林 健,李恒宇,吳凱男,盛 湲,于 躍 (第二軍醫(yī)大學(xué)附屬長海醫(yī)院,上海200433)
循環(huán)腫瘤細胞與腫瘤轉(zhuǎn)移機制的研究進展
林 健,李恒宇,吳凱男,盛 湲,于 躍 (第二軍醫(yī)大學(xué)附屬長海醫(yī)院,上海200433)
腫瘤轉(zhuǎn)移是引起腫瘤患者死亡的主要原因.循環(huán)腫瘤細胞(CTCs)與腫瘤轉(zhuǎn)移密切相關(guān).本研究通過已有的文獻,回顧分析有關(guān)CTCs的一系列轉(zhuǎn)移過程:遷移滲入血液循環(huán)系統(tǒng),適應(yīng)外周循環(huán)系統(tǒng)并滲出至遠端器官,突破免疫防御形成轉(zhuǎn)移灶,了解其中涉及的可能影響腫瘤轉(zhuǎn)移的諸多因素,例如毛細血管壁構(gòu)成、組織微環(huán)境、細胞因子調(diào)節(jié)、細胞間相互作用及信號通路調(diào)節(jié)等.通過對這些文獻的復(fù)習(xí),能夠幫助我們進一步了解腫瘤轉(zhuǎn)移相關(guān)機制.
循環(huán)腫瘤細胞;腫瘤;轉(zhuǎn)移
腫瘤轉(zhuǎn)移是導(dǎo)致腫瘤患者死亡的主要原因.腫瘤細胞侵入周圍組織,進而突破基底膜進入外周血循環(huán)時,大部分會因各種原因凋亡,但仍有極少部分腫瘤細胞能夠遷移至遠端器官且存活下來,形成轉(zhuǎn)移灶,或者潛伏休眠一段時期后復(fù)發(fā).因此,對于有些腫瘤,在初次發(fā)現(xiàn)原發(fā)灶時,可能在遠端器官已經(jīng)潛伏著大量的轉(zhuǎn)移腫瘤細胞[1].腫瘤組織正是通過“增殖-播散-定植”的模式形成轉(zhuǎn)移灶.而被釋放入血液中的腫瘤細胞,即為循環(huán)腫瘤細胞(circulating tumor cells,CTCs),其有可能發(fā)展成為遠處的轉(zhuǎn)移灶[2].當(dāng)前,CTCs是對存在于外周血的各類腫瘤細胞的統(tǒng)稱,而遷移至遠端器官并生存下來的CTCs,被稱為播散腫瘤細胞(disseminated tumor cells,DTCs).CTCs是我們技術(shù)能力可以達到,且能夠比較容易獲取,用以活組織檢查研究的腫瘤細胞.其為腫瘤基礎(chǔ)研究、臨床治療監(jiān)測、患者預(yù)后等提供了非常重要的研究對象,具備極其重要的研究價值[3].CTCs要實現(xiàn)占據(jù)轉(zhuǎn)移器官,形成臨床轉(zhuǎn)移灶,需要克服眾多阻礙,其機制復(fù)雜且總的存活幾率并不高.研究CTCs在腫瘤轉(zhuǎn)移中的相關(guān)機制,結(jié)合腫瘤細胞滲入和滲出循環(huán)系統(tǒng)前后原發(fā)腫瘤和轉(zhuǎn)移器官微環(huán)境的一系列變化,可以幫助我們進一步了解腫瘤轉(zhuǎn)移的具體機制.
1.1 腫瘤轉(zhuǎn)移起始的一般模式腫瘤的轉(zhuǎn)移,一般認(rèn)為是在原發(fā)腫瘤形成后,腫瘤細胞播散入血,通過血液循環(huán)系統(tǒng),到達遠處組織,形成轉(zhuǎn)移灶.按照這一經(jīng)典的理論,起始階段是腫瘤細胞侵襲周圍組織并侵襲循環(huán)系統(tǒng),包括一系列的復(fù)雜生理過程:細胞內(nèi)骨架的重塑,細胞間的粘附作用降低,金屬蛋白酶降解細胞外基質(zhì),組織蛋白酶溶解作用等.在這些因素的綜合作用下,腫瘤細胞通過組織間質(zhì)向血管遷移.遷移過程中,腫瘤細胞可以以單個細胞的形式穿過細胞外基質(zhì),沿著膠原纖維移動;或者形成細胞團簇,整體行進.在這期間,人體正?;|(zhì)細胞分泌一種重要的細胞因子——轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β),促使腫瘤細胞發(fā)生異常的上皮間質(zhì)表型轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),使腫瘤細胞的表型從上皮表型(E)轉(zhuǎn)變?yōu)殚g質(zhì)表型(M),這種關(guān)鍵的表型改變使得腫瘤細胞丟失細胞間的粘附作用和上皮極性,獲得了遷移和侵襲的能力,促進了腫瘤細胞侵襲血管,并最終使腫瘤細胞進入全身的血液循環(huán)[4].腫瘤細胞的這種表型變化具有重要的生理作用和臨床意義.
1.2 腫瘤細胞表型轉(zhuǎn)變及意義在腫瘤原發(fā)灶,腫瘤細胞發(fā)生異常的EMT,形成了上皮表型為主的腫瘤細胞(E>M)、間質(zhì)表型為主的腫瘤細胞(M>E)和少量同時具備上皮和間質(zhì)表型(E=M)的腫瘤細胞共存的局面.細胞表型在不同疾病或疾病的不同亞組中表現(xiàn)不同.以乳腺疾病為例,在良性乳腺腫塊或未發(fā)生浸潤的乳腺導(dǎo)管原位癌中,幾乎全是上皮表型的腫瘤細胞.而在浸潤性乳腺癌中,既有上皮型腫瘤細胞,也有間質(zhì)型腫瘤細胞,還有少部分同時表達兩個表型的腫瘤細胞.預(yù)后較差的三陰性乳腺癌中,有些腫瘤細胞形成團簇,同時表達強陽性的上皮和間質(zhì)表型.可以看出,上皮表型常見于腫瘤原發(fā)部位和良性疾病中,當(dāng)腫瘤細胞主要為間質(zhì)表型時,細胞遷移侵襲能力增強,常出現(xiàn)疾病進展.腫瘤細胞進入血管,成為CTCs,也同時具備三種表型情況(E>M,E=M,M>E).形成細胞團簇的CTCs主要為間質(zhì)表型,常見于疾病進展的乳腺癌患者.CTCs形成的細胞團簇常附著血小板,同樣能分泌 TGF-β,協(xié)同血液循環(huán)中FOXC1轉(zhuǎn)錄因子,促進腫瘤細胞表型轉(zhuǎn)化,與不良預(yù)后相關(guān).因此,腫瘤細胞的表型轉(zhuǎn)化,不僅在腫瘤轉(zhuǎn)移的初始過程中起著重要的作用,其變化也在一定程度上體現(xiàn)了疾病的發(fā)生發(fā)展和預(yù)后[4-5].
2.1 腫瘤細胞適應(yīng)血液循環(huán)系統(tǒng)腫瘤細胞持續(xù)從原發(fā)灶進入循環(huán)系統(tǒng).CTCs在外周循環(huán)系統(tǒng)中,要克服血流剪切力、免疫系統(tǒng)、細胞因子、低氧等各種血液微環(huán)境的影響.血小板在其遷移的過程中起到了保護作用[6],同時腫瘤細胞改變自身的代謝形式以抵抗低氧的影響[7],僅有不到萬分之一的腫瘤細胞能在外周血中存活[8],這些存活下來的腫瘤細胞具有高度的活性和轉(zhuǎn)移潛能.有的表現(xiàn)為游離的單個細胞的形式,也有部分形成細胞團簇樣的癌栓.越來越多的證據(jù)表明,不同腫瘤細胞團會互相協(xié)作,相互促進生存和轉(zhuǎn)移能力,比單個CTCs更有效的形成轉(zhuǎn)移[9].
2.2 進出循環(huán)系統(tǒng)的狀況及毛細血管的構(gòu)成影響腫瘤細胞滲出的部位CTCs滲出血管前,會被毛細血管截留,這被認(rèn)為是其主要的捕獲機制.哪些部位能夠成為第一個捕獲CTCs的毛細血管床,主要由機體具體的血液循環(huán)系統(tǒng)狀況決定.如靜脈系統(tǒng)主要經(jīng)右心室到肺,或由胃經(jīng)門脈系統(tǒng)到肝,這就容易使CTCs在肺和肝內(nèi)停留,導(dǎo)致肺和肝出現(xiàn)腫瘤轉(zhuǎn)移[10].腫瘤細胞也能在微循環(huán)中生長形成癌栓,破出血管壁到血管外.而不同器官不同的血管壁組成也會影響腫瘤細胞的滲出.肝和骨髓的毛細血管是血竇,由有孔的內(nèi)皮細胞和不連續(xù)的基底膜構(gòu)成,而這些間隙有利于CTCs的滲出,這也是為什么肝和骨髓腫瘤轉(zhuǎn)移高發(fā)的原因[11].
2.3 多種細胞因子參與調(diào)節(jié)腫瘤細胞滲出血管至遠端器官的過程CTCs滲出至遠端器官的機制復(fù)雜,有多種不同的細胞因子參與調(diào)控腫瘤細胞與靶器官血管內(nèi)皮細胞之間的作用,特異性的細胞因子決定轉(zhuǎn)移的特異性位點[12].TGF-β通過調(diào)節(jié)炎癥因子和生長因子促進肺部形成炎癥反應(yīng)而引起血管高滲透,從而使CTCs滲出血管轉(zhuǎn)移到肺[13].對于乳腺癌肺轉(zhuǎn)移病例,去除白介素-13受體α2(IL-13Ralpha2)能延遲原發(fā)腫瘤的生長,并明顯抑制肺部轉(zhuǎn)移灶的生長.增強 IL-13調(diào)節(jié)的信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子 6(STAT6)能抑制轉(zhuǎn)移性乳腺癌細胞的遷移能力[14].基質(zhì)細胞蛋白(secreted protein acidic and rich in cysteine,SPARC)是一種重要的腫瘤來源血管滲透因子,高表達SPARC能增強血管壁的滲透性,從而促進腫瘤細胞滲出、肺轉(zhuǎn)移;而當(dāng)SPARC缺失時,腫瘤細胞則不能滲出肺毛細血管[15].腫瘤整合素 β1(integrinβ1,ITGB1)促進腫瘤的生長和轉(zhuǎn)移,去除腫瘤ITGB1的腫瘤細胞缺乏維持突起進入內(nèi)皮下基質(zhì)的能力,尤其是通過α3β1和α6β1對內(nèi)皮層粘連蛋白的粘附是腫瘤細胞成功轉(zhuǎn)移的關(guān)鍵[16].血小板來源的TGF-β和血小板-腫瘤細胞的直接接觸能協(xié)同激活癌細胞內(nèi)的TGF-β/Smad和NF-κB通路,導(dǎo)致癌細胞轉(zhuǎn)變?yōu)楦咔忠u性的間質(zhì)樣表型(M),促進CTCs滲出血管[17].腫瘤細胞激活的血小板釋放腺嘌呤核苷酸,誘導(dǎo)血管內(nèi)皮屏障開放,允許腫瘤細胞遷移穿過內(nèi)皮細胞,促進了癌細胞滲出血管[18].乳腺癌肺轉(zhuǎn)移灶能召集表達CCR2(趨化因子CCL2受體)的炎性單核細胞、巨噬細胞和腫瘤細胞,依賴腫瘤和間質(zhì)合成的CCL2,通過CCL2-CCR2信號通路,促進腫瘤細胞滲出血管,其過程需要單核細胞來源的血管內(nèi)皮生長因子[19].上述調(diào)節(jié)因子的每一種機制都增加了腫瘤轉(zhuǎn)移的可能性,并且這些機制經(jīng)常是起協(xié)同作用.
總之,影響CTCs滲出血管,轉(zhuǎn)移到特定器官的因素有很多,包括腫瘤基質(zhì)釋放的促轉(zhuǎn)移信號、CTCs細胞群的組成、CTCs表型轉(zhuǎn)變、血液循環(huán)的形式、遠端器官毛細血管壁的結(jié)構(gòu)及腫瘤自我調(diào)節(jié)功能等,共同維持腫瘤細胞不斷滲出循環(huán)系統(tǒng)進入遠端器官.
3.1 宿主組織的免疫防御當(dāng)CTCs到達遠處轉(zhuǎn)移部位時,經(jīng)過間質(zhì)上皮轉(zhuǎn)換(mesenchymal epithelial transition,MET),突破血管壁,到達轉(zhuǎn)移器官,形成轉(zhuǎn)移灶.傳統(tǒng)的“種子和土壤”假設(shè)認(rèn)為,不同的腫瘤對于轉(zhuǎn)移器官有不同的偏好,認(rèn)為某一器官傾向于特定腫瘤的轉(zhuǎn)移.其實,對DTCs來說,每一個遠處的“土壤”都是致命的,最好的“土壤”是腫瘤原發(fā)灶本身.CTCs也會在其原發(fā)腫瘤部位定植,自我種植會加速腫瘤的生長、血管形成,增強腫瘤細胞的侵襲性和抗藥性[20-21].遠端轉(zhuǎn)移灶的微環(huán)境中主要有細胞毒T細胞(cytotoxic T lymphocyte,CTL)和自然殺傷細胞(natural killer cells,NK)起著抗腫瘤轉(zhuǎn)移免疫監(jiān)視的作用,免疫反應(yīng)能促使DTCs進入休眠期,在一定程度上減少了腫瘤的增殖,延長了患者的生存期[22].例如在腦中,星型膠質(zhì)細胞起抗轉(zhuǎn)移免疫防御的作用,通過釋放纖溶酶原激活劑(PA)使纖溶酶原轉(zhuǎn)變?yōu)槔w溶酶,動員促凋亡細胞因子Fas配體殺傷浸潤的癌細胞.肺癌和乳腺癌腦轉(zhuǎn)移腫瘤細胞通過產(chǎn)生高水平的抗PA絲氨酸蛋白酶抑制劑來預(yù)防纖溶酶產(chǎn)生和其轉(zhuǎn)移抑制作用[23].
3.2 宿主組織微環(huán)境成人的干細胞生存在特定的微環(huán)境中,富含各種細胞生長和增殖的信號,維持干細胞的生長、休眠、增殖和分化.而腫瘤細胞被認(rèn)為是來自突變的干細胞或其保留腫瘤啟動能力的子代,同樣也能從這些微環(huán)境中受益[24].而播散到遠端器官的腫瘤干細胞(cancer stem cells,CSCs)也能通過特定的微環(huán)境維持其生存和腫瘤啟動潛能.例如在小鼠轉(zhuǎn)移模型中,人前列腺癌細胞能直接占據(jù)小鼠骨髓造血干細胞的微環(huán)境,增加微環(huán)境的大小能促進轉(zhuǎn)移,減小則抑制播散[25].腦血管周圍細胞具有部分干細胞特性,能參與新血管的形成.膠質(zhì)母細胞瘤能與腦血管周圍細胞相互作用,進而促進腦腫瘤的發(fā)生與浸潤[26].對腫瘤細胞轉(zhuǎn)移至腦內(nèi)的實時觀察發(fā)現(xiàn),CTCs在血管分叉處被捕獲,通過與血管的相互作用,形成早期的滲出,并持續(xù)結(jié)合在微血管上,圍繞血管周圍生長[27].DTCs也能自己制造類似干細胞的微環(huán)境成分,乳腺癌肺轉(zhuǎn)移細胞能產(chǎn)生肌腱蛋白C(tenascin C,TNC),這是一種干細胞微環(huán)境中細胞外基質(zhì)蛋白,能促進肺微轉(zhuǎn)移灶的生存和生長[28].在正常組織和腫瘤基質(zhì)中,成纖維細胞都能產(chǎn)生細胞外基質(zhì)成分骨膜蛋白(periostin,POSTN),DTCs能誘導(dǎo)轉(zhuǎn)移器官基質(zhì)產(chǎn)生POSTN,促進轉(zhuǎn)移灶形成,增強腫瘤干細胞內(nèi)Wnt信號,維持腫瘤干細胞存活[29].研究表明,來自小鼠和人肺、肝、腦腫瘤細胞的外泌體,優(yōu)先與其靶器官的特異細胞融合.外泌體被器官特異性細胞攝取后,通過激活Src磷酸化和促炎S100基因表達,準(zhǔn)備腫瘤轉(zhuǎn)移前微環(huán)境.其中,外泌體整合素α6β4和α6β1與肺轉(zhuǎn)移相關(guān),而外泌體整合素αvβ5與肝轉(zhuǎn)移相關(guān)[30].又如轉(zhuǎn)移的黑色素瘤細胞分泌外泌體,能誘導(dǎo)轉(zhuǎn)移前微環(huán)境的血管滲漏、使骨髓祖細胞向促血管生成的表型轉(zhuǎn)化,支持腫瘤的生長和轉(zhuǎn)移[31].
3.3 眾多生長和生存通路促進腫瘤細胞在宿主組織存活實驗?zāi)P吞崾?,許多基因和信號通路支持轉(zhuǎn)移腫瘤細胞的生長和生存,因此這些基因的表達一定程度上也能提示腫瘤的復(fù)發(fā).癌細胞的優(yōu)勢在于能在低水平激動信號的基礎(chǔ)上,在微環(huán)境中獲得充足的激活通路,因此DTCs能利用宿主組織提供的這些信號通路,甚至通過表達自分泌通路激活劑或者召集間質(zhì)細胞,放大通路的信號輸出[32].例如DTCs自分泌白介素 6(interleukin-6,IL-6)激活 AKT抑制性磷酸酶PHLPP2,驅(qū)動AKT-MYC開關(guān),并且IL-6能溝通下游Stat3調(diào)節(jié)的MYC激活,促進前列腺癌細胞增殖和轉(zhuǎn)移[33].食管癌細胞自分泌胰島素樣生長因子2(insulin-like growth factorⅡ,IGF2)激活A(yù)KT通路促進癌細胞增殖、生存和轉(zhuǎn)移[34].乳腺癌細胞內(nèi)絡(luò)氨酸激酶Src的激活與乳腺癌遲發(fā)骨轉(zhuǎn)移有關(guān).乳腺癌細胞來源的血管生成素樣蛋白2(angiopoietin-like protein,ANGPTL2)通過增強乳腺癌細胞對CXCL12信號的反應(yīng),上調(diào)腫瘤細胞CXCR4表達,促進骨轉(zhuǎn)移[35].
3.4 腫瘤細胞與其他細胞相互作用,促進腫瘤轉(zhuǎn)移生長腫瘤細胞與巨噬細胞接觸,通過Notch1/Mena信號通路,激活MENA轉(zhuǎn)錄,上調(diào)Mena表達,形成侵襲性突觸,對腫瘤細胞的侵襲和跨內(nèi)皮細胞遷移播散十分重要[36];內(nèi)皮細胞、腫瘤和骨髓相互作用,形成一個信號網(wǎng)絡(luò),例如癌細胞高表達CXCL1/2,準(zhǔn)備好在轉(zhuǎn)移部位生存,CXCL1/2能吸引CD1b(+)GR1(+)骨髓細胞進入腫瘤,產(chǎn)生包括鈣結(jié)合蛋白(S100A8/9)在內(nèi)的趨化因子促進腫瘤生存.這樣一種旁分泌網(wǎng)絡(luò),促進了腫瘤的轉(zhuǎn)移和生存[37].TGF-β是微環(huán)境中重要的促轉(zhuǎn)移因素,TGF-β作用于基質(zhì)細胞,提高了結(jié)直腸癌器官轉(zhuǎn)移灶形成的效率.結(jié)直腸癌細胞表達 TGF-β,促進成纖維細胞(carcinoma-associated fibroblasts,CAFs)分泌 IL-11,激活腫瘤細胞內(nèi)GP130/STAT3信號,這種交互刺激促進轉(zhuǎn)移腫瘤細胞的生存[38].腫瘤細胞通過與轉(zhuǎn)移灶細胞的實質(zhì)性接觸,也能獲得生存支持.連接蛋白-2(claudin-2)是乳腺癌肝轉(zhuǎn)移的調(diào)節(jié)因子,在肝轉(zhuǎn)移乳腺癌細胞中特異性表達增高.Claudin-2調(diào)節(jié)的乳腺癌細胞與肝細胞之間的反應(yīng),其功能不僅是細胞緊密連接的復(fù)合物,更具備乳腺癌細胞與肝細胞之間粘附分子的作用,促進乳腺癌細胞形成肝轉(zhuǎn)移灶[39].肺轉(zhuǎn)移乳腺癌細胞膜血管粘附分子 1(vascular cell adhesion molecule-1,VCAM1)與單核細胞和巨噬細胞的α4整合素接觸,激活癌細胞內(nèi)的PI3K-AKT信號.與之相比,骨髓轉(zhuǎn)移的乳腺癌細胞VCAM1與單核破骨細胞前體細胞上的α4β1整合素接觸,加速這些前體分化成破骨細胞,增加破骨細胞活性,使休眠狀態(tài)的微轉(zhuǎn)移灶形成明顯的轉(zhuǎn)移生長[40].
CTCs與腫瘤的轉(zhuǎn)移密切相關(guān),本研究通過分析腫瘤細胞表型轉(zhuǎn)化、腫瘤微環(huán)境、相關(guān)細胞因子和細胞通路、腫瘤細胞與其他細胞的相互作用、轉(zhuǎn)移微環(huán)境對腫瘤轉(zhuǎn)移的影響等逐步了解CTCs與腫瘤轉(zhuǎn)移的可能機制.分析腫瘤轉(zhuǎn)移的一系列過程,可以明確腫瘤細胞的轉(zhuǎn)移能力不是天然獲得的,而是經(jīng)過機體組織對抗、免疫監(jiān)視、在低氧的壓力下逐步篩選出來.比如原發(fā)腫瘤局部浸潤后,滲入腫瘤血管中,以單個細胞或細胞簇的形式進入循環(huán)系統(tǒng),而循環(huán)的模式、不同器官毛細血管壁的結(jié)構(gòu)都會影響CTCs的播散.而后,CTCs被遠端的毛細血管捕獲后,腫瘤細胞滲出毛細血管到靶器官的實質(zhì)中,開始轉(zhuǎn)移生長或潛伏休眠.目前臨床上的治療只能部分清除顯著的轉(zhuǎn)移灶,而在治療的壓力下,癌細胞和非瘤間質(zhì)細胞會動員生存信號,支持殘余的腫瘤直至小部分藥物抵抗的癌細胞克隆出現(xiàn),產(chǎn)生藥物抵抗的腫瘤.隨著對CTCs研究的不斷深入,可以了解腫瘤轉(zhuǎn)移相關(guān)機制的全貌,達到對腫瘤治療認(rèn)識的完整性和有效性,最終實現(xiàn)對腫瘤臨床診斷、治療和預(yù)后方案選擇的最優(yōu)化.
[1]Alix-Panabières C,Pantel K.Challenges in circulating tumour cell research[J].Nat Rev Cancer,2014,14(9):623-631.
[2]Ashworth TR.A case of cancer in which cells similar to those in the tumours were seen in the blood after death[J].Aus Med J,1896,8(14):146-149.
[3]Masuda T,Hayashi N,Iguchi T,et al.Clinical and biological significance of circulating tumor cells in cancer[J].Mol Oncol,2016,10(3):408-417.
[4]Yu M,Bardia A,Wittner BS,et al.Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition[J].Science,2013,339(6119):580-584.
[5]Kang Y,Pantel K.Tumor cell dissemination:emerging biological insights from animal models and cancer patients[J].Cancer Cell,2013,23(5):573-581.
[6]Gay LJ,F(xiàn)elding-Habermann B.Contribution of platelets to tumour metastasis[J].Nat Rev Cancer,2011,11(2):123-134.
[7]Le Gal K,Ibrahim MX,Wiel C,et al.Antioxidants can increase melanoma metastasis in mice[J].Sci Transl Med,2015,7(308):308re8.
[8]Rhim AD,Mirek ET,Aiello NM,et al.EMT and dissemination precede pancreatic tumor formation[J].Cell,2012,148(1-2):349-361.
[9]Aceto N,Bardia A,Miyamoto DT,et al.Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis[J].Cell,2014,158(5):1110-1122.
[10]Denève E,Riethdorf S,Ramos J,et al.Capture of viable circulating tumor cells in the liver of colorectal cancer patients[J].Clin Chem,2013,59(9):1384-1392.
[11]Budczies J,von Winterfeld M,Klauschen F,et al.The landscape of metastatic progression patterns across major human cancers[J].Oncotarget,2015,6(1):570-583.
[12]Arvelo F,Sojo F,Cotte C.Cancer and the metastatic substrate[J].Ecancermedicalscience,2016,10:701.
[13]Ye Y,Liu S,Wu C,et al.TGFβ modulates inflammatory cytokines and growth factors to create premetastatic microenvironment and stimulate lung metastasis[J].J Mol Histol,2015,46(4-5):365-375.
[14]Papageorgis P,Ozturk S,Lambert AW,et al.Targeting IL-13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis[J].Breast Cancer Res,2015,17:98.
[15]Tichet M,Prod’Homme V,F(xiàn)enouille N,et al.Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis[J].Nat Commun,2015,6:6993.
[16]Chen MB,Lamar JM,Li R,et al.Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade[J].Cancer Res,2016,76(9):2513-2524.
[17]Labelle M,Begum S,Hynes RO.Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis[J].Cancer Cell,2011,20(5):576-590.
[18]Schumacher D,Strilic B,Sivaraj KK,et al.Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor[J].Cancer Cell,2013,24(1):130-137.
[19]Qian BZ,Li J,Zhang H,et al.CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis[J].Nature,2011,475(7355):222-225.
[20]Zhang Y,Ma Q,Liu T,et al.Tumor self-seeding by circulating tumor cells in nude mouse models of human osteosarcoma and a preliminary study of its mechanisms[J].J Cancer Res Clin Oncol,2014,140(2):329-340.
[21]Obenauf AC,Zou Y,Ji AL,et al.Therapy-induced tumour secretomes promote resistance and tumour progression[J].Nature,2015,520(7547):368-372.
[22]Eyles J,Puaux AL,Wang X,et al.Tumor cells disseminate early,but immunosurveillance limits metastatic outgrowth,in a mouse model of melanoma[J].J Clin Invest,2010,120(6):2030-2039.
[23]Valiente M,Obenauf AC,Jin X,et al.Serpins promote cancer cell survival and vascular co-option in brain metastasis[J].Cell,2014,156(5):1002-1016.
[24]Kreso A,Dick JE.Evolution of the cancer stem cell model[J].Cell Stem Cell,2014,14(3):275-291.
[25]Shiozawa Y,Pedersen EA,Havens AM,et al.Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow[J].J Clin Invest,2011,121(4):1298-1312.[26]Caspani EM,Crossley PH,Redondo-Garcia C,et al.Glioblastoma:a pathogenic crosstalk between tumor cells and pericytes[J].PLoS One,2014,9(7):e101402.
[27]Kienast Y,von Baumgarten L,F(xiàn)uhrmann M,et al.Real-time imaging reveals the single steps of brain metastasis formation[J].Nat Med,2010,16(1):116-122.
[28]Oskarsson T,Acharyya S,Zhang XH,et al.Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs[J].Nat Med,2011,17(7):867-874.
[29]Malanchi I,Santamaria-Martínez A,Susanto E,et al.Interactions between cancer stem cells and their niche govern metastatic colonization[J].Nature,2011,481(7379):85-89.
[30]Hoshino A,Costa-Silva B,Shen TL,et al.Tumour exosome integrins determine organotropic metastasis[J].Nature,2015,527(7578):329-335.
[31]Peinado H,Aleckovic M,Lavotshkin S,et al.Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J].Nat Med,2012,18(6):883-891.
[32]Massagué J,Obenauf AC.Metastatic colonization by circulating tumour cells[J].Nature,2016,529(7586):298-306.
[33]Nowak DG,Cho H,Herzka T,et al.MYC drives Pten/Trp53-Deficient proliferation and metastasis due to IL6 secretion and AKT suppression via PHLPP2[J].Cancer Discov,2015,5(6):636-651.
[34]Li B,Tsao SW,Chan KW,et al.Id1-induced IGF-II and its autocrine/endocrine promotion of esophageal cancer progressionand chemoresistance--implications for IGF-II and IGF-IR-targeted therapy[J].Clin Cancer Res,2014,20(10):2651-2662.
[35]Masuda T,Endo M,Yamamoto Y,et al.ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling[J].Sci Rep,2015,5:9170.
[36]Pignatelli J,Bravo-Cordero JJ,Roh-Johnson M,et al.Macrophagedependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation[J].Sci Rep,2016,6:37874.
[37]Acharyya S,Oskarsson T,Vanharanta S,et al.A CXCL1 paracrine network links cancer chemoresistance and metastasis[J].Cell,2012,150(1):165-178.
[38]Calon A,Espinet E,Palomo-Ponce S,et al.Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation[J].Cancer Cell,2012,22(5):571-584.
[39]Tabariès S,Dupuy F,Dong Z,et al.Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes[J].Mol Cell Biol,2012,32(15):2979-2991.
[40]Lu X,Mu E,Wei Y,et al.VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors[J].Cancer Cell,2011,20(6):701-714.
Research progress of circulating tumor cells and metastatic mechanism of tumor
LIN Jian,LI Heng-Yu,WU Kai-Nan,SHENG Yuan,YU Yue
Changhai Hospital Affiliated to Second Military Medical University,Shanghai 200433,China
Metastasis is the main cause of tumor death.Circulating tumor cells(CTCs)are closely related to tumor metastasis.In this paper,a series of metastatic process of CTCs were reviewed and analyzed:migrating into the circulating system, adapting to peripheral circulatory system, penetrating to distant organs,breaking through the immune defense and forming metastases.From the content mentioned above,we can understand several factors that may affect tumor metastasis,including constitution of blood capillary wall,tissue microenvironment,cytokine modulation,intercellular interaction and regulation of signal pathways.Through the review of literatures,we can further understand some mechanisms of tumor metastasis.
circulating tumor cells;tumor;metastasis
R730.2;R730.7
A
2095-6894(2017)05-11-05
2017-01-27;接受日期:2017-02-15
第二軍醫(yī)大學(xué)長海醫(yī)院“1255”基金支持(CH125540800)
林 健.碩士,主治醫(yī)師.研究方向:乳腺癌基礎(chǔ)及臨床.Tel:021-31161645 E-mail:35540398@qq.com
李恒宇(共同第一作者).博士,主治醫(yī)師.研究方向:乳腺癌基礎(chǔ)及臨床.E-mail:drlhy@foxmail.com
盛 湲.博士,主任醫(yī)師.研究方向:乳腺癌基礎(chǔ)及臨床.E-mail:sheng528yuan@smmu.edu.cn
于 躍(共同通訊作者).博士,主治醫(yī)師,講師.Tel:021-31161644 E-mail:dr-array@hotmail.com