劉 鍇,習(xí) 崗,賀瑞瑞,余寧梅
(1. 西安理工大學(xué)理學(xué)院應(yīng)用物理系,西安 710054;2. 西安理工大學(xué)自動(dòng)化與信息工程學(xué)院,西安 710048)
滲透脅迫下玉米葉片電位波動(dòng)邊際譜的變化與意義
劉 鍇1,習(xí) 崗1,賀瑞瑞1,余寧梅2
(1. 西安理工大學(xué)理學(xué)院應(yīng)用物理系,西安 710054;2. 西安理工大學(xué)自動(dòng)化與信息工程學(xué)院,西安 710048)
植物葉片電位波動(dòng)是來自于活細(xì)胞的生命信息。為了解讀植物葉片電位波動(dòng)的頻譜特征及其意義,該文采用HHT(Hilbert-Huang transform)方法研究了滲透勢(shì)為-0.1 MPa的滲透脅迫下玉米幼苗葉片電位波動(dòng)邊際譜的變化規(guī)律及其意義,計(jì)算了邊際譜特征參數(shù)邊緣頻率SEF(spectral edge frequency)、重心頻率SCF(spectral center frequency)、邊際譜熵MSE(marginal spectrum entropy)和動(dòng)作電位靈敏指數(shù)Q。結(jié)果表明,玉米幼苗葉片電位波動(dòng)的邊際譜是分布在0.5 Hz以內(nèi)的連續(xù)譜,在滲透脅迫下,SEF和SCF呈現(xiàn)出先減小后增加再減小的變化趨勢(shì),動(dòng)作電位靈敏指數(shù)Q的變化與之相反,MSE表現(xiàn)出先增加再下降的變化趨勢(shì)。通過與葉片生理指標(biāo) M DA(malondialdehyde)和葉綠素含量變化的對(duì)比研究,發(fā)現(xiàn)MSE的峰值時(shí)間可以作為葉片細(xì)胞對(duì)滲透脅迫自我調(diào)節(jié)和適應(yīng)性反應(yīng)限度的標(biāo)志,Q值的大小可以作為玉米葉片細(xì)胞對(duì)滲透脅迫反應(yīng)靈敏度的標(biāo)志,依據(jù)滲透脅迫下玉米幼苗葉片電位波動(dòng)邊際譜特征參數(shù)的變化,有可能對(duì)玉米葉片細(xì)胞的功能狀態(tài)進(jìn)行實(shí)時(shí)、在位和無損傷檢測(cè)。
作物;滲透;脅迫;玉米;電位波動(dòng);邊際譜;Hilbert-Huang transform
植物葉片電位波動(dòng)起源于葉片細(xì)胞中離子跨膜運(yùn)輸引起的膜電位的變化,還與細(xì)胞之間的電偶聯(lián)有關(guān),解讀葉片電位波動(dòng)所隱含的生命信息對(duì)于研究植物的信號(hào)傳導(dǎo)、抗逆性評(píng)價(jià)、生態(tài)與環(huán)境監(jiān)測(cè)、生長(zhǎng)調(diào)節(jié)以及精準(zhǔn)農(nóng)業(yè)等許多領(lǐng)域都具有重要意義[1-5]。
但是,植物葉片電位波動(dòng)具有振幅不斷變化的非平穩(wěn)特征[1,6-7],如何分析貌似無序的葉片電位波動(dòng)的規(guī)律及意義是一個(gè)難點(diǎn)。研究發(fā)現(xiàn),雖然植物葉片電位波動(dòng)的振幅隨機(jī)變化,其頻譜分布是連續(xù)和穩(wěn)定的[4,8]。因此,分析植物葉片電位波動(dòng)的頻譜特征及其變化規(guī)律有可能為應(yīng)用研究打開一個(gè)門徑。
HHT(Hilbert-Huang transform,HHT)是以希爾伯特變換為基礎(chǔ)的一種新的信號(hào)處理方法,該方法能夠根據(jù)信號(hào)特點(diǎn)自適應(yīng)分解非線性非平穩(wěn)信號(hào),得到準(zhǔn)確的譜結(jié)構(gòu)[9-10],特別適合植物葉片電位波動(dòng)的研究。由HHT方法獲得的信號(hào)在頻域上的分布稱邊際譜[11],研究邊際譜的性質(zhì)和規(guī)律對(duì)于揭示植物葉片電位波動(dòng)的頻譜特征及其應(yīng)用具有重要意義。
滲透脅迫是植物遭遇的最基本的環(huán)境脅迫之一,干旱、鹽堿和低溫冷害等環(huán)境脅迫都會(huì)造成滲透脅迫,研究植物對(duì)滲透脅迫的反應(yīng)具有普遍意義。有鑒于此,本文以玉米為材料,通過聚乙二醇(polyethylene glycol,PEG)溶液對(duì)玉米幼苗形成滲透脅迫,建立基于HHT的植物葉片電位波動(dòng)邊際譜的特征參數(shù)體系,研究了滲透脅迫下玉米葉片電位波動(dòng)邊際譜的變化規(guī)律。同時(shí),通過與葉片中丙二醛(malondialdehyde,MDA)和葉綠素含量變化的對(duì)比分析,揭示植物葉片電位波動(dòng)邊際譜特征參數(shù)與葉片細(xì)胞功能狀態(tài)之間的對(duì)應(yīng)關(guān)系,為植物葉片電位波動(dòng)的應(yīng)用研究提供參考。
1.1 材料選擇與培養(yǎng)
玉米品種吉祥為種子市場(chǎng)上購得。挑選顆粒飽滿、外觀一致的玉米種子 5 00粒,用蒸餾水洗掉表面農(nóng)藥包衣,以0.2% HgCl2消毒后再以蒸餾水清洗,均勻放置在培養(yǎng)皿中,加適量蒸餾水后,將各組樣品放入PRX-1000A型智能人工氣候箱(杭州得聚儀器設(shè)備有限公司)中,在溫度28℃、濕度45%~50%的環(huán)境下浸泡、催芽。種子出芽后挑選發(fā)芽一致的種子300粒移植到培養(yǎng)槽中,每天加入適量蒸餾水,維持其正常生長(zhǎng)。玉米長(zhǎng)至三片真葉后去除培養(yǎng)槽中的水分。選取長(zhǎng)勢(shì)較好的 3 株玉米幼苗,參照文獻(xiàn)的方法[12],在培養(yǎng)槽中加入滲透勢(shì)為-0.1 MPa的PEG-6000溶液,分別在滲透脅迫后0、1、2、3和4 d時(shí)測(cè)量葉片的表面電位。
1.2 玉米葉片電位波動(dòng)的采集
參照文獻(xiàn)[4,8]的方法采集樣品的葉片表面電位,采集儀器為BL420S生物機(jī)能試驗(yàn)系統(tǒng),該系統(tǒng)具備高輸入阻抗(>1010?)、高共模抑制比(>120 dB)和低噪聲(<1 μV)、低漂移等特點(diǎn),大量試驗(yàn)表明[4,8],該系統(tǒng)可以準(zhǔn)確的采集植物葉片的電位波動(dòng)信號(hào)。測(cè)試電極采用丹麥 Ambu公司生產(chǎn)的 P-00-S型醫(yī)用高靈敏度Ag/AgCl心電電極,該電極采用液態(tài)導(dǎo)電膠,對(duì)葉片無傷害,靈敏度高,噪聲小。電極導(dǎo)電膠直徑14 mm。試驗(yàn)之前對(duì)電極進(jìn)行的測(cè)試表明,溫度在 2 0~45℃范圍內(nèi)變化時(shí),電極采集到的0~50 Hz頻段內(nèi)的信號(hào)波動(dòng)幅度小于0.5%,表明電極的穩(wěn)定性好[4,8]。測(cè)量電位信號(hào)時(shí),將玉米放入自制的法拉第籠內(nèi)以屏蔽電磁干擾。一片采集電極貼于玉米葉片正面靠近葉尖位置,另一片采集電極貼于玉米葉片反面根部位置,電極間距15 cm,參考電極通過導(dǎo)線直接連接至培養(yǎng)槽中放置的銅片上。試驗(yàn)設(shè)置的采樣頻率為2 kHz,開啟50 Hz工頻抑制。環(huán)境溫度為28℃,濕度為45%~50%,光照強(qiáng)度為5 000 lx。分別在滲透脅迫0、1、2、3和4 d時(shí)采集同一植株固定葉片中的電位波動(dòng)信號(hào)。
1.3 MDA和葉綠素含量的測(cè)定
在上述采集植株葉片電位波動(dòng)信號(hào)的同時(shí),測(cè)量同批次脅迫處理的其他植株相同葉位的葉片中MDA和葉綠素含量。葉綠素含量的測(cè)量參照文獻(xiàn)[13],MDA含量的測(cè)量參考文獻(xiàn)[14]。每次測(cè)量均設(shè)3個(gè)重復(fù),取平均值,并做統(tǒng)計(jì)分析。
2.1 HHT方法
HHT方法包括經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition,EMD)和希爾伯特變換2個(gè)步驟。EMD分解是根據(jù)信號(hào)自身的特征,將非平穩(wěn)信號(hào)分解為有限個(gè)窄帶信號(hào),稱為本征模態(tài)函數(shù)IMF(intrinsic mode function)。所分解出來的各本征模態(tài)分量分別是原信號(hào)在不同時(shí)間尺度的特征信號(hào)。然后對(duì)分解出來的各本征模態(tài)IMF進(jìn)行希爾伯特變換,得到信號(hào)幅值的時(shí)頻分布,即希爾伯特譜。
為了解決模態(tài)混疊現(xiàn)象,Wu等[15]提出了集合經(jīng)驗(yàn)?zāi)B(tài)分解(ensemble empirical mode decomposition,EEMD),即通過在原始信號(hào)中加入不同尺度的白噪聲來解決模態(tài)混疊問題[16]。Yeh等[17]則采用正、負(fù)成對(duì)的形式向原信號(hào)中加入白噪聲,再分別進(jìn)行EMD分解的方法,消除重構(gòu)信號(hào)中殘余的輔助噪聲,稱互補(bǔ)集合經(jīng)驗(yàn)?zāi)B(tài)分解(complementary ensemble empirical mode decomposition,CEEMD)。
經(jīng)過CEEMD分解后,原始信號(hào) x(t)可表示為本征模態(tài)函數(shù)之和的形式:
式中ci(t)為IMF分量;rn(t)為殘余函數(shù)。
將分解得到的每個(gè)IMF分別應(yīng)用希爾伯特變換,構(gòu)造解析信號(hào)
式中si(t)是構(gòu)造的解析信號(hào),H[ci(t)]是第i階IMF分量ci(t)的希爾伯特變換,ai(t)是解析信號(hào)的幅度,θi(t)是解析信號(hào)的相位。于是
式中Re表示取實(shí)部,n為IMF函數(shù)個(gè)數(shù),ωi(t)是信號(hào)的瞬時(shí)頻率。展開式(3)中,信號(hào)的幅度ai(t)和瞬時(shí)頻率ωi(t)都是時(shí)間的函數(shù),H(ω,t)表示幅值隨頻率和時(shí)間的分布,稱之為希爾伯特譜。
由式(3)定義的邊際譜h(ω)為
式中H(ω,t)為希爾伯特譜。邊際譜提供了每一個(gè)頻率值所對(duì)應(yīng)的總幅度值(或總能量值),表征了整個(gè)信號(hào)序列跨度內(nèi)信號(hào)在每個(gè)頻率點(diǎn)上振幅(或能量)累積的分布情況,在頻率維度上反映電位波動(dòng)的特征。
2.2 邊際譜特征參數(shù)
為了定量描述邊際譜的特征,參照文獻(xiàn)[4]中信號(hào)功率譜特征參數(shù)的定義方法,定義邊際譜特征參數(shù)如下:
2.2.1 邊緣頻率(spectral edge frequency,SEF)
分布在0 Hz到該頻率值的信號(hào)幅值占所有頻率的信號(hào)總幅值的95%,單位為Hz,其給出了信號(hào)分布的頻率范圍。
2.2.2 重心頻率(spectral center frequency,SCF)
SCF的計(jì)算公式為
式中,f為信號(hào)的頻率,P(f)為該頻率信號(hào)的幅值,f1和f2為頻率范圍。SCF給出了信號(hào)幅值按頻率的分布重心。
2.2.3 邊際譜熵(marginal spectrum entropy,MSE)
MSE的定義為
式中N為 h(i)的序列長(zhǎng)度。MSE是邊際譜分布復(fù)雜性的量度,邊際譜越狹窄,MSE越小,表示信號(hào)中存在明顯的振蕩節(jié)律,復(fù)雜度?。环粗?,邊際譜越平坦,MSE越大,表明信號(hào)的復(fù)雜程度越高。
2.2.4 動(dòng)作電位靈敏指數(shù)
當(dāng)植物受到各種刺激時(shí),葉片中會(huì)出現(xiàn)動(dòng)作電位(action potential,AP),AP使葉片電位波動(dòng)發(fā)生變化,誘發(fā)細(xì)胞做出各種生理反應(yīng)[1,18]。因此,根據(jù)AP的出現(xiàn)可以判斷細(xì)胞對(duì)刺激反應(yīng)的靈敏程度。由于邊際譜中的尖峰來源于AP,根據(jù)邊際譜分布可以得到AP的幅值及其頻率??紤]到相同刺激下,不同個(gè)體產(chǎn)生AP的大小有所差異,其絕對(duì)值的大小并不能反映AP對(duì)環(huán)境反應(yīng)的靈敏程度,為了消除個(gè)體差異,定義動(dòng)作電位靈敏指數(shù)Q為:
以此表示AP對(duì)環(huán)境反應(yīng)的靈敏程度。式中,fM是邊際譜的峰值所對(duì)應(yīng)的頻率,P(f)是頻率為f的信號(hào)的幅值。
3.1 玉米葉片電位波動(dòng)的時(shí)域波形
將試驗(yàn)采集到的滲透脅迫0(CK)、1、2、3和4 d時(shí)的玉米幼苗葉片電位波動(dòng)信號(hào)分別截取前200 s,結(jié)果如圖1所示。由圖1可見,玉米葉片表面電位波動(dòng)的振幅隨時(shí)間變化,振幅波動(dòng)的幅度在500~1000 μV左右,具有非平穩(wěn)和隨機(jī)的特征,這種特征與先前報(bào)道的結(jié)果是一致的[4,8]。
圖1 玉米幼苗葉片電位波動(dòng)信號(hào)的時(shí)域波形Fig.1 Time domain waveform of potential fluctuations in maize seedling leaves
3.2 玉米葉片電位波動(dòng)邊際譜及其變化
基于HHT采用Matlab編寫程序可以計(jì)算出圖1中電位波動(dòng)的3D希爾伯特幅值譜和邊際譜,圖2給出了未受脅迫的對(duì)照組(CK)玉米葉片電位波動(dòng)的3D希爾伯特幅值譜和邊際譜。由圖2b可見,玉米葉片表面電位波動(dòng)邊際譜為連續(xù)譜,電位波動(dòng)的頻率主要分布在0.5 Hz以內(nèi)。采用邊緣頻率SEF和重心頻率SEF定量描述邊際譜的分布特征,對(duì)照組的SEF和SCF分別為0.486和0.142 Hz。
采用同樣方法可以計(jì)算出滲透脅迫過程中玉米葉片表面電位波動(dòng)的邊際譜的變化,結(jié)果見圖3,圖3中各邊際譜的SEF和SCF見圖4。由圖4可見,在開始滲透脅迫后玉米葉片表面電位波動(dòng)邊際譜的SEF下降,在脅迫1 d稍有回升,在脅迫2 d后持續(xù)下降。SCF的變化趨勢(shì)與SEF類似。由于邊際譜的SEF給出了電位波動(dòng)頻譜的分布范圍,SEF越小說明邊際譜分布越趨近于低頻段,表明細(xì)胞活動(dòng)受抑制越深;而SCF不僅反映信號(hào)邊際譜密度的分布情況,表明頻譜中分量較大的信號(hào)成分的頻率,還可以反映在不同條件下整個(gè)邊際譜的遷移情況。由此看來,隨著滲透脅迫的進(jìn)行,葉片細(xì)胞電位活動(dòng)中低頻分量的比例越來越大,細(xì)胞活性逐漸受到了抑制,細(xì)胞功能狀態(tài)變差。
圖2 對(duì)照組玉米葉片電位波動(dòng)的希爾伯特譜和邊際譜Fig.2 Hilbert amplitude spectrum and marginal spectrum of potential fluctuations in maize seedling leaves of control group
圖3 滲透脅迫下玉米幼苗葉片電位波動(dòng)的邊際譜Fig.3 Marginal spectrum of potential fluctuations in maize seedling leaves under osmotic stress
圖4 滲透脅迫下玉米幼苗葉片邊緣頻率(SEF)和重心頻率(SCF)的變化Fig.4 Changes of SEF(spectral edge frequency) and SCF(spectral center frequency)of potential fluctuations marginal spectrum in maize seedling leaves under osmotic stress
3.3 玉米幼苗葉片電位波動(dòng)邊際譜熵的變化
邊際譜熵MSE反映了邊際譜的復(fù)雜程度。我們?cè)谘芯恐邪l(fā)現(xiàn),玉米葉片電位信號(hào)的MSE與信號(hào)時(shí)長(zhǎng)有關(guān),為了確定能夠獲取穩(wěn)定熵值的信號(hào)時(shí)長(zhǎng),從每天采集得到的葉片電位信號(hào)中,隨機(jī)截取10段某一固定時(shí)長(zhǎng)的信號(hào),分別計(jì)算每一段信號(hào)的 M SE,然后求取 1 0段信號(hào)MSE的平均值和標(biāo)準(zhǔn)偏差。固定時(shí)長(zhǎng)分別取40、80、120、160、200和240 s。圖5為不同脅迫時(shí)間下,邊際譜熵的平均值及其標(biāo)準(zhǔn)差隨信號(hào)時(shí)長(zhǎng)的變化。由圖 5 可見,隨著信號(hào)時(shí)長(zhǎng)的增加,MSE也相應(yīng)增大,同時(shí)標(biāo)準(zhǔn)差SMSE逐漸減小。但是,當(dāng)數(shù)據(jù)時(shí)長(zhǎng)為160~240 s時(shí),MSE的數(shù)值趨于穩(wěn)定,同時(shí)標(biāo)準(zhǔn)差降為 0 .01~0.02之間。由此可見,數(shù)據(jù)時(shí)長(zhǎng)為200 s時(shí),MSE的計(jì)算結(jié)果是穩(wěn)定的。
圖5 不同脅迫時(shí)間下邊際譜熵(MSE)均值及標(biāo)準(zhǔn)差隨數(shù)據(jù)時(shí)長(zhǎng)的變化Fig.5 Changes of marginal spectrum entropy(MSE) mean value and their standard deviations with data length under different stress time
取時(shí)長(zhǎng)為200 s的玉米葉片電位波動(dòng)信號(hào)的MSE為結(jié)果,做出MSE隨脅迫時(shí)間變化的關(guān)系曲線,如圖6所示。從圖6可見,在滲透脅迫后的第1天,玉米葉片電位波動(dòng)的MSE開始增加,在脅迫后的第2天MSE的增加達(dá)到峰值,表明玉米葉片電位波動(dòng)的復(fù)雜度增大。從脅迫后第2天開始,MSE逐漸回落,表明在脅迫2天后,玉米葉片電位波動(dòng)的復(fù)雜度逐漸減小。
3.4 動(dòng)作電位靈敏指數(shù)Q的變化
圖 7 為滲透脅迫下玉米幼苗葉片動(dòng)作電位靈敏指數(shù)Q值的變化。圖7顯示,在滲透脅迫1 d時(shí)動(dòng)作電位靈敏指數(shù)Q出現(xiàn)了1個(gè)峰,此后快速下降,表明在滲透脅迫1 d時(shí)葉片細(xì)胞出現(xiàn)了明顯的動(dòng)作電位,暗示著此時(shí)葉片細(xì)胞對(duì)滲透脅迫的應(yīng)激反應(yīng)最為強(qiáng)烈。
圖6 MSE隨脅迫時(shí)間的變化Fig.6 Changes of marginal spectrum entropy with stress time
圖7 滲透脅迫下玉米葉片動(dòng)作電位靈敏指數(shù)Q的變化Fig.7 Changes of action potential sensitive index Q to corn seedling leaves with stress time
3.5 MDA和葉綠素含量的變化
MDA是細(xì)胞膜脂過氧化最重要的產(chǎn)物之一,其過量產(chǎn)生會(huì)導(dǎo)致膜的損傷,因此,在植物抗逆性的研究中,MDA含量是植物細(xì)胞膜受損和自由基形成的主要指示物[19],通過MDA含量的測(cè)量可以了解細(xì)胞膜脂過氧化的程度,進(jìn)而對(duì)膜系統(tǒng)受損程度做出評(píng)價(jià)[20]。葉綠素是植物進(jìn)行光合作用的重要物質(zhì),其含量在一定程度上反映了植物同化物質(zhì)的能力,是表征植物葉片功能和生長(zhǎng)狀況最常用的生理指標(biāo)[21-22]。滲透脅迫下玉米葉片MDA和葉綠素含量的變化如圖8所示。由圖8可見,在滲透脅迫后的第1天,葉片中的MDA含量迅速下降,在脅迫第2天以后,MDA含量維持在一個(gè)較高的水平;葉綠素含量在脅迫后的第 1 天有所升高,此后迅速下降,在第 3天以后維持在很低的水平。
圖8 滲透脅迫下玉米葉片葉綠素含量和MDA含量的變化Fig.8 Changes of chlorophyll content and malondialdehyde content of corn seedling leaves with stress time
由圖1可見,植物葉片電位波動(dòng)的振幅表現(xiàn)出非常復(fù)雜的非平穩(wěn)性質(zhì),這種電位波動(dòng)的復(fù)雜性是生命活動(dòng)的體現(xiàn)。然而,葉片電位波動(dòng)的這種復(fù)雜性給其信息解讀和分析帶來了困難。一些研究采用基于Fourier變換的短時(shí)Fourier變換(short-term Fourier transform,STFT)和小波變換(Wavelet)分析其頻譜特征[4,8,23-24],但是,F(xiàn)ourier變換只適合處理線性非平穩(wěn)信號(hào),并且不同的信號(hào)時(shí)長(zhǎng)會(huì)產(chǎn)生不同的結(jié)果;而小波變換需要預(yù)先選定小波基函數(shù),選擇不同的小波基也會(huì)產(chǎn)生不同的處理結(jié)果[25-26]。HHT方法解決了Fourier變換采用平穩(wěn)信號(hào)組成非平穩(wěn)信號(hào)的缺陷,在頻域和時(shí)域都能給出較高的分辨率,是一種更具適應(yīng)性的時(shí)頻局部化分析方法[9],因而其對(duì)植物葉片電位波動(dòng)信息的解讀更為準(zhǔn)確。
本文運(yùn)用HHT方法對(duì)圖1的采集結(jié)果進(jìn)行分析,得到的玉米葉片電位波動(dòng)的邊際譜是連續(xù)譜(見圖 2),邊際譜的連續(xù)性表明葉片細(xì)胞內(nèi)存在著復(fù)雜多樣的離子跨膜運(yùn)輸。由于葉片電位波動(dòng)的頻譜結(jié)構(gòu)與離子跨膜運(yùn)輸和細(xì)胞之間電偶聯(lián)有關(guān),確定的頻譜結(jié)構(gòu)對(duì)應(yīng)著細(xì)胞特定的生命狀態(tài)[4]。因此,邊際譜的特征及其變化實(shí)際上反映了葉片細(xì)胞的功能狀態(tài)及其變化情況。
為了能夠定量描述邊際譜的特征與變化規(guī)律,本文計(jì)算了邊際譜的特征參數(shù)SEF、SCF和MSE。由圖2可知,正常生長(zhǎng)的玉米葉片電位波動(dòng)的SEF和SCF分別為0.486和0.142 Hz,表明玉米葉片細(xì)胞膜電位的變化十分緩慢,其頻率分布在0.5 Hz以內(nèi)(即SEF),其中,大多數(shù)離子運(yùn)輸引起的膜電位變化的頻率在0.14 Hz附近(即SCF)。對(duì)于各種離子跨膜運(yùn)輸引起的邊際譜的復(fù)雜性,本文采用MSE來定量描述。我們?cè)谘芯恐邪l(fā)現(xiàn),玉米葉片電位波動(dòng)的MSE與采集的信號(hào)時(shí)長(zhǎng)有關(guān),但是,當(dāng)信號(hào)時(shí)長(zhǎng)為160~240 s時(shí),MSE的數(shù)值趨于穩(wěn)定(見圖5),可見采用200 s時(shí)長(zhǎng)的葉片電位波動(dòng)信號(hào)對(duì)比分析其復(fù)雜度的變化是可靠的?;诖?,本文均采用200 s時(shí)長(zhǎng)的采集信號(hào)進(jìn)行分析。
本研究發(fā)現(xiàn),在滲透脅迫1 d時(shí),邊際譜的SEF和SCF略有下降,在第2天時(shí)有所回升,此后迅速下降(見圖4)。這種現(xiàn)象表明,滲透脅迫首先使葉片細(xì)胞電位變化的頻率向低頻段移動(dòng),細(xì)胞功能狀態(tài)受到影響;隨著細(xì)胞的自我調(diào)節(jié),細(xì)胞功能狀態(tài)有所恢復(fù);而持續(xù)的滲透脅迫造成了細(xì)胞功能狀態(tài)的不斷下降。但是,研究還發(fā)現(xiàn),滲透脅迫開始后MSE一直增長(zhǎng),直到脅迫第2天時(shí)才不可逆下降(見圖6),表明在滲透脅迫開始后,盡管葉片細(xì)胞功能狀態(tài)受到了影響,葉片細(xì)胞群電位活動(dòng)的復(fù)雜度卻增加了,復(fù)雜度的增加是葉片細(xì)胞對(duì)滲透脅迫的應(yīng)激反應(yīng)。有證據(jù)表明,干旱脅迫會(huì)誘導(dǎo)植物根系產(chǎn)生AP,AP傳導(dǎo)到葉片細(xì)胞,誘發(fā)細(xì)胞產(chǎn)生各種生理發(fā)生變化[1,5,18,27]。當(dāng)AP傳導(dǎo)到葉片時(shí),必然會(huì)造成葉片電位波動(dòng)復(fù)雜度的增加。圖7的結(jié)果顯示,在脅迫1 d時(shí)動(dòng)作電位靈敏指數(shù)Q達(dá)到了極大,也證明了此時(shí)葉片細(xì)胞對(duì)滲透脅迫產(chǎn)生了強(qiáng)烈的應(yīng)激反應(yīng)。至于1 d以后MSE的繼續(xù)增加,在2d時(shí)達(dá)到峰值的現(xiàn)象可能是葉片中AP和變異電位VP(variation potentials)共同作用的結(jié)果,因?yàn)槌掷m(xù)的環(huán)境脅迫會(huì)在葉片中產(chǎn)生VP[5],VP也會(huì)使MSE增加。在滲透脅迫2 d后,MSE呈現(xiàn)出不可逆下降的變化趨勢(shì)則表明細(xì)胞活動(dòng)的復(fù)雜度越來越小,細(xì)胞活性和功能狀態(tài)越來越差。
為了進(jìn)一步證明上述玉米葉片電位波動(dòng)邊際譜的變化所隱含的生物學(xué)意義,本文同步研究了脅迫過程中玉米植株相同葉位的葉片MDA和葉綠素含量的變化。研究發(fā)現(xiàn),滲透脅迫1 d時(shí)MDA含量迅速下降,葉綠素含量則迅速上升,在生理生化角度上表明此時(shí)葉片細(xì)胞確實(shí)發(fā)生了明顯的應(yīng)激反應(yīng),這與動(dòng)作電位靈敏指數(shù)Q值達(dá)到峰值出現(xiàn)的時(shí)間是一致的。由于在2 d時(shí)葉片中MDA達(dá)到了較高水平,而葉綠素含量迅速減小,表明此時(shí)葉片細(xì)胞膜開始受到嚴(yán)重傷害,葉綠素合成停滯,細(xì)胞的自我調(diào)節(jié)能力達(dá)到了極限,MSE也達(dá)到了最大值。看來,葉片電位波動(dòng)動(dòng)作電位靈敏指數(shù)Q的大小可以作為玉米葉片細(xì)胞對(duì)滲透脅迫反應(yīng)靈敏度的標(biāo)志,而MSE達(dá)到的峰值時(shí)間可以作為葉片細(xì)胞對(duì)滲透脅迫自我調(diào)節(jié)和適應(yīng)性反應(yīng)限度的標(biāo)志。
1)基于HHT(Hilbert-Huang transform)方法得到的玉米幼苗葉片電位波動(dòng)的邊際譜是連續(xù)譜,正常生長(zhǎng)的玉米幼苗葉片細(xì)胞膜電位波動(dòng)的頻率分布在0.5 Hz以內(nèi),大多數(shù)離子運(yùn)輸引起的膜電位變化的頻率在0.14 Hz附近,葉片電位波動(dòng)邊際譜的復(fù)雜度可以由邊際譜熵MSE(marginal spectrum entropy)來表征,在信號(hào)時(shí)長(zhǎng)為200 s時(shí),MSE是穩(wěn)定的。
2)在滲透勢(shì)為-0.1 MPa的滲透脅迫下,玉米葉片電位波動(dòng)邊際譜的邊緣頻率SEF(spectral edge frequency)和重心頻率SCF(spectral center frequency)呈現(xiàn)出先減小后增加再減小的變化趨勢(shì),動(dòng)作電位靈敏指數(shù)Q的變化與之相反,MSE則表現(xiàn)出先增加再下降的變化趨勢(shì),邊際譜的變化是動(dòng)作電位AP(action potential)和變異電位VP(variation potentials)共同作用的結(jié)果。
3)在滲透脅迫下,玉米葉片中葉綠素含量的增加與動(dòng)作電位靈敏指數(shù)Q值的增加是一致的,葉綠素含量的減小與MSE的減小是一致的,Q值的大小可以作為玉米葉片細(xì)胞對(duì)滲透脅迫反應(yīng)靈敏度的標(biāo)志,MSE的峰值時(shí)間可以作為葉片細(xì)胞對(duì)滲透脅迫自我調(diào)節(jié)和適應(yīng)性反應(yīng)限度的標(biāo)志。
根據(jù)滲透脅迫下玉米幼苗葉片電位波動(dòng)邊際譜特征參數(shù)SEF、SCF、Q值和MSE的變化,有可能對(duì)玉米葉片細(xì)胞的功能狀態(tài)進(jìn)行實(shí)時(shí)、在位和無損傷檢測(cè),從而在活體細(xì)胞層面上對(duì)玉米幼苗抵抗?jié)B透脅迫的能力做出解釋和評(píng)價(jià)。
[1] Fromm J,Lautner S. Electrical signals and their physiological significance in plants[J]. Plant Cell &Environment,2007,30(3):249-257.
[2] Yan Xiaofei,Wang Zhongyi,Huang Lan,et al. Research progress on electrical signals in higher plants[J]. Progress in Natural Science,2009,19(5):531-541.
[3] Oyarce P,Gurovich L. Evidence for the transmission of information through electrical potentials in injured avocado trees[J]. Journal of Plant Physiology,2011,168(2):103-108.
[4] Zhang Xiaohui,Yu Ningmei,Xi Gang,et al. Changes in the power spectrum of electrical signals in maize leaf induced by osmotic stress[J]. Chinese Science Bulletin,2012,57(4):413-420.
[5] Gallé A,Lautner S,Flexas J,et al. Environmental stimuli and physiological responses:The current view on electrical signaling[J]. Environmental and Experimental Botany,2015,114:15-21.
[6] Huang Lan,Wang Zhongyi,Zhao Longlian,et al. Electrical signal measurement in plants using blind source separation with independent component analysis[J]. Computers and Electronics in Agriculture,2010,71(S1):54-59.
[7] Liliana R R,Franco T,Luis A. Gurovich. Electrophysiological assessment of water stress in fruit-bearing woody plants[J]. Journal of Plant Physiology,2014,171(10):799-806.
[8] Liu Kai,Xi Gang,Fan Linlin,et al. The changes of electrical signals in corn at different temperatures[J]. Procedia Environmental Sciences,2011,10(Part A):39-44.
[9] Huang N E,Shen Zheng,Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,London,1998,903-995.
[10] 苗晟,王威廉,姚紹文. Hilbert-Huang變換發(fā)展歷程及其應(yīng)用[J]. 電子測(cè)量與儀器學(xué)報(bào),2014,28(8):812-818. Miao Sheng,Wang Weilian,Yao Shaowen. Historic development of HHT and its applications[J]. Journal of Electronic Measurement and Instrumentation,2014,28(8):812-818.(in Chinese with English abstract)
[11] 董紅生,邱天爽,張愛華,等. 基于 H HT邊際譜熵和能量譜熵的心率變異信號(hào)的分析方法[J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2010,29(3):336-344. Dong Hongsheng,Qiu Tianshuang,Zhang Aihua,et al. The analysis method of heart rate variability signal based on the HHT marginal spectrum entropy and energy spectrum entropy[J]. Chinese Journal of Biomedical Engineering,2010,29(3):336-344.(in Chinese with English abstract)
[12] 高宇,習(xí)崗,劉鍇,等. 水分脅迫下萌發(fā)玉米的自發(fā)發(fā)光在抗旱性評(píng)價(jià)中的應(yīng)用[J]. 光子學(xué)報(bào),2014,43(2):132-136. Gao Yu,Xi Gang,Liu Kai,et al. Application of spontaneous fluorescence of germinating maize in drought resistance evaluation under water stress[J]. Acta Photonica Sinica,2014,43(2):132-136.(in Chinese with English abstract)
[13] 李得孝,郭月霞,員海燕,等. 玉米葉綠素含量測(cè)定方法研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2005,21(6):153-155. Li Dexiao,Guo Yuexia,Yun Haiyan,et al. Determined methods of chlorophyll from maize[J]. Chinese Agricultural Science Bulletin,2005,21(6):153-155.(in Chinese with English abstract)
[14] 張玉榮,周顯青,張勇. 儲(chǔ)存玉米膜脂過氧化與生理指標(biāo)的研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008,41(10):3410-3414. Zhang Yurong,Zhou Xianqing,Zhang Yong. Research on membrane lipid peroxidation and physiological parameters of storage maize[J]. Scientia Agricultura Sinica,2008,41(10):3410-3414.(in Chinese with English abstract)
[15] Wu Zhaohua and Huang N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in adaptive data analysis,2009,1(1):1-41.
[16] 曾彭,劉紅星,寧新寶,等. 總體經(jīng)驗(yàn)?zāi)B(tài)分解能量向量用于 E CG能量分布的研究[J]. 物理學(xué)報(bào),2015,64(7):399-406. Zeng Peng,Liu Hongxing,Ning Xinbao,et al. ECG energy distribution analysis using ensemble empirical mode decomposition energy vector[J]. Acta Physica Sinica,2015,64(7):399-406.(in Chinese with English abstract)
[17] Yeh J R,Shieh J S,Huang N E. Complementary ensemble empirical mode decomposition:A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis,2010,2(2):135-156.
[18] Grams T E E,Koziolek C,Lautner S,et al. Distinct roles of electrical and hydraulic signals on the reaction of leaf gas exchange upon reirrigation in Zea mays L[J]. Plant Cell &Environment,2007,30(1):79-84.
[19] Karim S,Behrouz S,Vahid R,et al. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species[J]. Acta Physiol plantarum,2012,34(1):203-213.
[20] 宋新穎,張玉梅,張洪生,等. 干旱脅迫對(duì)不同冬小麥品種幼苗期生理特性的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(12):6-11. Song Xinying,Zhang Yumei,Zhang Hongsheng,et al. Effect of drought stress on physiological characteristics in different winter wheat seedlings[J]. Chinese Agricultural Science Bulletin,2015,31(12):6-11.(in Chinese with English abstract)
[21] 習(xí)崗,賀瑞瑞,劉鍇,等. 應(yīng)用超弱光子輻射評(píng)價(jià)菠菜葉片衰老方法可行性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(17):268-275. Xi Gang,He Ruirui,Liu Kai,et al. Feasibility of evaluation method for spinach leaf senescence based on biological ultraweak photon emission[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(17):268-275.(in Chinese with English abstract)
[22] 朱金方,劉京濤,陸兆華,等. 鹽脅迫對(duì)中國(guó)檉柳幼苗生理特性的影響[J]. 生態(tài)學(xué)報(bào),2015,35(15):5140-5146. Zhu Jinfang,Liu Jingtao,Lu Zhaohua,et al. Effects of salt stress on physiological characteristics of Tamarix chinensis Lour. Seedlings[J]. Acta Ecologica Sinica,2015,35(15):5140-5146.(in Chinese with English abstract)
[23] Tian Liguo,Meng Qinghao,Wang Liping,et al. Research on the effect of electrical signals on growth of sansevieria under light-emitting diode(LED) lighting environment[J]. Plos One,2015,10(6):e0131838.
[24] Das Saptarshi,Ajiwibawa B J,Chatterjee S K,et al. Drift removal in plant electrical signals via IIR filtering using wavelet energy[J]. Computers &Electronics in Agriculture,2015,118(10):15-23.
[25] 譚善文,秦樹人,湯寶平. Hilbert—Huang 變換的濾波特性及其應(yīng)用[J]. 重慶大學(xué)學(xué)報(bào),2004,27(2):9-12. Tan Shanwen,Qin Shuren,Tang Baoping. The filtering character of Hilbert-Huang transform and its application[J]. Journal of Chongqing University,2004,27(2):9-12.(in Chinese with English abstract)
[26] Tang Shengxue,Li Zhigang,Chen Li. Fault detection in analog and mixed-signal circuits by using Hilbert-Huang transform and coherence analysis[J]. Microelectronics Journal,2015,46(10):893-899.
[27] Gil P M,Gurovich L,Schaffer B,et al. Root to leaf electrical signaling in avocado in response to light and soil water content[J]. Journal of Plant Physiology. 2008,165(10):1070-1078.
Changes and significance of marginal spectrum on maize leaves potential fluctuations under osmotic stress
Liu Kai1,Xi Gang1,He Ruirui1,Yu Ningmei2
(1. Department of Applied Physics,Institute of Science,Xi’an University of Technology,Xi’an 710054,China;2. School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China)
Leaf potential fluctuation comes from the changes of membrane potential in leaf cells,it caused by ion transporting across cell membranes and related to electrical coupling between cells. Understanding the life information behind leaf potential fluctuation is of great significance in study plant signal transduction,stress resistance evaluation,ecological and environmental monitoring,growth regulation,precision agriculture and many other fields. However,the leaf potential fluctuation of plant shows a very complex and non-stationary property. This complexity of the leaf potential fluctuation is the characteristic of life activities,but it brings great difficulties to analyze the information from the leaf potential fluctuation. Traditional signal analysis methods based Fourier Transform are only suitable for linear non-stationary signal processing. Different signal length leads to different results. Wavelet transform needs to pre-selected wavelet basis function,different wavelet basis will produce different results. Hilbert-Huang transform used in this paper is a new signal analysis method,this method avoids the defects of traditional methods that using stationary signal to compose non-stationary signals. Since Hilbert-Huang transform has higher resolution in both frequency domain and time domain,it is a more adaptive time-frequency localization analysis method. Thus,the interpretation about the potential fluctuation of plant leaves based on Hilbert-Huang transform can be more accurate. In this paper,the maize seedlings were treated by polyethylene glycol(PEG) solution of -0.1MPa to form osmotic stress,the leaf potential fluctuation in maize leaves was acquired after osmotic stress 0,1,2,3 and 4 days,the Hilbert-Huang transform was used to analyze the variation rule of the leaf potential fluctuation. After made the Hilbert-Huang transform of the leaf potential fluctuation signal of maize seedlings under different stress days,respectively,Hilbert spectrum and marginal spectrum of the leaf potential fluctuation signal was obtained. The marginal spectrum characteristic parameters such as spectral edge frequency(SEF),spectral center frequency(SCF),marginal spectrum entropy(MSE) and action potential sensitive index(Q) were calculated. While acquiring the leaf potential fluctuation signal,malondialdehyde(MDA) content and chlorophyll content in maize leaves under osmotic stress were also measured and analyzed. The results showed that the marginal spectrum of the leaf potential fluctuation on maize seedling leaves was continuous spectrum which frequency distributed in 0.5Hz or less. The SEF and SCF of the marginal spectrum showed a trend of increase first,thenit decreased and increased again along with osmotic stress days. The trend of action potential sensitive index Q was opposite to that of the SEF and SCF. The study also found that the changes of the MSE about the leaf potential fluctuation on maize seedling leaves was increased first and decreased afterwards with stress time. By comparing the changes of the parameters about marginal spectrum of the leaf potential fluctuation on maize seedling leaves during osmotic stress and changes of physiological indices MDA and chlorophyll content,we found that the MSE peak time could be used as sign of self-regulation and adaptive responses limits of leaf cells under osmotic stress,the Q value could be used as a sensitivity standard of maize leaf cells responsiveness to osmotic stress. According to the changes of the marginal spectrum characteristic parameters of leaves potential fluctuations in maize seedling under osmotic stress,it was possible to realize real time,in-situ and nondestructive evaluation(NDE) of maize seedling leaf cells functional status.
crops;osmosis;stresses;maize;potential fluctuations;marginal spectrum;Hilbert-Huang transform
10.11975/j.issn.1002-6819.2017.01.027
Q64
A
1002-6819(2017)-01-0199-07
劉 鍇,習(xí) 崗,賀瑞瑞,余寧梅. 滲透脅迫下玉米葉片電位波動(dòng)邊際譜的變化與意義[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):199-205.
10.11975/j.issn.1002-6819.2017.01.027 http://www.tcsae.org
Liu Kai,Xi Gang,He Ruirui,Yu Ningmei. Changes and significance of marginal spectrum on maize leaves potential fluctuations under osmotic stress[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):199-205.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.027 http://www.tcsae.org
2016-07-08
2016-11-16
國(guó)家自然科學(xué)基金資助項(xiàng)目(31471412);陜西省教育廳科學(xué)研究計(jì)劃項(xiàng)目(15JK1515);西安理工大學(xué)科技創(chuàng)新計(jì)劃項(xiàng)目(2013CX019)
劉 鍇,男,湖南懷化人,西安理工大學(xué)理學(xué)院講師,博士生,2014年赴康奈爾大學(xué)休斯頓Methodist醫(yī)院研修,主要研究方向?yàn)樯锕鈱W(xué)和生物電磁學(xué)。西安 西安理工大學(xué)理學(xué)院應(yīng)用物理系,710054。Email:leaukai@gmail.com