和LBP參與并誘導(dǎo)急性時相蛋白對細(xì)菌疾病的免疫應(yīng)答[29,30]。
固有免疫的效應(yīng)細(xì)胞主要有單核/巨噬細(xì)胞、嗜中性粒細(xì)胞、自然殺傷(Natural killer,NK)等,具有吞噬和殺傷功能,也分泌免疫相關(guān)的細(xì)胞因子,介導(dǎo)炎癥反應(yīng)的發(fā)生。
單核/巨噬細(xì)胞與中性粒細(xì)胞是魚類中兩大類重要的吞噬細(xì)胞[31]。單核細(xì)胞遷移出血管至各組織中,發(fā)育為巨噬細(xì)胞。魚類的單核細(xì)胞與哺乳動物相似。硬骨魚類的細(xì)胞因子如IL-4、IL-13及γ-干擾素與巨噬細(xì)胞激活與分化有關(guān)[32,33]。單核巨噬細(xì)胞不僅在固有免疫中發(fā)揮吞噬作用,在適應(yīng)性免疫中作為抗原提呈細(xì)胞APCs發(fā)揮作用。巨噬細(xì)胞可以被多種細(xì)胞因子(IL-1、IFN-γ等)活化,直接分泌殺傷物質(zhì)直接殺死靶細(xì)胞,還可以分泌如IFN-γ、IL-1、TNF-α等細(xì)胞因子增強(qiáng)自身殺傷能力。魚類的IFNγ、IL-4、IL-13等細(xì)胞因子參與巨噬細(xì)胞極化為M1、M2類巨噬細(xì)胞的過程,也證明魚類中同樣存在Th1和Th2類免疫反應(yīng)[32]。
嗜中性粒細(xì)胞是魚類固有免疫的重要細(xì)胞,魚類嗜中性粒細(xì)胞與哺乳動物嗜中性粒細(xì)胞的功能相似[34,35],具有活躍的吞噬和殺傷功能,但其吞噬能力一般比單核/巨噬細(xì)胞弱。中性粒細(xì)胞胞外誘捕網(wǎng)(Neutrophil extracellular traps,NETs)由 DNA和抗菌蛋白組成,在固有免疫應(yīng)答中阻攔并消除病原體,目前已經(jīng)在鯉Cyprinus carpio中發(fā)現(xiàn),是固有免疫的重要部分[36]。NK細(xì)胞因其非特異的細(xì)胞毒殺傷作用而得名。哺乳動物的NK細(xì)胞一般依靠IL-2和IL-12等細(xì)胞因子激活。這些細(xì)胞因子能直接影響NK細(xì)胞的遷移速率,促進(jìn)NK細(xì)胞的增殖[37]。NK細(xì)胞通過釋放NK細(xì)胞毒因子(NKCF)、TNF-α及干擾素IFN-γ等殺傷介質(zhì)和靶細(xì)胞。魚類的NK細(xì)胞包括非特異性細(xì)胞毒性細(xì)胞(NCCs)和NK細(xì)胞[38]。NCC細(xì)胞是源于器官的細(xì)胞,NK細(xì)胞來源于外周血淋巴細(xì)胞(PBL)[39]。NK細(xì)胞清除“異己”成分不需要預(yù)先激活,可以直接殺死病毒感染的細(xì)胞[40]。溫度影響自然殺傷細(xì)胞的殺傷作用及吞噬細(xì)胞等的吞噬作用[41],這可能是某些魚類疾病發(fā)生時具有溫度依賴性的原因之一。而魚類中還存在自然殺傷細(xì)胞增強(qiáng)因子(NKEF),可增強(qiáng)魚類免疫病菌和病毒的免疫應(yīng)答水平,是巨噬細(xì)胞和細(xì)胞毒性細(xì)胞在固有免疫應(yīng)答過程中的溝通橋梁[42,43]。
大多數(shù)魚類的抗菌肽(AMPs)具有直接抗菌功能[44],如溶菌酶(Lysozyme)可使細(xì)菌溶解[45]并激活補(bǔ)體系統(tǒng),促進(jìn)吞噬細(xì)胞的吞噬作用,防御素(Defense)能直接殺傷細(xì)菌活性[46,47]。
補(bǔ)體(Complement,C)具有調(diào)理、吞噬、炎癥介導(dǎo)、補(bǔ)體防御和清除病原體的作用[48]。補(bǔ)體活化途徑包括經(jīng)典途徑、凝集素途徑和旁路途徑[49]。與哺乳類相比,魚類的補(bǔ)體存在多種亞型,可以識別更多的外源細(xì)胞表面[50]。C3是魚類補(bǔ)體系統(tǒng)的主要成分,可以調(diào)理中性粒細(xì)胞的吞噬作用[51]。無頜魚類的C3只能通過替代途徑激活,促進(jìn)細(xì)胞吞噬[52]。補(bǔ)體C5介導(dǎo)炎癥反應(yīng)中靶細(xì)胞溶解過程[53]。補(bǔ)體C6是免疫反應(yīng)的重要感受器和效應(yīng)器,參與消除感染細(xì)胞的過程[54]。補(bǔ)體C7在補(bǔ)體激活及效應(yīng)過程中,作用于靶細(xì)胞膜上,發(fā)揮殺傷作用[55],屬于效應(yīng)分子。由于補(bǔ)體經(jīng)典途徑的激活需要抗原抗體復(fù)合物(APC)的出現(xiàn),所以補(bǔ)體也參與調(diào)節(jié)T細(xì)胞介導(dǎo)的適應(yīng)性免疫應(yīng)答[56]。
細(xì)胞因子是一類由免疫細(xì)胞和非特異性免疫細(xì)胞合成或分泌的小分子多肽物質(zhì),僅在機(jī)體進(jìn)入免疫應(yīng)答階段大量分泌[57]。魚類中已鑒別出的細(xì)胞因子有白細(xì)胞介素(Interleukin,IL)、趨化因子(Chemokine)、干擾素(IFN)、轉(zhuǎn)化生長因子(TGF-β)。
目前已經(jīng)報道的魚類白細(xì)胞介素中IL-1β、IL-6、TNF-α具有促炎作用,IL-10具有抗炎作用,IL-21參與T細(xì)胞增殖/分化,IL-12刺激NK細(xì)胞激活[58,59]。由此可見,白細(xì)介素在魚類固有免疫和適應(yīng)性免疫中均有不可替代的作用。IL-2和IL-6優(yōu)先驅(qū)動巨噬細(xì)胞分化[60]。值得注意的是,IL-2可以誘導(dǎo)激活T細(xì)胞、B細(xì)胞和NK細(xì)胞分泌IFN-γ[61],促進(jìn)Th細(xì)胞分化并分泌IFN-γ介導(dǎo)細(xì)胞免疫[62]。在金頭鯛Sparus aurata發(fā)現(xiàn)的白細(xì)胞介素IL-6對TNF-α的活化作用由NF-κB、p38 MAPK和JNK信號轉(zhuǎn)導(dǎo)通路介導(dǎo)[63]。TNF可以誘發(fā)香魚Plecoglossus altivelis腎臟呼吸爆發(fā),這與哺乳類相似[64]。與細(xì)菌相比,病毒可以更高更快地誘導(dǎo)TNF-α的產(chǎn)生[65]。
趨化因子(Chemokine)家族有四個亞族:C-X-C亞族、C-C亞族、C-X3-C亞族和C亞族。前3個亞族在魚類中均已發(fā)現(xiàn)[66],魚類的趨化因子家族與哺乳類具有同源性,但是功能有所差別[67,68]。趨化因子可使趨化白細(xì)胞參與炎癥反應(yīng)[69]。C-C趨化因子是趨化因子的最大亞家族,是先天免疫系統(tǒng)的重要組成部分,具有招募白細(xì)胞和增強(qiáng)固有免疫應(yīng)答的功能[70]。在虹鱒Oncorhynchus mykiss中發(fā)現(xiàn)Fractalkine類似物,屬于C-X3-C趨化因子,對單核細(xì)胞和T淋巴細(xì)胞有趨化作用[71]。鯉C-X-C亞族對中性粒細(xì)胞、吞噬細(xì)胞有趨化作用[72]。魚類趨化因子C亞族的報道較少。
干擾素是一種能夠誘導(dǎo)多種細(xì)胞因子的多基因家族。根據(jù)結(jié)構(gòu)和功能,IFN可分為三類:Ⅰ型、Ⅱ型和Ⅲ型。Ⅰ型和Ⅲ型干擾素的表達(dá)都與干擾素調(diào)節(jié)因子(IRF)以及核因子(NF-κB)有關(guān)[73]。I型干擾素斑馬魚Brachydanio rerio幼魚感染神經(jīng)壞死病毒(NNV)的免疫至關(guān)重要[74]。轉(zhuǎn)化生長因子(TGF-β)家族在鮭鱒中已經(jīng)成功分離,推測其可能與魚類病毒免疫相關(guān)[75]。
T淋巴細(xì)胞通過抗原提呈細(xì)胞(APC)分解抗原,由MHC類分子遞送到細(xì)胞表面才能識別??乖岢始?xì)胞主要有樹突狀細(xì)胞、B淋巴細(xì)胞和巨噬細(xì)胞,抗原提呈分子主要有MHC I類分子、MHC II類分子及T細(xì)胞表面受體(TCR)。其他抗原提呈輔助分子如 CD3、CD4、CD8等都與 T 細(xì)胞表面受體(TCR)的識別有關(guān)[76]。哺乳動物的T淋巴細(xì)胞表面分子標(biāo)記CD4和CD8將T細(xì)胞分為輔助性T細(xì)胞和細(xì)胞毒性T細(xì)胞兩種主要亞群,魚類也有這兩種分子標(biāo)記。CD4/CD8淋巴細(xì)胞同時出現(xiàn)在胸腺中,說明硬骨魚類的胸腺是T淋巴細(xì)胞發(fā)育的器官[77,78]。CD8和CD4分子分別通過與自身MHCⅠ類分子和Ⅱ類分子的恒定區(qū)結(jié)合,加強(qiáng)T細(xì)胞與APC或靶細(xì)胞的相互作用以及TCR-CD3信號的轉(zhuǎn)導(dǎo)。CD8+細(xì)胞毒性T淋巴細(xì)胞提呈MHC I類分子,識別內(nèi)源性抗原。CD4+Th細(xì)胞提呈MHCII類分子,識別外源性抗原[79]。CD4+T細(xì)胞可以誘導(dǎo)產(chǎn)生二次免疫抗體[80]。參與T細(xì)胞活化的主要蛋白激酶和蛋白磷酸酶,通常前者在信號轉(zhuǎn)導(dǎo)的上游發(fā)揮作用,后者在下游發(fā)揮作用,并直接作用于轉(zhuǎn)錄因子[3]。IL-2、核轉(zhuǎn)錄因子NF-κB的活化和表達(dá)在T細(xì)胞的活化中發(fā)揮重要作用[81]。T細(xì)胞介導(dǎo)MHC遞呈的抗原信號后需要CD28或APC表面的配體分子結(jié)合才能被真正激活。目前僅在少數(shù)硬骨魚類中報道過CD28分子,對其具體生物學(xué)功能還知之甚少[82]。
B細(xì)胞對抗原的識別通過B細(xì)胞抗原受體BCR實(shí)現(xiàn),可以識別多種抗原,不存在MHC類分子的限制條件。BCR是一種膜型免疫球蛋白mIg。輔助作用的受體有CD19、CD21、CD81等,在魚類中研究較少。鯉科魚類中IL-4、IL-13可以促進(jìn)B淋巴細(xì)胞增殖和IgM的分泌[83]。IL-10與B淋巴細(xì)胞的活化有關(guān),B淋巴細(xì)胞活化因子BAFF可以刺激IL-10和NF-κB的轉(zhuǎn)錄和表達(dá)[84]。在哺乳類中參與B淋巴細(xì)胞活化及增殖的細(xì)胞因子大部分是由Th細(xì)胞分泌,這一觀點(diǎn)還未在魚類中廣泛證實(shí)。
B淋巴細(xì)胞激活分化為漿細(xì)胞后,分泌產(chǎn)生以免疫球蛋白IgM為主的抗體分子??贵w結(jié)合抗原,激活補(bǔ)體經(jīng)典途徑,形成攻膜復(fù)合物使靶細(xì)胞迅速裂解,現(xiàn)已證實(shí)魚類的IgM和補(bǔ)體C在免疫過程存在共同變化的特點(diǎn)[85]。免疫球蛋白主要存在于血漿中,也見于其他體液、組織和一些分泌液中。魚類有多種免疫球蛋白,如IgD、IgZ、IgT、IgR等。在哺乳類中發(fā)揮抗體中和作用及免疫調(diào)理作用的IgG在魚類中比較少見。免疫球蛋白M(IgM)主要由脾臟和淋巴結(jié)中漿細(xì)胞分泌合成,相對分子質(zhì)量最大,幾乎存在于所有脊椎動物中[86]。胸腺是魚類重要的免疫器官,IgM的表達(dá)量較低。這可能是魚類的胸腺隨著生長而退化的結(jié)果[87]。外殼蛋白VP7與草魚Ctenopharyngodon idellus血清IgM特異性結(jié)合可免疫草魚呼腸孤病毒感染[88]。IgM廣泛分布于魚類的免疫器官如頭腎、脾臟中,而IgD、IgZ的分布范圍明顯較小[89]。IgZ、IgT、IgR主要在體表和腸道等黏膜系統(tǒng)發(fā)揮免疫作用[90]。虹鱒中存在一種專門B淋巴細(xì)胞分泌IgT,而IgM陽性B淋巴細(xì)胞卻不能分泌IgT[91],這可能是因?yàn)锽淋巴細(xì)胞在粘膜組織和非粘膜組織中發(fā)揮的免疫應(yīng)答功能不同[92]。
在哺乳動物中,細(xì)胞毒性T細(xì)胞CTLs殺傷靶細(xì)胞的作用必須有Th細(xì)胞分泌的IL-2細(xì)胞因子的參與才能完成。CTLs首先通過MHC I類分子與靶細(xì)胞結(jié)合并釋放穿孔素殺傷靶細(xì)胞,該過程依賴Mg2+、Ca2+離子存在[93]。細(xì)胞毒性T細(xì)胞分泌TNF-α可以與靶細(xì)胞表面相應(yīng)受體結(jié)合發(fā)揮細(xì)胞毒作用并殺死靶細(xì)胞[94]。魚類的細(xì)胞毒性T細(xì)胞參與病毒誘發(fā)免疫應(yīng)答的功能和哺乳類相似,對CD8、TCR、MHC I類子等與CTLs免疫相關(guān)分子的mRNA表達(dá)譜的研究,證實(shí)了CTLs的抗病毒免疫功能[95]。
雖然魚類是水生低等脊椎動物,但同樣具備固有免疫和適應(yīng)性免疫。與哺乳類相比,魚類適應(yīng)性免疫的進(jìn)化程度較低,主要是因?yàn)槊庖咔虻鞍椎念愋洼^少,再次免疫的記憶程度較低。多數(shù)魚類的抗體類型單一,有可能開發(fā)出其他潛在的免疫應(yīng)答策略。魚類某些固有免疫可能優(yōu)于哺乳類,如多種形式的溶菌酶、補(bǔ)體亞型、C反應(yīng)蛋白及急性時相蛋白等,大大增加了固有免疫對抗原的識別能力,提高了免疫應(yīng)答水平。但是魚類的免疫應(yīng)答水平受外界環(huán)境影響巨大,尤其是溫度的變化,直接影響T細(xì)胞和補(bǔ)體等免疫成分的生物活性。魚類種類和品種多樣,免疫應(yīng)答的種間差異很大,免疫應(yīng)答作用機(jī)理也不能一概而論。隨著現(xiàn)代生物技術(shù),尤其是基因分析、蛋白表達(dá)等技術(shù)的迅速發(fā)展,魚類免疫研究應(yīng)從基因、蛋白、細(xì)胞水平進(jìn)一步細(xì)致、深化魚類免疫應(yīng)答機(jī)制的研究,盡早形成一套完善的魚類免疫應(yīng)答機(jī)制理論。
[1]Shailesh S and Sahoo P K.Lysozyme:an important defence moleculeoffish innateimmune system[J].Aquaculture Research,2008,39(3):223-239.
[2] Vervarcke S,Ollevier F,Kinget R,et al.Mucosal response in African catfish after administration of Vibrio anguillarum O2 antigens via different routes[J].Fish&Shellfish Immunology,2005,18(2):125-133.
[3]周光炎.免疫學(xué)原理[M].上海:上海科學(xué)技術(shù)出版社.2007:117-261.
[4]Yang G J,Lu X J,Chen Q,et al.Molecular characterization and functional analysis of a novel C-type lectin receptor-like gene from a teleost fish,Plecoglossus altivelis[J].Fish&Shellfish Immunology,2015,44(2):603-610.
[5] Ma H L,Shi Y H,Zhang X H,et al.A transmembrane C-type lectin receptor mediates LECT2 effects on head kidney-derived monocytes/macrophages in a teleost,Plecoglossus altivelis[J].Fish&Shellfish Immunology,2016,51(4):70-76.
[6]吳婷,孫禾,施毅.C型凝集素受體與Th17細(xì)胞免疫在真菌感染中的研究進(jìn)展[J].中國感染與化療雜志,2014,1(3):257-261.
[7]Kikuno R,Sato A,Mayer W E,et al.Clustering of C-type lectin natural killer receptor-like loci in the bony fish Oreochromis niloticus[J].Scandinavian Journal of Immunology,2004,59(2):133-142.
[8]Liu K,Xu Y,Wang Y,et al.Developmental expression and immune role of the class B scavenger receptor cd36 in zebrafish[J].Developmental&Comparative Immunology,2016,60(7):91-95.
[9] He J,Liu H and Wu C.Identification of SCARA3,SCARA5 and MARCO of class A scavenger receptor-like family in Pseudosciaena crocea[J].Fish&Shellfish Immunology,2014,41(2):238-249.
[10]Poynter SJ,WeleffJ,Soares AB,et al.Class-Ascavenger receptor function and expression in the rainbow trout(Oncorhynchus mykiss) epithelial cell lines RTgutGC and RTgill-W1[J].Fish&Shellfish Immunology,2015,44(1):138-146.
[11]Altmann S,Korytá rˇT,Kaczmarzyk D,et al.Toll-like receptors in maraena whitefish:evolutionary relationship among salmonid fishes and patterns of response to Aeromonas salmonicida[J].Fish&Shellfish Immunology,2016,54(7):391-401.
[12]Hatada E N,Krappmann D and Scheidereit C.NF-κ B and the innate immune response[J].Current Opinion in Immunology,2000,12(1):52-58.
[13]Rauta P R,Samanta M,Dash H R,et al.Toll-like receptors (TLRs)in aquatic animals:signaling pathways,expressions and immune responses[J].Immunol Lett,2014,158(1):14-24.
[14]Kanwal Z,Wiegertjes G F,Veneman WJ,et al.Comparative studies of Toll-like receptor signalling using zebrafish[J].Developmental&Comparative Immunology,2014,46(1):35-52.
[15]ZhaoB,LiangZ,LiaoH,et al.Mapping Toll-like receptor signalingpathwaygenes ofzhikong scallop(Chlamys farreri)with fish[J].Journal of Ocean University of China,2015,14(6):1075-1081.
[16] Ribeiro C M S,Hermsen T,Taverne-Thiele A J,et al.Evolution of recognition of ligands from Gram-positive bacteria:similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish[J].JournalofImmunology,2010,184(5):2355-2368.
[17]Su J,YangC,XiongF,et al.Toll-like receptor 4 signaling pathway can be triggered by grass carp reovirus and Aeromonas hydrophila infection in rare minnow Gobiocypris rarus[J].Fish&Shellfish Immunology,2009,27(1):33-39.
[18]Huang R,Feng D,Jang S,et al.Isolation and analysis of a novel grass carp toll-like receptor 4 (tlr4)gene cluster involved in the response to grass carp reovirus[J].Developmental&Comparative Immunology,2012,38(2):383-388.
[19] Biswas G,Bilen S,Kono T,et al.Inflammatory immune response by lipopolysaccharide-responsive nucleotide binding oligomerization domain(NOD)-like receptors in the Japanese pufferfish (Takifugu rubripes)[J].Developmental&Comparative Immunology,2016,55(2):21-31.
[20]Kerry J Laing,Maureen K Purcell,James R Winton,et al.A genomic viewofthe NOD-like receptor family in teleostfish:identification of a novel NLR subfamily in zebrafish[J].BMCEvolutionaryBiology,2008,8(1):1-15.
[21] Han J,Xu G and Xu T.The miiuy croaker microRNA transcriptome and microRNA regulation ofRIG-I like receptor signaling pathway after poly(I:C)stimulation[J].Fish&Shellfish Immunology,2016,54(7):419-426.
[22]Wang B,Zhang Y B,Liu T K,et al.Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway[J].Developmental&Comparative Immunology,2014,47(1):140-149.
[23]Zhang J,Zhang Y B,Wu M,et al.Fish MAVS is involved in RLR pathway-mediated IFNresponse[J].Fish&Shellfish Immunology,2014,41(2):222-30.
[24]Huong Giang D T,Van D E,Vandenberghe I,et al.Isolation and characterization of SAP and CRP,two pentraxins from Pangasianodon(Pangasius)hypophthalmus[J].Fish&Shellfish Immunology,2010,28(5-6):743-753.
[25]Vashist S K,Venkatesh A G,Marion S E,et al.Bioanalytical advances in assays for C-reactive protein[J].BiotechnologyAdvances,2015,34(3):272-290.
[26] Maccarthy E M,Burns I,Irnazarow I,et al.Serum CRP-like protein profile in common carp Cyprinus carpio challenged with Aeromonas hydrophila and Escherichia coli lipopolysaccharide[J].Developmental&Comparative Immunology,2008,32(11):1281-1289.
[27]Falco A,Cartwright J R,Wiegertjes G F,et al.Molecular characterization and expression analysis oftwo newC-reactive protein genes fromcommon carp(Cyprinus carpio)[J].Developmental&Comparative Immunology,2012,37(1):127-138.
[28]Ramos F and Smith A C.The C-reactive protein(CRP)test for the detection of early disease in fishes[J].Aquaculture,1978,14(3):261-266.
[29]Tang L,Liang Y,Jiang Y,et al.Identification and expression analysis on bactericidal permeability-increasing protein/lipopolysaccharide-binding protein of blunt snout bream,Megalobrama amblycephala[J].Fish&Shellfish Immunology,2015,45(2):630-640.
[30]Kim J W,Gerwick L and Park C I.Molecular identification and expression analysis of two distinct BPI/LBPs(bactericidal permeability-increasing protein/LPS-binding protein)from rock bream,Oplegnathus fasciatus[J].Fish&Shellfish Immunology,2012,33(1):75-84.
[31] Mulero I,Pilar S M,Roca F J,et al.Characterization of macrophages from the bony fish gilthead seabream using an antibody against the macrophage colony-stimulating factor receptor[J].Developmental&Comparative Immunology,2008,32(10):1151-1159.
[32]Wiegertjes G F,Wentzel A S,Spaink H P,et al.Polarization ofimmune responses in fish:The‘macrophages first’point of view[J].Molecular Immunology,2015,69(3):146-156.
[33]MonteroJ,Gómez-Abellán V,Arizcun M,et al.Prostaglandin E2 promotes M2 polarization of macrophages via a cAMP/CREB signaling pathway and deactivates granulocytes in teleost fish[J].Fish&Shellfish Immunology,2016,55(8):632-641.
[34]Sepulcre M P,López-Mu?oz A,Angosto D,et al.TLR agonists extend the functional lifespan of professional phagocytic granulocytes in the bony fish gilthead seabream and direct precursor differentiation towards the production of granulocytes[J].Molecular Immunology,2011,48(6-7):846-859.
[35] Gómez-Abellán V,Montero J,López-Mu?oz A,et al.Professional phagocytic granulocyte-derived PGD2 regulates the resolution of inflammation in fish[J].Developmental&Comparative Immunology,2015,52(2):182-191.
[36] Pijanowski L,Golbach L,Kolaczkowska E,et al.Carp neutrophilic granulocytes form extracellular traps via ROS-dependent and independent pathways[J].Fish&Shellfish Immunology,2013,34(5):1244-1252.
[37]Hodge D L,Schill W B,Wang J M,et al.IL-2 and IL-12 alter NK cell responsiveness to IFN-gamma-inducible protein 10 by down-regulating CXCR3 expression[J].Journal ofImmunology,2002,168(12):6090-6098.
[38]Fischer U,Koppang E O and Nakanishi T.Teleost T and NK cell immunity [J].Fish&Shellfish Immunology,2013,35(2):197-206.
[39]Kurata O,Okamoto N and Ikeda Y.Neutrophilic granulocytes in carp,Cyprinus carpio,possess a spontaneous cytotoxic activity[J].Developmental&Comparative Immunology,1995,19(4):315-325.
[40]Yoshida S H,Stuge T B,Miller N W,et al.Phylogeny of lymphocyte heterogeneity:cytotoxic activity of channel catfish peripheral blood leukocytes directed against allogeneictargets[J].Developmental&ComparativeImmunology,1995,19(1):71-77.
[41]Kurata O,Okamoto N,Suzumura E,et al.Accommodation ofcarp natural killer-like cells to environmental tempera-tures[J].Aquaculture,1995,129(1-4):421-424.
[42] Low C F,Shamsudin M N,Chee H Y,et al.Putative apolipoprotein A-I,natural killer cell enhancement factor and lysozyme gare involved in the earlyimmune response of brown-marbled grouper,Epinephelus fuscoguttatus,Forskal,to Vibrio alginolyticus[J].Journal of Fish Diseases,2014,37(8):693-701.
[43]Bethke J,Rojas V,Berendsen J,et al.Development of a new antibody for detecting natural killer enhancing factor(NKEF)-like protein in infected salmonids[J].Journal of Fish Diseases,2012,35(5):379-388.
[44]王荻,李紹戊,盧彤巖,等.魚類抗菌肽的功能及應(yīng)用前景[J].水產(chǎn)學(xué)雜志,2012,25(4):65-68.
[45]Wang R,Feng J,Li C,et al.Four lysozymes(one c-type and three g-type)in catfish are drastically but differentiallyinduced after bacterial infection[J].Fish&Shellfish Immunology,2013,35(1):136-145.
[46] Dong JJ,Wu F,Ye X,et al.Β-defensin in Nile tilapia(Oreochromis niloticus):Sequence,tissue expression,and anti-bacterial activityofsynthetic peptides[J].Gene,2015,566(1):23-31.
[47]Chen Y,Zhao H,Zhang X,et al.Identification,expression and bioactivity of Paramisgurnus dabryanus β-defensin that might be involved in immune defense against bacterial infection[J].Fish&Shellfish Immunology,2013,35(2):399-406.
[48] Pionnier N,Falco A,Miest J,et al.Dietary β-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio)during an Aeromonas salmonicida infection[J].Fish&Shellfish Immunology,2013,34(3):819-831.
[49]Kaastrup P and Koch C.Complement in the carp fish[J].Developmental&Comparative Immunology,1983,7(4):781-782.
[50]王衛(wèi)衛(wèi),吳謖琦,孫修勤,等.硬骨魚免疫系統(tǒng)的組成與免疫應(yīng)答機(jī)制研究進(jìn)展[J].海洋科學(xué)進(jìn)展,2010,28(2):257-265.
[51]Matsuyama H,Yano T,Yamakawa T,et al.Opsonic effect of the third complement component(C3)of carp(Cyprinus carpio) on phagocytosis by neutrophils[J].Fish&Shellfish Immunology,1992,2(1):69-78.
[52]肖克宇.水產(chǎn)動物免疫與應(yīng)用[M].北京:科學(xué)出版社,2007:139-191.
[53]Kato Y,Nakao M,Mutsuro J,et al.The complement component C5 of the common carp(Cyprinus carpio):cDNA cloning of two distinct isotypes that differ in a functional site[J].Immunogenetics,2003,54(11):807-815.
[54]Shen Y,Zhang J,Xu X,et al.A newhaplotype variability in complement C6 is marginally associated with resistance to Aeromonas hydrophila in grass carp[J].Fish&Shellfish Immunology,2013,34(5):1360-1365.
[55]Shen Y,Zhang J,Xu X,et al.Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp[J].Fish&Shellfish Immunology,2012,33(2):448-454.
[56]Nur I,Abdelkhalek N K,Motobe S,et al.Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp[J].Molecular Immunology,2016,2(70):1-7.
[57] Secombes C J,Hardie L J and Daniels G.Cytokines in fish:an update[J].Fish&Shellfish Immunology,1996,6(4):291-304.
[58]KonoT,Takayama H,Nagamine R,et al.Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines[J].Veterinary Immunology&Immunopathology,2013,151(1-2):90-101.
[59] Pijanowski L,Kemenade V V,Irnazarow I,et al.Stress-induced adaptation of neutrophilic granulocyte activity in K and R3 carp lines[J].Fish&Shellfish Immunology,2015,47(2):886-892.
[60] Corripiomiyar Y,Secombes C J and Zou J.Long-term stimulation of trout head kidney cells with the cytokines MCSF,IL-2 and IL-6:gene expression dynamics[J].Fish&Shellfish Immunology,2012,32(1):35-44.
[61]Wang T,Husain M,Hong S,et al.Differential expression,modulation and bioactivity of distinct fish IL-12 isoforms:implication towards the evolution of Th1-like immune responses[J].European Journal of Immunology,2014,44(5):1541-1551.
[62]Jaso-Friedmann L,Warren J,McgrawR A,et al.Molecular characterization of a protozoan parasite target antigen recognized by nonspecific cytotoxic cells[J].Cellular Immunology,1997,176(2):93-102.
[63]Castellana B,Marín-Juez R and Planas J V.Transcriptional regulation ofthe gilthead seabream(Sparus aurata)interleukin-6 gene promoter[J].Fish&Shellfish Immunology,2013,35(1):71-78.
[64] Uenobe M,Kohchi C,Yoshioka N,et al.Cloning and characterization of a TNF-like protein of Plecoglossus altivelis(ayu fish)[J].Molecular Immunology,2007,44(6):1115-1122.
[65]Ordás MC,Costa MM,Roca F J,et al.Turbot TNF alpha gene:molecular characterization and biological activity of the recombinant protein[J].Molecular Immunology,2007,44(4):389-400.
[66]Nomiyama H,Hieshima K,Osada N,et al.Extensive expansion and diversification of the chemokine gene family in zebrafish:identification of a novel chemokine subfamily CX[J].BMCGenomics,2008,9(1):1-19.
[67]Aa L MV D,Chadzinska M,Derks W,et al.Diversification of IFNγ-inducible CXCb chemokines in cyprinid fish[J].Developmental&Comparative Immunology,2012,38(2):243-253.
[68]Liu Lei1,Fujiki Kazuhiro,Dixon Brian,et al.Cloning of a novelrainbowtrout(Oncorhynchus mykiss)CCchemokine with a fractalkine-like stalk and a TNF decoy receptor using cDNA fragments containing AU-rich elements[J].Cytokine,2002,17(2):71-81.
[69]Baoprasertkul P,He C,Peatman E,et al.Constitutive expression of three novel catfish CXC chemokines:homeostatic chemokines in teleost fish[J].Molecular Immunology,2005,42(11):1355-1366.
[70] Hu Y H and Zhang J.CsCCL17,a CC chemokine of Cynoglossus semilaevis,induces leukocyte trafficking and promotes immune defense against viral infection[J].Fish&Shellfish Immunology,2015,45(2):771-779.
[71]Liu L,Fujiki K,Dixon B,et al.Cloning of a novel rainbow trout (Oncorhynchus mykiss) CC chemokine with a fractalkine-like stalk and a TNF decoyreceptor usingcDNA fragments containing AU-rich elements[J].Cytokine,2002,17(2):71-81.
[72]Lm V D A,Chadzinska M,Golbach L A,et al.Pro-inflammatory functions of carp CXCL8-like and CXCb chemokines[J].Developmental&Comparative Immunology,2012,36(4):741-750.
[73]Iversen MB and Paludan S R.Mechanisms of type III interferon expression[J].Journal of Interferon&Cytokine Research the Official Journal of the International Society for Interferon&Cytokine Research,2010,30(8):573-578.
[74]Chen H Y,Liu W,Wu S Y,et al.RIG-I specifically mediates group II type I IFN activation in nervous necrosis virus infected zebrafish cells[J].Fish&Shellfish Immunology,2015,43(2):427-435.
[75]Maehr T,Costa M M,Vecino J L G,et al.Transforming growth factor-β1b:a second TGF-β1 paralogue in the rainbow trout(Oncorhynchus mykiss)that has a lower constitutive expression but is more responsive to immune stimulation[J].Fish&Shellfish Immunology,2013,34(2):420-432.
[76]Andersen M H,Schrama D,Thor S P,et al.Cytotoxic T cells[J].Journal of Investigative Dermatology,2006,126(1):32-41.
[77]Himaki T,Mizobe Y,Tsuda K,et al.Conservation ofcharacteristics and functions of CD4positive lymphocytes in a teleost fish[J].Developmental&Comparative Immunology,2011,35(6):650-660.
[78] Araki K,Akatsu K,Suetake H,et al.Characterization of CD8+leukocytes in fugu (Takifugu rubripes)with antiserumagainst fugu CD8alpha[J].Developmental&Comparative Immunology,2008,32(7):850-858.
[79] K?nig R and Zhou W.Signal transduction in T helper cells:CD4coreceptors exert complex regulatory effects on T cell activation and function[J].Current Issues in Molecular Biology,2004,6(1):1-15.
[80]SomamotoT,KondoM,Nakanishi T,et al.Helper function ofCD4+lymphocytes in antiviral immunity in ginbuna crucian carp,Carassius auratus langsdorfii[J].Developmental&Comparative Immunology,2013,44(1):111-115.
[81] Wang Y,Wei H,Wang X,et al.Cellular activation,expression analysis and functional characterization of grass carp IκBα:evidence for its involvement in fish NF-κB signalingpathway[J].Fish&Shellfish Immunology,2015,42(2):408-412.
[82]Hu Y H,Sun B G,Deng T,et al.Molecular characterization of Cynoglossus semilaevis CD28[J].Fish&Shellfish Immunology,2012,32(5):934-938.
[83] Yamaguchi T,Miyata S,Katakura F,et al.Recombinant carp IL-4/13B stimulates in vitro proliferation ofcarp IgM(+)B cells[J].Fish&Shellfish Immunology,2016,49(2):225-229.
[84]Godahewa G I,Perera N C,Umasuthan N,et al.Molecular characterization and expression analysis of B cell activating factor from rock bream (Oplegnathus fasciatus)[J].Developmental and Comparative Immunology,2015,55(5):1-11.
[85]Li X,Liu L,ZhangY,et al.Toxic effects ofchlorpyrifos on lysozyme activities,the contents of complement C3 and IgM,and IgMand complement C3 expressions in common carp (Cyprinus carpio L.)[J].Chemosphere,2013,93(2):428-433.
[86] Amemiya C T,Alf?ldi J,Lee A P,et al.The African coelacanth genome provides insights into tetrapod evolution[J].Nature,2013,496(7445):311-316.
[87]Gr?ntvedt R N and Espelid S.Immunoglobulin producing cells in the spotted wolffish(Anarhichas minor Olafsen):localization in adults and during juvenile development[J].Developmental&Comparative Immunology,2003,27(6-7):569-578.
[88] Chen C,Sun X,Liao L,et al.Antigenic analysis of grass carp reovirus using single-chain variable fragment antibody against IgMfrom Ctenopharyngodon idella[J].Science China Life Sciences,2013,56(1):59-65.
[89]Tian J,Sun B,Luo Y,et al.Distribution of IgM,IgD and IgZ in mandarin fish,Siniperca chuatsi lymphoid tissues and their transcriptional changes after Flavobacterium columnare stimulation[J].Aquaculture,2009,288(1):14-21.
[90]Rombout J H,Yang G and Kiron V.Adaptive immune responses at mucosal surfaces of teleost fish[J].Fish&Shellfish Immunology,2014,40(2):634-643.
[91] Zhang Y A,Salinas I,Li J,et al.IgT,a primitive immunoglobulin class specialized in mucosal immunity[J].Nature Immunology,2010,11(9):827-835.
[92]Salinas I,ZhangY A,Sunyer J O.Mucosal immunoglobulins and B cells ofteleost fish[J].Developmental&Comparative Immunology,2011,35(12):1346-1365.
[93] Toda H,Araki K,Moritomo T,et al.Perforin-dependent cytotoxic mechanism in killing by CD8positive T cells in ginbuna crucian carp,Carassius auratus langsdorfii[J].Developmental&Comparative Immunology,2011,35(1):88-93.
[94]Ronza P,Bermúdez R,Losada A P,et al.Immunohistochemical detection and gene expression of TNFα in turbot(Scophthalmus maximus)enteromyxosis[J].Fish&Shellfish Immunology,2015,47(1):368-376.
[95]SomamotoT,KoppangE O and Fischer U.Antiviral functions ofCD8(+)cytotoxic Tcells in teleost fish[J].Developmental&Comparative Immunology,2014,43(2):197-204.
Research Progress of Immune Response Mechanisms in Fish
BAI Shan-shan1,2,JIA Zhi-ying1,SHI Lian-yu1
(1.Heilongjiang River Fisheries Research Institute,Chinese Academy of Fishery Sciences,Harbin 150070,China;2.College of Fisheries and Life Sciences,Shanghai Ocean University,Shanghai 201306,China)
Like mammals,fish immune response can be divided into innate immunity,which is primarily realized by identifying pathogens through the interactive combination of pattern recognition receptor(PRR)and pathogen-associated molecular pattern(PAMP),and adaptive immunity.In order to adapt to aquatic life,however,fish innate immunity has a broader recognition scope on PAMP to launch immune response under low conditions.Effect cells of innate immunity are mainly comprised of mononuclear/macrophage,neutrophilic granulocyte and natural killer cells and others showing functions of phagocytosis and killing and secreting multiple immune-associated cytokines and mediate in inflammatory response.In the adaptive immunity,T lymphocytes absorb antigens through decomposition of antigen presenting cells and identifiation by transmitting to the surface by main histocompatibility complex(MHC)molecules,indicating the lower immunity under the limitation of MHC molecules,compared to the mammals.In the mammals,B lymphocytes generate antibody modules by the primary immune globulin IgM while the fish antibody modules are derived from the rare IgG,indicating that comparing with mammals,immunologic functions of fish antibody are still kept in the low level.The relevant articles of fish immune response mechanism published in the past 20 years are summarized,aiming to further know about the research progress of fish immune response mechanism.
fish;adaptive immunity;innate immunity;immune response
S917
A
1005-3832(2017)04-0059-09
2016-11-09
黑龍江所基本業(yè)務(wù)費(fèi)(HSY201401);國家“十二五”科技支撐計劃項目(2012BAD26B01);國家大宗淡水魚類產(chǎn)業(yè)技術(shù)體系北方鯉魚種質(zhì)資源與育種項目(CARS-46-02).
白姍姍(1993-),女,碩士研究生,研究方向:水產(chǎn)遺傳育種.E-mail:bss140101017@163.com
石連玉(1960-),男,研究員,從事魚類遺傳育種研究.E-mail:sly2552@yahoo.com.cn