常瑞雪,王 騫,甘晶晶,李彥明
(中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)
易降解有機(jī)質(zhì)含量對(duì)黃瓜秧堆肥腐熟和氮損失的影響
常瑞雪,王 騫,甘晶晶,李彥明※
(中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)
蔬菜廢棄物無(wú)害化處理,尤其對(duì)于集約化蔬菜產(chǎn)地,缺乏適用技術(shù),易污染環(huán)境,浪費(fèi)資源,甚至造成后續(xù)安全隱患。為實(shí)現(xiàn)蔬菜廢棄物的安全高效轉(zhuǎn)化,該試驗(yàn)以黃瓜秧為堆肥主原料,以玉米秸稈、淀粉和尿素為調(diào)理劑,在控制混合堆肥物料初始碳氮比為25,物料水分質(zhì)量分?jǐn)?shù)為60%,總物料質(zhì)量相同的條件下,分析易降解有機(jī)質(zhì)(除木質(zhì)纖維素之外的有機(jī)質(zhì))比例對(duì)堆肥腐熟進(jìn)程和氮素?fù)p失的影響。試驗(yàn)設(shè)置添加易降解有機(jī)質(zhì)的質(zhì)量分?jǐn)?shù)分別為27%(T1)、36%(T2)、45%(T3)、51%(T4)4個(gè)處理,利用自制密閉式堆肥反應(yīng)器研究了隨堆肥進(jìn)行,不同處理溫度、物料損失、有機(jī)質(zhì)降解和二氧化碳釋放、pH值、電導(dǎo)率(electrical conductivity,EC)、發(fā)芽率指數(shù)(germination index,GI)的變化情況,并同時(shí)分析了氨氣揮發(fā)速率、累積排放量和氮素?fù)p失率等。研究結(jié)果顯示:隨著初始混合物料中易降解有機(jī)質(zhì)的增加,堆體的最高溫度呈現(xiàn)出先升高后降低的趨勢(shì),但根據(jù)物料的pH值、EC和GI值判斷,易降解有機(jī)質(zhì)比例過(guò)高會(huì)影響堆肥的腐熟過(guò)程,其比例不宜超過(guò)45%,其中T3的最高溫度最高,高達(dá)71.4 ℃,且有機(jī)質(zhì)減少量和CO2累積排放量最高,表明T3最利于堆肥的起爆反應(yīng)和無(wú)害化目標(biāo)的實(shí)現(xiàn);然而,易降解有機(jī)質(zhì)的增加會(huì)伴隨氮素?fù)p失,尤其是氨氣揮發(fā)損失量的增加,其中T3氨氣損失累積量最大(380.29 mg),T4的氮素?fù)p失率最高(36.01%),即物料中的木質(zhì)纖維素有利于減少氮素的損失。綜上,物料中易降解有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為45%最利于堆肥的高溫實(shí)現(xiàn),同時(shí)對(duì)腐熟的影響較小,但氮素?fù)p失率高,因此實(shí)際生產(chǎn)中可額外添加木質(zhì)纖維素類膨脹劑,改良物料的物理結(jié)構(gòu)和理化特點(diǎn),從而在實(shí)現(xiàn)高溫的基礎(chǔ)上減少氮素的損失。
堆肥;有機(jī)質(zhì);氮;黃瓜秧;易降解有機(jī)質(zhì);腐熟;氨氣;氮素?fù)p失
中國(guó)是蔬菜種植大國(guó),種植面積和產(chǎn)量都居于世界前列,黃瓜作為重要的大宗蔬菜作物之一,栽培種植面積超過(guò)106萬(wàn)hm2,產(chǎn)量超過(guò)0.73億t[1],大量的黃瓜藤蔓等生產(chǎn)廢棄物亟需處理。分析發(fā)現(xiàn)黃瓜藤蔓雖富含有機(jī)質(zhì)和N、P、K等養(yǎng)分[2],但含水率高,易腐敗變質(zhì),且可能攜帶多種病原菌,處理不當(dāng)不僅浪費(fèi)資源、污染環(huán)境,而且會(huì)對(duì)蔬菜集約化產(chǎn)地如溫室種植區(qū)等造成生產(chǎn)安全隱患。高溫好氧堆肥可以實(shí)現(xiàn)有機(jī)廢棄物的資源化利用,但是由于黃瓜藤蔓作為堆肥物料時(shí),存在C/N低,結(jié)構(gòu)性差等缺點(diǎn),實(shí)際堆肥時(shí)需加入玉米秸稈[3-4]等添加劑來(lái)提高有機(jī)廢物堆肥化處理效率[4-5],保證堆肥的正常進(jìn)行。與此同時(shí),為了實(shí)現(xiàn)病原菌的完全滅活,需適當(dāng)提高堆體的最高溫度,這就要提高有機(jī)質(zhì)中易降解有機(jī)質(zhì)的比例[6-8]。Kaiser[9]在綜合考慮生物質(zhì)的分類及各類有機(jī)質(zhì)被微生物降解特異性的基礎(chǔ)上,將其分為4部分:糖類和淀粉類等、纖維素、半纖維素、木質(zhì)素,纖維素、半纖維素和木質(zhì)素又統(tǒng)稱為木質(zhì)纖維素,是物料中除易降解有機(jī)質(zhì)外的其他成分,對(duì)堆肥的腐熟過(guò)程起到限速作用。因此本試驗(yàn)以木質(zhì)纖維素代替成分復(fù)雜的易降解有機(jī)質(zhì)進(jìn)行試驗(yàn)設(shè)置,分析易降解有機(jī)質(zhì)的比例對(duì)堆肥腐熟過(guò)程和堆體溫度變化的影響。但是,堆體的溫度升高勢(shì)必增加堆體中氨氣的釋放,大量氨氣排出不僅污染環(huán)境,還大大降低了堆肥產(chǎn)品的農(nóng)用價(jià)值[10-12]。目前堆肥中原位氮素?fù)p失控制措施已有很多研究,補(bǔ)充外加的碳源物質(zhì)可以改變物料有機(jī)質(zhì)構(gòu)成和比例,影響物料溫度、pH值和碳氮比[13],從而對(duì)堆肥過(guò)程中氨氣的釋放量產(chǎn)生影響[14-16],即物料中有機(jī)質(zhì)不同成分的組成比例會(huì)對(duì)控制效果產(chǎn)生很大的影響[17]。木質(zhì)纖維素雖不易被微生物直接利用,但因其結(jié)構(gòu)性好,植物毒性物質(zhì)少,不易產(chǎn)生臭氣等優(yōu)點(diǎn)而常作為堆肥中的結(jié)構(gòu)改良劑,且因其含有腐殖質(zhì)等物質(zhì)可吸附氨氣從而減少氨氣揮發(fā)造成的氮損失[18]。因此,本研究旨在研究物料中易降解有機(jī)質(zhì)比例對(duì)堆肥腐熟進(jìn)程產(chǎn)生的影響的基礎(chǔ)上,進(jìn)一步分析其對(duì)堆肥過(guò)程中氮素?fù)p失的影響,從而為蔬菜廢棄物堆肥化處理時(shí)物料混配方法提供理論支持,并為高溫好氧堆肥中氮素?fù)p失控制措施的適用性研究奠定基礎(chǔ)。
1.1 試驗(yàn)材料
堆肥所用主要原料為新鮮黃瓜秧,取自北京市大興區(qū)的蔬菜大棚,玉米秸稈取自北京市上莊試驗(yàn)田,將黃瓜秧和玉米秸稈經(jīng)過(guò)粉碎機(jī)粉碎為1~2 cm的小段后冷凍備用。測(cè)定物料的基本理化性質(zhì),結(jié)果如表1所示。
表1 堆肥材料理化性狀Table 1 Characters of composting material
1.2 試驗(yàn)設(shè)計(jì)與樣品分析
1.2.1 試驗(yàn)設(shè)計(jì)
本試驗(yàn)在中國(guó)農(nóng)業(yè)大學(xué)西校區(qū)實(shí)驗(yàn)室內(nèi)采用模擬堆肥裝置進(jìn)行。試驗(yàn)裝置如圖1所示,堆肥所用反應(yīng)器為自制的PVC材質(zhì)的圓筒形密閉反應(yīng)器,體積為6 L,反應(yīng)器底部和頂部分別置有進(jìn)氣口和出氣口,均用硅膠管與外界連接,另在反應(yīng)器蓋子上固定有溫度傳感器,內(nèi)與物料接觸,外與溫度記錄儀相連。設(shè)備細(xì)節(jié)可參考常瑞雪等[19]。
圖1 堆肥反應(yīng)裝置示意圖Fig.1 Schematic diagram of composting equipment
堆肥處理設(shè)置:控制每個(gè)反應(yīng)器中添加物料質(zhì)量相同,以玉米秸稈作為添加劑進(jìn)行黃瓜秧堆肥試驗(yàn),并以淀粉和尿素為調(diào)理劑,設(shè)置相同碳氮比(25)及碳氮初始含量的基礎(chǔ)下,調(diào)節(jié)混合物料中易降解有機(jī)質(zhì)分別占總物料質(zhì)量的27%(T1)、36%(T2)、45%(T3)、51%(T4),各處理中不同物料的質(zhì)量如表2 所示。物料充分混合均勻后放入發(fā)酵罐中,初始含水率設(shè)為60%,曝氣量為0.1 L/min,堆肥發(fā)酵周期設(shè)定為30 d。
表2 各處理中不同物料的質(zhì)量Table 2 Materials weight in different treatments
在堆肥第0、1、3、6、10、15、22、30天取樣,共采集6個(gè)樣品,3個(gè)樣品用于風(fēng)干測(cè)定總有機(jī)碳(total organic carbon,TOC)、總氮(total nitrogen,TN)、有機(jī)質(zhì)等指標(biāo),3個(gè)樣品冷凍處理,待樣品收集齊后統(tǒng)一測(cè)定pH值、電導(dǎo)率(electrical conductivity,EC)、發(fā)芽率指數(shù)(germination index,GI)等。
1.2.2 樣品分析
1)溫度:堆肥溫度由固定在堆肥罐體中央的溫度傳感器檢測(cè),傳感器與溫度記錄儀相連,每10 min記錄1次實(shí)時(shí)溫度。
2)二氧化碳和氨氣:二氧化碳和氨氣的測(cè)定采用氫氧化鈉和硼酸吸收,吸收液由標(biāo)準(zhǔn)稀硫酸溶液滴定的方法,并通過(guò)計(jì)算獲得累積排放量。
3)有機(jī)碳和全氮:樣品的有機(jī)碳和全氮含量參照有機(jī)肥測(cè)定標(biāo)準(zhǔn)方法(NY 525-2012)。
4)發(fā)芽率指數(shù):稱取5 g鮮樣,按樣品和去離子水固液比為1:10(g/mL)在室溫條件下以200 r/min水平震蕩30 min,過(guò)濾后得到堆肥浸提液。在培養(yǎng)皿內(nèi)墊1張濾紙,均勻放入10粒飽滿的水蘿卜種子,加入以上濾液5 mL,在25 ℃培養(yǎng)箱中培養(yǎng)48 h后測(cè)定發(fā)芽數(shù)和根長(zhǎng),然后參照文獻(xiàn)[20]計(jì)算種子發(fā)芽率指數(shù),每個(gè)樣品做3次重復(fù),同時(shí)以蒸餾水作空白試驗(yàn)。
5)pH值和電導(dǎo)率:分別將校準(zhǔn)過(guò)的pH計(jì)電極和EC計(jì)電極插入浸提液,讀取數(shù)值。
6)木質(zhì)纖維素:木質(zhì)纖維素的測(cè)定按照范氏(Van Soest)的洗滌纖維分析法,采用ANKOM220型纖維分析儀測(cè)定中性洗滌纖維(neutral detergent fiber,NDF)、酸性洗滌纖維(acid detergent fiber,ADF)和酸性洗滌木質(zhì)素(acid detergent lignin,ADL)的含量,并通過(guò)計(jì)算獲得半纖維素和纖維素的含量[21]。
7)含水率通過(guò)樣品105 ℃烘干后測(cè)得。
8)灰分通過(guò)將樣品烘干后經(jīng)550 ℃灼燒4 h后測(cè)得。
應(yīng)用Excel進(jìn)行數(shù)據(jù)處理和圖表制作,SigmaPlot模擬方程。
2.1 物料易降解有機(jī)質(zhì)比例對(duì)堆肥進(jìn)程的影響
2.1.1 溫度變化
有機(jī)廢棄物堆肥化處理就是在細(xì)菌、放線菌、真菌等微生物的作用下,通過(guò)降解有機(jī)物產(chǎn)生高溫,從而達(dá)到殺滅病原菌和促進(jìn)有機(jī)質(zhì)(OM)穩(wěn)定化、腐殖質(zhì)化的目的。溫度是堆肥過(guò)程中有機(jī)質(zhì)降解和生物能量積累的重要標(biāo)志,因此可根據(jù)溫度的變化過(guò)程了解堆肥進(jìn)程和有機(jī)質(zhì)降解的情況。不同處理下堆體溫度變化趨勢(shì)如圖2所示,自堆肥開始溫度迅速升至65 ℃,且各處理升溫趨勢(shì)相同,翻堆有利于堆肥物料恢復(fù)結(jié)構(gòu),促進(jìn)物料的生物降解。升溫階段:各處理中的糖類和淀粉等易被降解的有機(jī)質(zhì)直接被微生物降解,產(chǎn)生熱量,促進(jìn)了溫度的升高,其中T2和T3處理的升溫速率快于其他處理,T1和T4處理不能同時(shí)保證充足的易降解有機(jī)質(zhì)和適宜的孔隙條件,故而不利于高溫的實(shí)現(xiàn)。T3處理糖類和淀粉類物質(zhì)含量高于T2,故最高溫度達(dá)到71.4 ℃,持續(xù)超過(guò)6 h,達(dá)到了病原菌滅活的要求[22-23]。高溫階段(>60 ℃)持續(xù)2 d后,不同處理的溫度變化趨勢(shì)開始出現(xiàn)差異,T1和T4處理的高溫持續(xù)時(shí)間較長(zhǎng),一方面是因?yàn)樯郎仄谟袡C(jī)質(zhì)消耗量低于T2和T3,可以供微生物使用的有機(jī)質(zhì)含量高,另一方面是因?yàn)檫@2個(gè)處理的最高溫度仍處于堆肥最適宜的溫度范圍52~64 ℃,不會(huì)抑制微生物的活性[24]。到第17天后,溫度不再上升,降解過(guò)程趨于平緩。
圖2 堆肥過(guò)程中溫度變化Fig.2 Temperature variation during composting
溫度的變化曲線表明堆肥正常進(jìn)行,且提高易降解有機(jī)質(zhì)的比例可以有效促進(jìn)堆肥起爆作用,提高可達(dá)到的最高溫度,易降解有機(jī)質(zhì)占初始物料干重的質(zhì)量分?jǐn)?shù)為45%左右時(shí),對(duì)于提高堆體溫度效果最佳,再低會(huì)影響堆體溫度的升高,但會(huì)延長(zhǎng)高溫期的時(shí)間。最高溫度高于70 ℃(T3)和較長(zhǎng)的高溫期(T4)對(duì)堆肥進(jìn)程和氮素?fù)p失的影響將后續(xù)進(jìn)行分析。
2.1.2 物料損失
堆肥過(guò)程是在一定的人工條件下,有控制地促進(jìn)可生物降解的有機(jī)物進(jìn)行礦化和腐殖化的過(guò)程[25],而減量化是固體廢棄物進(jìn)行堆肥化處理的主要目的之一,堆肥的物料質(zhì)量變化可以直觀地反映堆肥化過(guò)程的減量化效果。根據(jù)物料灰分守恒的規(guī)律計(jì)算質(zhì)量變化結(jié)果如圖3所示。各處理物料質(zhì)量隨堆肥進(jìn)行逐漸減少,前10 d為物料損失高峰期,自第10天后,減少速率逐漸變緩。處理T3和T4的物料減少量分別為43.79%和40.32%,高于處理T1和T2的24.76%和28.89%,即低易降解有機(jī)質(zhì)含量不利于物料的減量化,這主要是因?yàn)樵诙逊蔬^(guò)程中物料的木質(zhì)纖維素部分不易被微生物降解利用,進(jìn)而不利于堆體溫度的升高,這也是處理T3和T4的高溫期持續(xù)時(shí)間和所達(dá)到的最高溫度均優(yōu)于處理T1和T2(圖2)的主要原因。這就表明物料中的高木質(zhì)纖維素含量會(huì)提高堆肥中穩(wěn)定化腐殖質(zhì)的含量,從而提高堆肥的附加價(jià)值,這對(duì)于發(fā)展低碳化堆肥技術(shù),實(shí)現(xiàn)堆肥的有效資源化利用具有重要意義。
圖3 堆肥進(jìn)程中物料損失率Fig.3 Matter loss rate during composting
2.1.3 有機(jī)質(zhì)降解和CO2排放
好氧生物堆肥的本質(zhì)就是微生物利用空氣中的O2降解物料中的有機(jī)質(zhì),釋放CO2和水的過(guò)程。不同處理中有機(jī)質(zhì)含量變化均呈現(xiàn)出穩(wěn)定降低的趨勢(shì),變化曲線的斜率隨堆肥時(shí)間的延長(zhǎng)緩慢降低(圖4a),從開始至第3天快速降解,第3天后降解速率開始降低,第6天后變化趨于平緩,這說(shuō)明激烈的降解反應(yīng)主要在堆肥的前6 d發(fā)生,尤其是前3 d,熱量的累積快速地提高了物料的溫度,因此堆肥高溫期出現(xiàn)在前3 d。有機(jī)質(zhì)損失率[26]表現(xiàn)為T3(58.79%)>T4(52.91%)>T2(39.68%)>T1(34.85%)。
圖4 堆肥過(guò)程中有機(jī)質(zhì)降解和CO2累積排放量Fig.4 Organic matter degradation and cumulative emission amount of CO2during composting
CO2累積排放量如圖4b所示,模擬曲線符合第一級(jí)動(dòng)力學(xué)方程,曲線的相關(guān)系數(shù)均在0.9以上(P<0.05),表明堆肥過(guò)程正常進(jìn)行,且CO2累積釋放量先后表現(xiàn)為快速指數(shù)增長(zhǎng)和緩慢增加。不同處理二氧化碳最終累積量表現(xiàn)為:T3>T1>T4>T2。
物料中的有機(jī)質(zhì)被好氧微生物降解,完全降解會(huì)釋放出CO2和水,即為有機(jī)質(zhì)的礦化過(guò)程。因此由圖4的有機(jī)質(zhì)和二氧化碳變化過(guò)程可以發(fā)現(xiàn),隨有機(jī)質(zhì)含量的逐漸降低,CO2累積量逐漸增加。但二者的關(guān)系并不是線性負(fù)相關(guān)關(guān)系,因?yàn)閺亩逊氏到y(tǒng)內(nèi)向系統(tǒng)外釋放的二氧化碳總量除了受有機(jī)質(zhì)降解總量影響外,還會(huì)受到堆肥環(huán)境中其他因素的影響[27],如有機(jī)質(zhì)降解產(chǎn)生的代謝產(chǎn)物可通過(guò)微生物的再次合成形成腐殖質(zhì)[28],或堆肥系統(tǒng)的理化條件會(huì)對(duì)二氧化碳的逸出時(shí)間產(chǎn)生影響。T3中有機(jī)質(zhì)降解總量最高,且堆肥過(guò)程中結(jié)構(gòu)始終良好,故二氧化碳釋放速率始終高于其他處理,總釋放量最高。這可能是由后期的理化條件改變等因素造成有機(jī)質(zhì)并未完全降解,溫度變化也證實(shí)了這一點(diǎn)。T1的表現(xiàn)與之相反,因其易降解有機(jī)質(zhì)含量低,堆肥過(guò)程的前5 d中,二氧化碳釋放速率和有機(jī)質(zhì)降解量不高,熱量累積低于其他處理,故溫度較低。堆肥結(jié)束時(shí),有機(jī)質(zhì)損失量最少,但二氧化碳累計(jì)釋放量高,這表明物料中的有機(jī)質(zhì)被完全降解為水和二氧化碳,腐殖化水平低[28]。
2.1.4 pH值和EC
一般微生物最適宜的pH值范圍為8~9[29],pH值太高或太低都會(huì)使堆肥處理遇到困難。本試驗(yàn)中pH值變化如圖5a所示,各處理堆肥起始pH值為弱堿性,堆肥開始后各處理的pH值迅速上升,自第2天開始已超出微生物活動(dòng)的最適范圍,這必然會(huì)影響微生物對(duì)物料中有機(jī)質(zhì)的降解。初始物料中易降解有機(jī)質(zhì)含量的增加加速了堆肥過(guò)程中的pH值變化,可能是由于易降解有機(jī)質(zhì)含量的增加加速了微生物對(duì)含氮物質(zhì)的降解[30],從而改變了pH值的變化趨勢(shì)。自堆肥第6天開始,上升速率變慢,到30 d堆肥結(jié)束時(shí),各處理的pH值分別由初始的8.65、8.85、8.93、8.96上升到了9.37、9.42、9.63、9.77。此外,堆肥主物料黃瓜秧的pH值偏高也是造成堆肥pH值高的重要因素,因此低pH值也應(yīng)是選擇黃瓜秧堆肥所用添加劑的條件之一。
圖5 堆肥過(guò)程中pH值和電導(dǎo)率Fig.5 pH value and electrical conductivity during composting
電導(dǎo)率(EC)反映了堆肥浸提液中的離子總濃度,即可溶性鹽的含量[31],堆肥中的可溶性鹽主要包括有機(jī)鹽和無(wú)機(jī)鹽,對(duì)植物有一定的危害,用于農(nóng)田的堆肥產(chǎn)品電導(dǎo)率不宜過(guò)大,否則會(huì)影響植物的正常生長(zhǎng)[32],因此EC是判斷堆肥腐熟的必要條件。研究表明,當(dāng)堆肥EC值小于9 mS/cm時(shí),對(duì)種子發(fā)芽沒有抑制作用[33]。如圖5b所示,隨堆肥的進(jìn)行,EC值呈現(xiàn)出先上升,至第20天后緩慢下降的趨勢(shì)。物料中易降解有機(jī)質(zhì)含量不會(huì)影響EC值的變化趨勢(shì),但會(huì)影響其增加程度,當(dāng)易降解有機(jī)質(zhì)高于45%時(shí),EC值的變化幅度顯著增加,這與T3 和T4處理中的有機(jī)質(zhì)被大量降解(圖4a)密不可分。
2.1.5 發(fā)芽率指數(shù)
未腐熟堆肥中含有多種植物毒性物質(zhì),對(duì)種子的萌發(fā)和植物的生產(chǎn)產(chǎn)生抑制作用。因此發(fā)芽率指數(shù)(GI)是最可靠、有效和最能直接反應(yīng)堆肥的生物毒性、判斷堆肥無(wú)害化和腐熟度的重要指標(biāo),一般認(rèn)為GI>50%,即可認(rèn)為堆肥基本無(wú)毒性[34]。如圖 6 所示,物料易降解有機(jī)質(zhì)含量的差異會(huì)明顯影響堆體初始的GI值,含量越低,GI值越低。隨著堆肥時(shí)間的增加,微生物降解物料中易被降解的有機(jī)質(zhì),減少抑制種子萌發(fā)的生物毒性物質(zhì),不同處理的GI值基本都呈現(xiàn)出逐漸增大的趨勢(shì),到第10天后,變化趨勢(shì)減緩,除T4處理外,其余處理GI值均已達(dá)到50%以上,堆肥基本無(wú)毒性。第10天之后,GI值緩慢增大,除處理T4外,最終GI值均達(dá)到70%以上。由此可見,堆肥易被微生物降解利用的有機(jī)質(zhì)比例增加會(huì)促進(jìn)溫度升高,但同時(shí)也增加了抑制種子萌發(fā)的生物毒性物質(zhì),隨堆肥進(jìn)行,部分生物毒性物質(zhì)逐漸被降解,但仍對(duì)種子萌發(fā)具有一定的抑制作用,產(chǎn)品腐熟度也受此影響。尤其對(duì)于由前面分析可能存在局部厭氧現(xiàn)象的T4處理,堆肥產(chǎn)品并未達(dá)到腐熟標(biāo)準(zhǔn)。因此,在堆肥過(guò)程中,易降解有機(jī)質(zhì)的比例不應(yīng)該高于物料的45%。
圖6 堆肥過(guò)程中發(fā)芽率指數(shù)變化Fig.6 Germination index variation during composting
2.2 氨氣揮發(fā)及氮素?fù)p失率
研究表明,堆肥化過(guò)程中有機(jī)物的降解會(huì)產(chǎn)生大量銨態(tài)氮,在高溫及高pH值作用下,這些銨態(tài)氮以氨氣形式揮發(fā)[35],造成大量的氮素?fù)p失。本試驗(yàn)中隨堆肥進(jìn)行氨氣的釋放速率及累積量如圖7a,7b所示。氨氣揮發(fā)高峰期為堆肥過(guò)程的第 8 ~12天,釋放高峰期內(nèi)不同處理的釋放速率差異顯著,T3和T4遠(yuǎn)遠(yuǎn)高于其他處理,這是由T3和T4的高溫(圖2)和高pH值(圖5a)決定的。氨氣釋放高峰期與高溫期存在時(shí)間間隔,表明氨氣釋放受到溫度和理化條件的共同作用。T3和T4的高氨氣釋放速率必然會(huì)造成其高氨氣釋放累積量(圖7b),T3中氨氣累計(jì)釋放量(380.29 mg)顯著高于其他處理,這是多重因素共同作用造成的:一方面,淀粉可直接被微生物利用,而尿素需轉(zhuǎn)化成銨態(tài)氮才能被微生物利用,所以碳氮利用存在時(shí)間差造成代謝不平衡,增加了T3的氨氣損失。而面對(duì)同樣問(wèn)題的T4中,隨堆肥進(jìn)行結(jié)構(gòu)性逐漸變差,物料結(jié)塊,局部厭氧,反而減少了氨氣的逸失;另一方面,木質(zhì)纖維素含量的差異必然會(huì)影響堆肥過(guò)程中微生物種類組成的差異,而已有研究表明,木質(zhì)纖維素降解菌的增加會(huì)增加堆肥中的氨氧化細(xì)菌數(shù)量,增加amoA基因型氨氧化細(xì)菌的多樣性[36],同時(shí)改變?cè)械奈⑸锶郝浣Y(jié)構(gòu),這很可能從另一方面影響堆肥中氮素的轉(zhuǎn)化和氨氣的逸失。除此之外,木質(zhì)纖維素還會(huì)影響堆體的pH值,這些都會(huì)影響氨氣的逸失。
圖7 堆肥過(guò)程中NH3排放速率,NH3累積排放量及氮素?fù)p失Fig.7 Emission rate and cumulative emission of NH3,and nitrogen loss during composting
不同處理的氮素?fù)p失情況如圖7c所示,易降解有機(jī)質(zhì)的比例會(huì)顯著影響氮素的損失,直到比例為45%,增加趨勢(shì)變緩,僅由35.07%(T3)升為36.01%(T4)。而T3的氨氮損失最大,占總氮損失量的15.48%,可能是因?yàn)門4的物料結(jié)構(gòu)隨堆肥進(jìn)行發(fā)生了變化,造成局部厭氧,氮素以N2O或其他形式損失的部分增加,或由于對(duì)硝化細(xì)菌和反硝化細(xì)菌活性產(chǎn)生影響造成[36]。Yang等[37]在廚余垃圾的好氧堆肥過(guò)程的研究成果中表明,以氨氣形式損失的氮素占總氮損失量的28.16%,以N2O形式損失的氮素僅占總氮損失量的 4 .16%,其他形式損失占60%以上。類似的成果也可在 N igussie等[38]的研究中發(fā)現(xiàn),好氧堆肥中以N2O形式損失的氮素量(<1%)遠(yuǎn)遠(yuǎn)低于以氨氣等其他形式損失的氮素(38%~64%),Beck-Friis等[39]則指出在以氣體形式損失的氮素中,NH4-N占98%,而N2O-N僅占不到2%。對(duì)比本試驗(yàn)的結(jié)果,氨氣損失氮素比例的檢測(cè)結(jié)果為9%~15.48%,這可能與堆肥翻堆等造成的氣體損失會(huì)降低檢測(cè)到的氨氣總量有關(guān),故堆肥實(shí)際氨氣逸失量會(huì)略高于堆肥的檢測(cè)值,所以在本試驗(yàn)中氨氣仍是以氣體形式損失的氮素的主要形態(tài),而T3由氨氣釋放造成的氮素?fù)p失最多。
本試驗(yàn)的結(jié)果還表明,提高木質(zhì)纖維素的比例可以通過(guò)影響微生物活性和堆體環(huán)境中的理化性質(zhì)而減少氮素的損失,因此可考慮在保證滿足快速高溫堆肥所需的易被微生物利用的糖和淀粉等易降解的有機(jī)質(zhì)含量的基礎(chǔ)上,額外添加木質(zhì)纖維素類添加劑,改良堆肥的理化條件,控制氮素?fù)p失。
初始混合物料中易降解有機(jī)質(zhì)的含量為45%時(shí)最利于堆肥起爆和高溫的實(shí)現(xiàn),最高溫度可達(dá)71.4 ℃,但由此造成的氮素?fù)p失量高。而木質(zhì)纖維素類物質(zhì)對(duì)于減少堆肥中氨氣的釋放和氮素的損失具有良好的作用。因此,為實(shí)現(xiàn)高溫滅活病原菌,應(yīng)調(diào)控易降解有機(jī)質(zhì)的質(zhì)量分?jǐn)?shù)為45%,同時(shí)額外添加不易被微生物利用的木質(zhì)纖維素類膨脹劑,改良物料理化性質(zhì)和物理結(jié)構(gòu),減少堆肥過(guò)程中的氮素?fù)p失,實(shí)現(xiàn)高溫低氮損失的堆肥工藝,為工業(yè)化生產(chǎn)提供理論基礎(chǔ)和工藝支持。
[1] Food and Agriculture Organization of the United Nations. 2014. Statistics at FAO[EB/OL]. [2015-11-10]. http://www. fao.org/economic/ess/ess-publications/ess-yearbook/en/#.WF EG5IVOI2w
[2] 韓雪,常瑞雪,杜鵬祥,等. 不同蔬菜種類的產(chǎn)廢比例及性狀分析[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2015,32(4):377-382. Han Xue,Chang Ruixue,Du Pengxiang,et al. The straw coefficient and properties of vegetable wastes[J]. Journal of Agricultural Resources and Environment,2015,32(4):377-382.(in Chinese with English abstract)
[3] 孫向平,李國(guó)學(xué),肖愛平,等. 添加不同比例玉米秸稈對(duì)豬糞高溫堆肥過(guò)程中胡敏酸的結(jié)構(gòu)組成及紅外光譜特性影響分析[J]. 光譜學(xué)與光譜分析,2014,34(9):2413-2418. Sun Xiangping,Li Guoxue,Xiao Aiping,et al. Analysis on the impact of composting with different proportions of corn stalks and pig manure on humic acid fractions and IR spectral Feature[J]. Spectroscopy and Spectral Analysis,2014,34(9):2413-2418.(in Chinese with English abstract)
[4] 代學(xué)民,龔建英,南國(guó)英,等. 辣椒秧-玉米秸稈高溫堆肥無(wú)害化研究[J]. 河南農(nóng)業(yè)科學(xué),2015,44(2):66-70. Dai Xuemin,Gong Jianying,Nan Guoying,et al. Harmless research on high temperature composting of Chili stalk and corn straw[J]. Journal of Henan Agricultural Sciences,2015,44(2):66-70.(in Chinese with English abstract)
[5] 杜鵬祥,韓雪,高杰云,等. 我國(guó)蔬菜廢棄物資源化高效利用潛力分析[J]. 中國(guó)蔬菜,2015(7):15-20. Du Pengxiang,Han Xue,Gao Jieyun,et al. Analysis of the potential fertilizer utilization of vegetable waste in China[J].China Vegetables,2015(7):15-20.(in Chinese with English abstract)
[6] 高定,張軍,陳同斌,等. 好氧生物堆肥過(guò)程中有機(jī)質(zhì)降解模型的研究進(jìn)展[J]. 中國(guó)給水排水,2010,26(11):153-156. Gao Ding,Zhang Jun,Chen Tongbin,et al. Research progress in mathematical model of organic matter biodegradation in aerobic composting process[J]. China Water and Wastewater,2010,26(11):153-156.(in Chinese with English abstract)
[7] Mohee R,White R K,Das K C. Simulation model for composting cellulosic(bagasse) substrates[J]. Compost Science &Utilization,1998,6(2):82-92.
[8] Lin Y P,Huang G H,Lu H W,et al. Modeling of substrate degradation and oxygen consumption in waste composting processes[J]. Waste Management,2008,28(8):1375-1385.
[9] Kaiser J. Modelling composting as a microbial ecosystem:A simulation approach[J]. Ecological modelling,1996,91(1):25-37.
[10] Doublet J,Francou C,Poitrenaud M,et al. Influence of bulking agents on organic matter evolution during sewage sludge composting;consequences on compost organic matter stability and N availability[J]. Bioresource Technology,2011,102(2):1298-1307.
[11] 楊延梅. 通風(fēng)量對(duì)廚余堆肥氮素轉(zhuǎn)化及氮素?fù)p失的影響[J]. 環(huán)境科學(xué)與技術(shù),2010,33(12):1-4,19. Yang Yanmei. Influence of ventilation on nitrogen transformation and loss during composting of kitchen waste[J]. Environmental Science and Technology,2010,33(12):1-4,19.(in Chinese with English abstract)
[12] De Guardia A,Mallard P,Teglia C,et al. Comparison of five organic wastes regarding their behavior during composting:Part 2,nitrogen dynamic[J]. Waste Management,2010,30(3):415-425.
[13] Jiang T,Schuchardt F,Li G,et al. Effect of C/N ratio,aeration rate and moisture content on ammonia and greenhouse gas emission during the composting[J]. Journal of Environmental Sciences,2011,23(10):1754-1760.
[14] 黃向東,韓志英,石德智,等. 畜禽糞便堆肥過(guò)程中氮素的損失與控制[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(1):247-254. Huang Xiangdong,Han Zhiying,Shi Dezhi,et al. Nitrogen loss and its control during livestock manure composting[J]. Chinese Journey of Applied Ecology,2010,21(1):247-254.(in Chinese with English abstract)
[15] 熊建軍,劉淑英,鄒國(guó)元,等. 秸稈不同用量對(duì)污泥堆肥保氮效果研究. 土壤通報(bào),2010,41(1):175-178. Xiong Jianjun,Liu Shuying,Zou Guoyuan,et al. Effect of different straw doses on nitrogen preserving during sludge composting[J]. Chinese Journal of Soil Science,2010,41(1):175-178.(in Chinese with English abstract)
[16] Eklind Y,Kirchmann H. Composting and storage of organic household waste with different litter amendments. II:Nitrogen turnover and losses[J]. Bioresource Technology,2000,74(2):125-133.
[17] Liang Y,Leonard J J,Feddes J J R,et al. Influence of carbon and buffer amendment on ammonia volatilization in composting[J]. Bioresource Technology,2006,97(5):748-761.
[18] Mondini C,Sánchez-Monedero M A,Sinicco T,et al. Evaluation of extracted organic carbon and microbial biomass as stability parameters in ligno-cellulosic waste composts[J]. Journal of Environmental Quality,2006,35(6):2313-2320.
[19] 常瑞雪,甘晶晶,陳清,等. 碳源調(diào)理劑對(duì)黃瓜秧堆肥進(jìn)程和碳氮養(yǎng)分損失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊2):254-259. Chang Ruixue,Gan Jingjing,Chen Qing,et al. Effect of carbon resources conditioner on composting process and carbon and nitrogen loss during composting of cucumber stalk[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(Suppl 2):254-259.(in Chinese with English abstract)
[20] 龔建英,田鎖霞,王智中,等. 微生物菌劑和雞糞對(duì)蔬菜廢棄物堆肥化處理的影響[J]. 環(huán)境工程學(xué)報(bào),2012,6(8):2813-2817. Gong Jianying,Tian Suoxia,Wang Zhizhong,et al. Effect of inoculation and poultry dung on composting of vegetable residues[J]. Chinese Journal of Environmental Engineering,2012,6(8):2813-2817.(in Chinese with English abstract)
[21] 李紅亞,李術(shù)娜,王樹香,等. 解淀粉芽孢桿菌MN-8對(duì)玉米秸稈木質(zhì)纖維素的降解[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(5):1404-1410. Li Hongya,Li Shuna,Wang Shuxiang,et al. Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8.[J]. Journal of Applied Ecology,2015,26(5):1404-1410.(in Chinese with English abstract)
[22] Bhargava K S. Some properties of four strains of cucumber mosaic virus[J]. Annals of Applied Biology,1951,38(2):377-388.
[23] Day M,Shaw K. Compost Utilization in Horticultural Cropping Systems[M]. Boca Raton,FL,USA:Lewis Publishers,2001.
[24] Richard T L,Walker L P,Gossett J M. Effects of oxygen on aerobic solid-state biodegradation kinetics[J]. Biotechnology progress,2006,22(1):60-69.
[25] Verstraete W,Philips S. Nitrification-denitrification processes and technologies in new contexts[J]. Environmental pollution,1998,102(1):717-726.
[26] Bernal M P,Navarro A F,Roig A,et al. Carbon and nitrogen transformation during composting of sweet sorghum bagasse[J]. Biology and Fertility of Soils,1996,22(1):141-148.
[27] Drury C F,Reynolds W D,Yang X M,et al. Influence of compost source on corn grain yields,nitrous oxide and carbon dioxide emissions in southwestern Ontario[J]. Canadian Journal of Soil Science,2014,94(3):347-355.
[28] 高凌飛,王義祥,葉菁,等. 堆肥過(guò)程中碳,氮轉(zhuǎn)化與溫室氣體排放研究進(jìn)展[J]. 福建農(nóng)業(yè)學(xué)報(bào),2014,29(8):803-814. Gao Lingfei,Wang Yixiang,Ye Jing,et al. Process on carbon and nitrogen transformation and greenhouse gas emission in composting[J]. Fujian Journal of Agricultural Sciences,2014,29(8):803-814.(in Chinese with English abstract)
[29] 劉衛(wèi)星,顧金剛,姜瑞波,等. 有機(jī)固體廢棄物堆肥的腐熟度評(píng)價(jià)指標(biāo)[J]. 土壤肥料,2005(3):3-7. Liu Weixing,Gu Jingang,Jiang Ruibo,et al. The maturity evaluating indexes of organic solid waste compost[J]. Soil fertilizer,2005(3):3-7.(in Chinese with English abstract)
[30] 李少明,湯利,范茂攀,等. 不同微生物腐熟劑對(duì)煙末高溫堆肥腐熟進(jìn)程的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2008,27(2):783-786. Li Shaoming,Tang Li,Fan Maopan,et al. Effect of different microbial blends on high temperature composting maturity process of tobacco fine waste[J]. Journal of Agro-Environment Science,2008,27(2):783-786.(in Chinese with English abstract)
[31] 牟克珺. 不同調(diào)理劑及堆制條件對(duì)豬糞堆肥理化指標(biāo)的影響[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2008. Mou Kejun. The Effects of Different Conditioners and Composting Conditions on the Physicochemical Index of Pig Manure Compost[D]. Lanzhou:Gansu Agricultural University,2008.(in Chinese with English abstract)
[32] 王順利,許廷武,王愛偉,等. 雞糞槽式動(dòng)態(tài)堆肥物料理化性質(zhì)變化研究[J]. 江蘇農(nóng)業(yè)科學(xué),2007(3):219-222. Wang Shunli,Xu Tingwu,Wang Aiwei,et al. Study on physico-chemical properties change of material during dynamic tough composting of chicken manure[J]. Jiangsu Agricultural Science,2007(3):219-222.(in Chinese with English abstract)
[33] Rüttimann-Johnson C,Lamar R T. Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi[J]. Soil Biology and Biochemistry,1997,29(7):1143-1148.
[34] Zucconi F,Monaco A,Debertoldi M. Biological evaluation of compost maturity[J]. Biocycle,1981,22(4):27-29.
[35] 江滔,Schuchardt F,李國(guó)學(xué). 冬季堆肥中翻堆和覆蓋對(duì)溫室氣體和氨氣排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(10):212-217. Jiang T,Schuchardt F,Li G. Effect of turning and covering on greenhouse gas and ammonia emissions during the winter composting[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,27(10):212-217.
[36] 徐瑩瑩. 接種菌劑對(duì)牛糞堆肥硝化和反硝化細(xì)菌群落影響的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2015. Xu Yingying. Effects of Microbial Inoculants on Nitrifying and Denitrifying Bacteria Community in Manure Compost[D]. Harbin:Northeast Agricultural University,2015.(in Chinese with English abstract)
[37] Yang F,Li G,Shi H,et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management,2015,36:70-76.
[38] Nigussie A,Bruun S,Kuyper T W,et al. Delayed addition of nitrogen-rich substrates during composting of municipal waste:Effects on nitrogen loss,greenhouse gas emissions and compost stability[J]. Chemosphere,2017,166:352-362.
[39] Beck-Friis B,Smars S,J?nsson H,et al. Gaseous emissions of carbon dioxide,ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes[J]. Journal of agricultural engineering research,2001,78(4):423-430.
Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine
Chang Ruixue,Wang Qian,Gan Jingjing,Li Yanming※
(College of Resources and Environmental Sciences,China Agricultural University,Beijing 100193,China)
In China,vegetable growing area and production have increased rapidly in order to satisfy the increasing demand for vegetable and benefit,which must be accompanied by more vegetable wastes and are hard to be treated nowadays,for shortage of technologies of circular utilization without hazardous risk. The vegetable wastes without treatment must result in environmental pollution and safety risk,especially for cucumber,one of the major vegetables in China. The study was undertaken to investigate the effects of easily-degraded organic matter content(27%(T1),36%(T2),45%(T3),51%(T4)) on maturity process and nitrogen loss during composting of cucumber vine in lab-scale airtight composting system,with the same mixed material weight,C/N ratio of 25,material moisture content of 60%,using the carbon additive corn stover and corn starch,and the nitrogen additive urea,and analyzed temperature,matter loss,organic matter,CO2emission,pH value,EC(electrical conductivity),GI(germination index),NH3emission rate and accumulation,nitrogen loss rate during the maturity process. Results indicated that along with the increase of easily-degraded organic matter content in raw material,the highest temperature in different treatments showed firstly increased and then decreased,while higher pH value,EC,and lower GI were shown together with the easily-degraded organic matter content increasing,which meant the easily-degraded organic matter content should not be too high and no more than 45% was better for higher temperature and maturity. The highest temperature(71.4 ℃) was shown in treatment T3,with more CO2accumulation,which meant this condition was better for reducing the heating time and making no-hazardous product. However,the increase of easily-degraded organic matter content resulted in more nitrogen loss,especially more ammonia emission. The most ammonia emission was shown in T3(380.29 mg),and the most nitrogen loss rate in T4(36.01%),suggesting that the lignocellulose would help to reduce the ammonia emission and nitrogen loss. In summary,the ratio of 45% in mixed material for easily-degraded organic matter content is a better condition for higher composting temperature to make no-hazardous product and no influence on maturity of the product,but accompanied by higher ammonia emission and nitrogen loss rate. So with the aim to reach high temperature and low nitrogen loss during composting,additional lignocellulose input together with the 45% easily-degraded organic matter content in the material could effectively improve the composting technology,but it needs to be certified by experiment in the future.
composting;organic matter;nitrogen;cucumber vine;easily-degraded organic matter;maturity;NH3;nitrogen loss
10.11975/j.issn.1002-6819.2017.01.032
X712
A
1002-6819(2017)-01-0231-07
常瑞雪,王 騫,甘晶晶,李彥明. 易降解有機(jī)質(zhì)含量對(duì)黃瓜秧堆肥腐熟和氮損失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):231-237.
10.11975/j.issn.1002-6819.2017.01.032 http://www.tcsae.org
Chang Ruixue,Wang Qian,Gan Jingjing,Li Yanming. Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):231-237.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.01.032 http://www.tcsae.org
2016-04-01
2016-11-15
“十二五”農(nóng)村領(lǐng)域國(guó)家科技計(jì)劃課題:以都市農(nóng)業(yè)為支撐的大學(xué)農(nóng)業(yè)科技服務(wù)關(guān)鍵技術(shù)集成與示范(2013BAD20B01);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng):“蔬菜副產(chǎn)物綜合利用技術(shù)研究與示范(201303079)”
常瑞雪,博士生,研究方向?yàn)橛袡C(jī)廢物處理與資源高效循環(huán)利用。北京 中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,100193。Email:changrui.xue@163.com
※通信作者:李彥明,博士,副教授,碩士生導(dǎo)師,專業(yè)方向?yàn)橛袡C(jī)廢物高效循環(huán)利用與政策研究。北京 中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,100193。E-mail:liym@cau.edu.cn