臧曉蓓,康飛宇,朱宏偉
清華大學(xué)深圳研究生院,廣東深圳 518055;②清華大學(xué)材料學(xué)院,北京 100084
石墨烯柔性超級(jí)電容器
臧曉蓓①②,康飛宇①,朱宏偉②?
清華大學(xué)深圳研究生院,廣東深圳 518055;②清華大學(xué)材料學(xué)院,北京 100084
石墨烯具有獨(dú)特的二維納米結(jié)構(gòu)、高比表面積和優(yōu)異的電化學(xué)性能,而且變形后仍保持器件的原始性能。分析了石墨烯柔性超級(jí)電容器的工作原理,研究了以石墨烯為電極材料的柔性超級(jí)電容器的變形特性,其變形類型可由小角度彎曲、卷曲和拉伸擴(kuò)展至任意靜態(tài)變形,甚至動(dòng)態(tài)變形。最后對(duì)石墨烯柔性電容器在便攜式電子器件中的應(yīng)用進(jìn)行了展望。
石墨烯;柔性;超級(jí)電容器
隨著科學(xué)技術(shù)的進(jìn)步,工業(yè)化和信息化的迅速發(fā)展,計(jì)算機(jī)、移動(dòng)電話、照相機(jī)等電子產(chǎn)品已成為生活中的必需品。由臺(tái)式機(jī)向筆記本電腦、座機(jī)向移動(dòng)電話的轉(zhuǎn)變,都表明人類對(duì)電子設(shè)備的要求已不僅僅局限在“可使用”,而是逐步向便攜化邁進(jìn)。這就要求電子設(shè)備的儲(chǔ)能系統(tǒng)必須具備長(zhǎng)時(shí)間的供電能力,才可使電子設(shè)備脫離電源線的約束,成為方便使用的可移動(dòng)裝置。超級(jí)電容器是一種新型的儲(chǔ)能器件,具有高容量、高功率密度、高充放電速度等優(yōu)點(diǎn)。
柔性超級(jí)電容器是超級(jí)電容器的一個(gè)分類。超級(jí)電容器是由電極材料、集流體、隔膜、電解液組成,而柔性超級(jí)電容器是由柔性基底、電極材料、固態(tài)電解質(zhì)組成。其中電極材料可同時(shí)起到儲(chǔ)存能量和集流體的作用,固態(tài)電解質(zhì)可同時(shí)起到電解質(zhì)和隔膜的作用。與傳統(tǒng)超級(jí)電容器相比,柔性超級(jí)電容器具有以下優(yōu)點(diǎn):選用性能穩(wěn)定的電極材料,提高了安全性;超薄的電極材料和精簡(jiǎn)的組裝過程,大大縮減了體積,使整個(gè)器件更小型、輕質(zhì);電極材料和電解質(zhì)材料用量少,降低了生產(chǎn)成本,且安全環(huán)保。
柔性超級(jí)電容器與超級(jí)電容器的工作原理相同,可分為雙電層儲(chǔ)能機(jī)制、贗電容儲(chǔ)能機(jī)制和復(fù)合儲(chǔ)能機(jī)制:
(1) 雙電層儲(chǔ)能機(jī)制是利用電極材料與電解質(zhì)的接觸面存儲(chǔ)電荷,形成兩個(gè)電荷層,整個(gè)過程不發(fā)生化學(xué)反應(yīng),僅是離子的吸脫附。
(2) 贗電容儲(chǔ)能機(jī)制是利用電極材料中活性物質(zhì)表面發(fā)生的可逆的氧化還原反應(yīng)存儲(chǔ)電荷的,屬于法拉第反應(yīng)過程。
(3) 復(fù)合儲(chǔ)能機(jī)制指整個(gè)反應(yīng)過程同時(shí)出現(xiàn)雙電層儲(chǔ)能機(jī)制和贗電容儲(chǔ)能機(jī)制。例如:雙電層儲(chǔ)能過程中,僅是電荷的吸脫附,電極材料的循環(huán)壽命高,但是儲(chǔ)存電荷的表面積有限,電容值較低;而贗電容儲(chǔ)能過程可獲得較高的電容值,但由于氧化還原反應(yīng)的不可逆性,循環(huán)壽命較低。兩種機(jī)制協(xié)同作用,發(fā)揮各自的優(yōu)點(diǎn),彌補(bǔ)各自的不足,將超級(jí)電容器的電化學(xué)性能完全發(fā)揮出來。
2.1 基于石墨烯的柔性超級(jí)電容器
石墨烯是由sp2雜化的碳原子密排成蜂窩狀的二維晶體結(jié)構(gòu)。自問世以來,由于其具有高比表面積、優(yōu)異的電學(xué)性能和穩(wěn)定的化學(xué)性能等特點(diǎn),在超級(jí)電容器領(lǐng)域備受關(guān)注。Stoller等[1]以KOH化學(xué)改性的石墨烯作為電極材料,驗(yàn)證了石墨烯應(yīng)用在超級(jí)電容器電極材料領(lǐng)域的可行性。自此,關(guān)于石墨烯作為超級(jí)電容器的電極材料的研究層出不窮。如圖1所示,石墨烯柔性超級(jí)電容器具有不同的組成形式。Chen等[2]將氧化石墨烯懸濁液注入玻璃管中,經(jīng)還原后,得到與玻璃管形狀相似的石墨烯纖維。所制得的超級(jí)電容器具有良好的電化學(xué)性能及柔韌性。Zhao等[3]將吡咯單體加入到氧化石墨烯懸濁液中,經(jīng)過聚合和還原后,得到具有良好彈性的石墨烯/聚吡咯三維結(jié)構(gòu)。組裝成的柔性超級(jí)電容器具有很好的可壓縮性能。El-Kady等[4]利用DVD光驅(qū)激光還原氧化石墨烯作為電極材料,制備所得柔性超級(jí)電容器的比電容達(dá)4 mF/cm2,并且具有優(yōu)異的變形性能。
圖1 (a)纖維狀、(b)塊狀和(c)平板狀柔性超級(jí)電容器
由于平板狀的柔性超級(jí)電容器縱向尺寸較小,在變形過程中自身產(chǎn)生的抗力較小,因而更易于變形。Zang等[5]將化學(xué)氣相沉積法制備的石墨烯網(wǎng)狀薄膜轉(zhuǎn)移至幾種不同的柔性基底(聚對(duì)苯二甲酸乙二醇酯,PET;聚二甲基硅氧烷,PDMS;聚乙烯,PE;磨砂布和濾紙),并與膠體電解質(zhì)組裝成具有“三明治”結(jié)構(gòu)的柔性超級(jí)電容器。根據(jù)柔性基底性質(zhì)的不同,對(duì)電容器采取不同的變形性能測(cè)試,如彎曲、拉伸、折紙、任意變形等(圖2)。測(cè)試結(jié)果發(fā)現(xiàn),各種變形后電容器仍可保持穩(wěn)定的電容性能,并且可以承受上百次變形,具有很好的變形穩(wěn)定性。
在實(shí)際情況中動(dòng)態(tài)變形更加常見,而柔性超級(jí)電容器在變形過程中仍可保持穩(wěn)定的電化學(xué)性能,即具有優(yōu)異的動(dòng)態(tài)變形性能。如圖3所示,Li等[6]將變形類型擴(kuò)展到動(dòng)態(tài)拉伸變形,將碳納米管轉(zhuǎn)移至PDMS基底上,測(cè)試了不同應(yīng)變頻率(最高頻率為4.46%/s)下的電化學(xué)性能的變化。Zang等[7]充分利用石墨烯網(wǎng)狀薄膜可與基底緊密結(jié)合的特點(diǎn),獲得以預(yù)拉伸后的褶皺PDMS為基底、石墨烯網(wǎng)狀薄膜為電極材料的可動(dòng)態(tài)拉伸(彎曲)超級(jí)電容器。動(dòng)態(tài)拉伸(彎曲)頻率可高達(dá)60%/s。拉伸過程通過CV曲線進(jìn)行實(shí)時(shí)檢測(cè),結(jié)果表明,動(dòng)態(tài)拉伸(彎曲)過程中未見明顯的性能破壞,具有很好的動(dòng)態(tài)變形性能。
2.2 基于石墨烯復(fù)合材料的柔性超級(jí)電容器
雖然碳材料具有優(yōu)異的雙電層電容器的性能,但是碳材料的表面積有限,儲(chǔ)存電荷的能力也有限。為了進(jìn)一步提升柔性超級(jí)電容器的儲(chǔ)能能力,引入贗電容材料,獲得石墨烯與贗電容材料的復(fù)合材料。在復(fù)合材料中,石墨烯既作為雙電層儲(chǔ)存能量,又作為贗電容材料的支撐骨架及導(dǎo)電通道。雙電層與贗電容的有機(jī)結(jié)合可使兩種儲(chǔ)能機(jī)制協(xié)同工作,發(fā)揮最優(yōu)的性能。
圖2 柔性超級(jí)電容器的各種變形
圖3 柔性超級(jí)電容器的動(dòng)態(tài)拉伸過程
高分子導(dǎo)電聚合物是一種制備工藝簡(jiǎn)單、性能優(yōu)越的贗電容材料,如聚苯胺、聚吡咯等。聚苯胺是一種典型的導(dǎo)電聚合物,具有較高的電導(dǎo)率、獨(dú)特的摻雜機(jī)制及良好的環(huán)境穩(wěn)定性等特點(diǎn),且原料易獲得,成本低。導(dǎo)電物的制備方法簡(jiǎn)單,包括原位聚合、電聚合、溶液法等。Zhang等[8]在氧化石墨烯上原位聚合聚苯胺,獲得480 F/g的質(zhì)量比電容。Cong等[9]在一步法制備的還原氧化石墨烯上負(fù)載聚苯胺,獲得柔性、輕質(zhì)、高導(dǎo)電性的復(fù)合電極材料,質(zhì)量比電容高達(dá)763 F/g。Zang等[10]采用電化學(xué)聚合的方法在石墨烯網(wǎng)狀薄膜上負(fù)載聚苯胺,將器件的面積比電容由2 mF/cm2提高到23 mF/cm2,負(fù)載后仍然具有良好的柔性變形性能。
石墨烯與導(dǎo)電聚合物復(fù)合后,可以大幅度提高電容值。另外,聚合物可增強(qiáng)石墨烯與基底之間的結(jié)合力,也提高了柔性變形的能力,在柔性超級(jí)電容器領(lǐng)域具有很好的應(yīng)用前景。
綜上所述,由于石墨烯具備獨(dú)特的結(jié)構(gòu)和電化學(xué)性能,且可與贗電容材料進(jìn)行復(fù)合,是一種具有潛力的柔性超級(jí)電容器的電極材料。柔性超級(jí)電容器中的石墨烯可以實(shí)現(xiàn)多種類型的靜態(tài)變形和高頻率的動(dòng)態(tài)變形,而且變形過程中電化學(xué)性能保持穩(wěn)定,從而很大程度上推動(dòng)了柔性超級(jí)電容器領(lǐng)域的前進(jìn)。相信隨著石墨烯性能的完善及配套微加工技術(shù)的精進(jìn),石墨烯柔性超級(jí)電容器會(huì)向越來越廣闊的應(yīng)用空間發(fā)展。
(2016年1月15日收稿)■
[1] STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors [J]. Nano Lett, 2008, 8(10): 3498-3502.
[2] CHEN Q, MENG Y, HU C, et al. MnO2-modifed hierarchical graphene fber electrochemical supercapacitor [J]. J Power Sources, 2014, 247: 32-39.
[3] ZHAO Y, LIU J, HU Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes [J]. Adv Mater, 2013, 25(4): 591-595.
[4] EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of highperformance and flexible graphene-based electrochemical capacitors [J]. Science, 2012, 335(6074): 1326-1330.
[5] ZANG X B, CHEN Q, LI P X, et al. Highly flexible and adaptable, all solid-state supercapacitors based on graphene woven fabric film electrodes [J]. Small, 2014, 10: 2583-2588.
[6] LI X, GU T, WEI B. Dynamic and galvanic stability of stretchable supercapacitors [J]. Nano Lett, 2012, 12(12): 6366-6371.
[7] ZANG X B, ZHU M, LI X, et al. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes [J]. Nano Energy, 2015, 15: 83-91.
[8] ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes [J]. Chem Mater, 2010, 22(4): 1392-1401.
[9] CONG H, REN X, WANG P, et al. Flexible grapheme-polyaniline composite paper for high-performance supercapacitor [J]. Energ Emviron Sci, 2013, 6(4): 1185-1191.
[10] ZANG X B, LI X, ZHU M, et al. Graphene/polyaniline woven fabric composite flms as fexible supercapacitor electrodes [J]. Nanoscale, 2015, 7(16): 7318-7322.
(編輯:沈美芳)
Graphene flexible supercapacitors
ZANG Xiaobei①②, KANG Feiyu①, ZHU Hongwei②
①Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China;②School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Graphene is a typical two-dimensional monatomic-layered material and has high theoretical electrochemical capacitance. The working mechanism of graphene supercapacitors is investigated. The deformation properties of fexible supercapacitors based on graphene electrodes are studied. The type of deformations can be extended from static bending, curl and stretching to arbitrary even dynamic deformation. Finally, the application prospect of fexible graphene supercapacitors is envisioned in portable electronics.
graphene, fexile, supercapacitor
10.3969/j.issn.0253-9608.2016.02.005
?通信作者,E-mail: hongweizhu@tsinghua.edu.cn