宋瑞娟 夏露 盧水華
·專(zhuān)家論壇·
糖尿病與耐藥肺結(jié)核的關(guān)系
宋瑞娟 夏露 盧水華
隨著糖尿病和肺結(jié)核兩大疾病發(fā)病率的升高,糖尿病并發(fā)耐藥肺結(jié)核的患者越來(lái)越多,耐多藥結(jié)核病(multidrug-resistant tuberculosis,MDR-TB)和廣泛耐藥結(jié)核病(extensively drug resistant tuberculosis,XDR-TB)的暴發(fā)對(duì)全球結(jié)核病的控制提出嚴(yán)峻挑戰(zhàn)。作者主要從糖尿病對(duì)耐藥肺結(jié)核的發(fā)病率、臨床特點(diǎn)、診斷和治療、預(yù)后轉(zhuǎn)歸的影響,以及耐藥肺結(jié)核對(duì)糖尿病的影響、作用機(jī)制等方面闡述兩者之間的關(guān)系,為合理治療糖尿病并發(fā)結(jié)核病提供理論依據(jù),以改善此類(lèi)患者的預(yù)后。
糖尿??; 結(jié)核,肺; 結(jié)核, 抗多種藥物性; 因果律; 評(píng)論
盡管許多國(guó)家結(jié)核病的發(fā)病率呈下降趨勢(shì),但結(jié)核病在全球范圍內(nèi)仍呈較高的流行趨勢(shì)。2014年全球約有960萬(wàn)例結(jié)核病新發(fā)患者,其中耐多藥結(jié)核病(multidrug-resistant tuberculosis,MDR-TB)約48萬(wàn)例,廣泛耐藥結(jié)核病(extensively drug resistant tuberculosis,XDR-TB)約占MDR-TB的9.7%,存在于105個(gè)國(guó)家;接受抗結(jié)核藥物治療的MDR-TB僅50%有效,XDR-TB的治療效果更差,治療有效率僅26%[1]。近年來(lái),糖尿病的罹患率不斷增長(zhǎng),2013年全球糖尿病患者約3.82億例,2014年約4.22億例,估計(jì)到2035年可能達(dá)到5.92億例[2]。結(jié)核病并發(fā)糖尿病,導(dǎo)致耐藥肺結(jié)核的發(fā)病率逐年升高,對(duì)全球結(jié)核病的控制帶來(lái)嚴(yán)重威脅。我國(guó)每年約有100萬(wàn)例新發(fā)結(jié)核病患者,其中約10萬(wàn)例為MDR-TB患者,同時(shí)全國(guó)成年人糖尿病患病率約為9.7%[3],不同地區(qū)肺結(jié)核患者中并發(fā)糖尿病的患病率從6.3%到19.9%不等[4-6],而糖尿病患者中并發(fā)肺結(jié)核的患病率波動(dòng)在12%左右[7-8]。筆者主要從糖尿病對(duì)耐藥肺結(jié)核發(fā)病率、臨床特點(diǎn)、診斷和治療、預(yù)后轉(zhuǎn)歸的影響及作用機(jī)制,以及耐藥肺結(jié)核對(duì)糖尿病的影響及機(jī)制等方面闡述兩者之間的關(guān)系,為合理治療兩種并發(fā)疾病提供理論依據(jù),改善糖尿病并發(fā)耐藥肺結(jié)核患者的預(yù)后。
隨著糖尿病和肺結(jié)核發(fā)病率的持續(xù)增長(zhǎng),耐藥結(jié)核病的流行性也逐漸增加,探究?jī)烧咧g關(guān)聯(lián)性的研究日漸增多。一項(xiàng)來(lái)自孟加拉國(guó)的研究以250例MDR-TB患者作為病例組,750例對(duì)抗結(jié)核藥物敏感的肺結(jié)核患者作為對(duì)照組,評(píng)估并發(fā)糖尿病對(duì)MDR-TB發(fā)病率的影響;單變量回歸分析顯示OR值為2.25(95%CI:1.4~3.6),多變量回歸分析aOR值為2.56(95%CI:1.51~4.34),肯定了并發(fā)糖尿病的結(jié)核病患者中MDR-TB發(fā)病率的增加,但不能區(qū)分原發(fā)性耐藥和獲得性耐藥的影響[9]。一項(xiàng)來(lái)自格魯吉亞的研究,納入無(wú)結(jié)核病治療史的肺結(jié)核患者318例,其中單純肺結(jié)核患者229例、糖尿病前期并發(fā)肺結(jié)核(prediabetes with pulmonary tuberculosis,pre-DM-PTB)的患者52例、DM-PTB的患者37例,多變量回歸分析顯示:pre-DM-PTB和DM-PTB組患者原發(fā)耐多藥的患病風(fēng)險(xiǎn)分別為0.80(95%CI:0.31~2.04)和2.27(95%CI:1.02~5.08)[10],提示DM-PTB患者中肺結(jié)核原發(fā)耐多藥發(fā)病風(fēng)險(xiǎn)增加,而pre-DM-PTB患者中肺結(jié)核原發(fā)耐多藥發(fā)病風(fēng)險(xiǎn)無(wú)增加。一項(xiàng)前瞻性病例-對(duì)照研究中,納入192例新發(fā)肺結(jié)核患者,其中DM-PTB者60例,開(kāi)始均給予2H-R-Z-E/4H-R-E方案進(jìn)行抗結(jié)核藥物治療,糖尿病的治療根據(jù)患者具體情況而定,觀察隨訪(fǎng)至少1年;結(jié)果顯示,隨訪(fǎng)至6個(gè)月時(shí)DM-PTB組治療失敗者10例,而肺結(jié)核組有2例,根據(jù)藥物敏感性試驗(yàn)(簡(jiǎn)稱(chēng)“藥敏試驗(yàn)”)結(jié)果和臨床條件調(diào)整治療方案,且延長(zhǎng)治療療程,1年后DM-PTB 組和肺結(jié)核組分別有3例(5.0%)和1例(0.8%)發(fā)展為MDR-TB,該研究認(rèn)為糖尿病與肺結(jié)核獲得性耐藥的產(chǎn)生有一定的關(guān)聯(lián)性[11]。其他如Mehta等[12]橫斷面調(diào)查發(fā)現(xiàn)糖尿病使肺結(jié)核患者耐利福平的風(fēng)險(xiǎn)增加近2倍;Hsu等[13]研究發(fā)現(xiàn)糖尿病使初、復(fù)治肺結(jié)核患者對(duì)異煙肼耐藥的風(fēng)險(xiǎn)分別增加了0.88和5.76倍。也有研究認(rèn)為,糖尿病對(duì)耐藥肺結(jié)核的發(fā)病率沒(méi)有影響[3],可能與研究方法、樣本量、研究群體等不同有關(guān)。如上所述,大部分研究結(jié)果肯定了并發(fā)糖尿病提高了耐藥肺結(jié)核的發(fā)病率,并指出通過(guò)控制血糖可以減少耐藥結(jié)核病的發(fā)生,因此保持血糖穩(wěn)定是DM-TB患者抗結(jié)核治療取得療效的前提。
目前,關(guān)于DM-PTB的耐藥發(fā)生機(jī)制的研究有限,歸納如下:
1.基因突變基數(shù)增大:高血糖狀態(tài)促使紅細(xì)胞膜上1型葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT1) mRNA表達(dá)增加,使葡萄糖攝入增加,而糖化血紅蛋白(glyco-sylated hemoglobin,GHb)濃度過(guò)高可致紅細(xì)胞變形、攜氧能力降低,導(dǎo)致肺部組織缺氧聯(lián)合胰島素抵抗,葡萄糖無(wú)氧代謝增強(qiáng),酸性代謝產(chǎn)物堆積,適宜結(jié)核分枝桿菌生長(zhǎng)[14],肺部結(jié)核分枝桿菌荷載量增大,出現(xiàn)突變個(gè)體的概率增加。
2.獲得性耐藥概率增加:糖尿病增加結(jié)核病化療的不良反應(yīng)發(fā)生率,導(dǎo)致治療中斷或患者依從性下降,增加獲得性耐藥發(fā)生概率[15];抗結(jié)核藥物血藥濃度水平低下,是結(jié)核病發(fā)生獲得性耐藥的另一因素。Babalik等[16]的研究納入70例新發(fā)活動(dòng)性肺結(jié)核患者,其中控制血糖良好的DM-PTB者14例,強(qiáng)化期使用H-R-Z-E抗結(jié)核藥物治療方案,在治療第14、30天服藥后2 h取靜脈血標(biāo)本檢測(cè),結(jié)果顯示DM-PTB組血糖值增高明顯,血清利福平和異煙肼藥物濃度較單純PTB組降低約50%,均未達(dá)到有效殺菌濃度。
3.免疫低下和免疫逃逸:正常的機(jī)體免疫力是徹底清除結(jié)核分枝桿菌的保證,研究顯示,持續(xù)高血糖狀態(tài)可使外周血淋巴細(xì)胞的免疫活性降低25%~35%[17],DM-TB患者受到結(jié)核分枝桿菌抗原Ag85刺激后,白細(xì)胞介素-12(IL-12)、γ-干擾素(INF-γ)產(chǎn)生顯著減少[18],同時(shí)高血糖狀態(tài)可抑制結(jié)核病患者自然殺傷細(xì)胞(natural killer cell,NK)的細(xì)胞免疫功能,使其識(shí)別、殺傷感染了結(jié)核分枝桿菌的巨噬細(xì)胞功能減弱,促進(jìn)結(jié)核分枝桿菌免疫逃逸,導(dǎo)致機(jī)體清除結(jié)核分枝桿菌不完全[19],慢性炎癥和氧化應(yīng)激狀態(tài)為耐藥結(jié)核分枝桿菌的產(chǎn)生埋下隱患[20]。
4.增加易感性和傳染性:糖尿病患者的免疫受損使得個(gè)體更容易感染和持留結(jié)核分枝桿菌;結(jié)核分枝桿菌發(fā)生耐藥突變后,其生殖適應(yīng)度或增加或減低,研究表明即使平均適應(yīng)度較低的耐藥菌在外部條件良好的情況下,一小部分具有高適應(yīng)度的亞群也可能最終超過(guò)敏感菌株和低適應(yīng)度菌株的發(fā)展,成為優(yōu)勢(shì)菌株,對(duì)外播散[21]。
肺結(jié)核被證實(shí)可誘導(dǎo)糖耐量異常、惡化糖尿病患者血糖控制水平[22-23];但也有研究發(fā)現(xiàn)活動(dòng)性肺結(jié)核患者糖耐量異常是一過(guò)性的,有效抗結(jié)核治療后,可明顯改善糖耐量異常[24]。研究認(rèn)為,免疫紊亂、慢性炎癥是肺結(jié)核致糖代謝異常的根本原因[23, 25]。直接關(guān)于耐藥肺結(jié)核對(duì)糖尿病影響的研究甚少,但耐藥肺結(jié)核患者外周血中調(diào)節(jié)性T細(xì)胞比例升高、CD4+/CD8+比值下降及炎癥因子水平升高[26-27],不難推測(cè)其對(duì)血糖水平存在干擾;同時(shí)耐藥肺結(jié)核是慢性消耗性疾病,可加重胰腺負(fù)擔(dān),誘導(dǎo)胰島細(xì)胞功能紊亂,導(dǎo)致血糖控制不佳[28]。
另外,抗結(jié)核藥物對(duì)血糖的影響近年來(lái)受到廣泛關(guān)注,研究發(fā)現(xiàn)異煙肼具有潛在抑制肝細(xì)胞酶CYP2C9的作用,可導(dǎo)致格列美脲活性代謝產(chǎn)物累積,誘導(dǎo)糖尿病患者出現(xiàn)低血糖反應(yīng)[29];利福平可降低磺脲類(lèi)或噻唑烷二酮類(lèi)藥物血藥濃度[30],導(dǎo)致血糖降低不理想,可能與其增強(qiáng)肝細(xì)胞酶CYCP450活性有關(guān)[31];氟喹諾酮類(lèi)藥物可與金屬多價(jià)離子螯合,滲透細(xì)胞膜,導(dǎo)致細(xì)胞內(nèi)鎂缺乏,誘導(dǎo)胰島素抵抗的發(fā)生發(fā)展[32],也可阻斷胰島β細(xì)胞上ATP敏感的K+通道促進(jìn)胰島素的分泌[33],誘導(dǎo)高血糖或低血糖的發(fā)生。其中加替沙星導(dǎo)致糖代謝紊亂的概率最高,其次為左氧氟沙星、環(huán)丙沙星[34];利奈唑胺為一種單胺氧化酶抑制劑,被發(fā)現(xiàn)有提高潛在低血糖風(fēng)險(xiǎn)的降糖藥物的低血糖發(fā)生率[35]。因此,結(jié)核病控制不佳及使用部分抗結(jié)核藥物可導(dǎo)致血糖增高,而血糖增高將進(jìn)一步加重結(jié)核病患者病情,進(jìn)而易發(fā)生結(jié)核病患者耐藥,形成惡性循環(huán)。
1.對(duì)臨床特點(diǎn)的影響:目前,涉及糖尿病并發(fā)耐藥肺結(jié)核患者臨床特點(diǎn)的文獻(xiàn)較少。Magee等[36]研究發(fā)現(xiàn),并發(fā)糖尿病的MDR-PTB和單純MDR-PTB患者在開(kāi)始耐多藥抗結(jié)核藥物治療前,其臨床特點(diǎn)是相似的,可出現(xiàn)肺部空洞(分別為25.0%、26.9%)、肺部病灶播散(分別為17.9%、16.8%)、肺外累及(分別為3.5%、5.9%);并發(fā)糖尿病的MDR-PTB較單純MDR-PTB患者通常年齡較大(分別為48.8歲、34.6歲)、平均體質(zhì)量指數(shù)(BMI)(分別為23.3、20.3)、較少有結(jié)核病治療史(分別為59.3%、68.4%)、較多出現(xiàn)痰菌≥“++”(分別為55.3%、44.0%)。這一結(jié)果與韓國(guó)Kang等[37]的研究結(jié)果一致,且后者還指出兩組患者在HIV感染、慢性肝病、惡性腫瘤等并發(fā)疾病,以及XDR-TB患病率、外科手術(shù)率等方面差異無(wú)統(tǒng)計(jì)學(xué)意義。未來(lái)需要更多的研究探討糖尿病并發(fā)耐藥肺結(jié)核患者的臨床特點(diǎn),提高臨床醫(yī)生排查糖尿病并發(fā)耐藥肺結(jié)核的意識(shí)和識(shí)別能力。
2.對(duì)診斷的影響:糖尿病改變肺結(jié)核的臨床表現(xiàn)和免疫狀態(tài),對(duì)傳統(tǒng)診斷方法的敏感度和特異度提出了挑戰(zhàn)。如全血干擾素試劑檢測(cè)試驗(yàn)(QuantiFERON?test)被證實(shí)在糖尿病并發(fā)菌陰肺結(jié)核患者中的檢測(cè)敏感度是降低的[38];更有研究進(jìn)一步指出,糖尿病患者空腹血糖水平和結(jié)核特異性INF-γ水平降低呈明顯負(fù)相關(guān),和結(jié)核感染狀態(tài)無(wú)關(guān)[39]。但耐藥結(jié)核病的確診主要依賴(lài)于細(xì)菌學(xué)培養(yǎng)和分子學(xué)診斷,傳統(tǒng)結(jié)核分枝桿菌培養(yǎng)方法可以進(jìn)行菌種鑒定和藥敏檢測(cè),是確診耐藥肺結(jié)核的金標(biāo)準(zhǔn),但耗時(shí)較長(zhǎng),延誤治療;結(jié)核分枝桿菌快速培養(yǎng)法(MGIT 960)較傳統(tǒng)培養(yǎng)耗時(shí)有所縮短,但價(jià)格昂貴,在中、低收入國(guó)家使用受到限制;分子生物學(xué)主要利用PCR擴(kuò)增和逆轉(zhuǎn)錄技術(shù)快速檢測(cè)出耐藥相關(guān)變異基因,比較成熟的有基因芯片、GeneXpert MTB/RIF和GenoType MTBDRplus,這些技術(shù)具有快速、高敏感度的特點(diǎn),GeneXpert MTB/RIF被WHO推薦用于中、低收入國(guó)家,但價(jià)格仍相對(duì)昂貴,需要復(fù)雜精細(xì)的實(shí)驗(yàn)設(shè)備,且對(duì)利福平耐藥檢測(cè)的特異度不高。耐藥肺結(jié)核的診斷很大程度上依賴(lài)于痰菌狀況。研究顯示,糖尿病并發(fā)耐藥肺結(jié)核痰菌陽(yáng)性率高,菌載量大[36],理論上糖尿病并發(fā)耐藥肺結(jié)核患者的陽(yáng)性檢出率增加了。
3.對(duì)治療的影響:對(duì)于DM-PTB患者的化療方案,2011年《結(jié)核病和糖尿病防控指南》推薦有效降糖前提下的國(guó)際標(biāo)準(zhǔn)方案,為改善糖尿病對(duì)結(jié)核病預(yù)后的不良影響,臨床上常常延長(zhǎng)化療時(shí)間[40]。對(duì)于并發(fā)糖尿病的耐藥肺結(jié)核患者的化療方案,與單純耐藥肺結(jié)核的化療方案原則上無(wú)差異,主要根據(jù)既往用藥史、藥敏試驗(yàn)結(jié)果、患者用藥耐受性等,綜合制定個(gè)體化方案[41],然而并發(fā)糖尿病仍在一定程度上影響著耐藥肺結(jié)核的治療。
首先,抗結(jié)核藥物的選擇困難:(1)MDR-PTB和XDR-PTB的化療方案以二線(xiàn)抗結(jié)核藥物為核心,氟喹諾酮類(lèi)藥物往往是最有效的抗結(jié)核藥物,但加替沙星、左氧氟沙星因其對(duì)糖代謝的影響應(yīng)慎選,氧氟沙星、環(huán)丙沙星因其抗結(jié)核作用較弱,不推薦用于耐藥結(jié)核病的治療,莫西沙星對(duì)糖代謝影響較少,且屬于高代謝藥物,是糖尿病并發(fā)耐藥肺結(jié)核治療的首先[34, 41],但仍需密切監(jiān)測(cè)血糖變化;(2)由于糖尿病患者腎臟、眼底、周?chē)窠?jīng)、血管等并發(fā)癥的影響,使得抗結(jié)核藥物的選擇范圍明顯縮?。?3)有研究指出糖尿病患者對(duì)部分抗結(jié)核藥物耐藥率較高[42],進(jìn)一步增加了抗結(jié)核藥物選擇的難度。
其次,有效抗結(jié)核治療難度大:(1)高血糖狀態(tài),以及部分降血糖藥物可影響抗結(jié)核藥物血藥濃度水平;(2)抗結(jié)核治療藥物不良反應(yīng)大,部分患者為了減輕藥物不良反應(yīng)減少藥物劑量或中斷治療;(3)雖有研究發(fā)現(xiàn)二甲雙胍能夠提高線(xiàn)粒體活性氧的產(chǎn)生,促進(jìn)吞噬溶酶體的融合,抑制耐藥結(jié)核分枝桿菌的生長(zhǎng)[43],發(fā)揮降血糖和抗結(jié)核治療的雙重作用,然而大部分糖尿病患者的血糖水平不能單純依靠二甲雙胍維持,且尚未發(fā)現(xiàn)其他具有協(xié)同抗結(jié)核作用的口服降血糖藥物。研究顯示,胰島素降血糖治療能較好地控制血糖并且達(dá)到穩(wěn)定,改善并發(fā)結(jié)核病患者的療效[28, 44],但限于患者經(jīng)濟(jì)條件和治療意愿等因素,胰島素的治療較難堅(jiān)持。
最后,延長(zhǎng)抗結(jié)核藥物治療療程:并發(fā)糖尿病的MDR-TB患者多肺部感染較重、痰菌載量大、痰菌轉(zhuǎn)陰時(shí)間較遲,需要延長(zhǎng)治療時(shí)間,以提高治愈率。2016年WHO提出MDR-TB短程化療方案,其適用范圍不包括并發(fā)糖尿病的患者[45],尚不清楚該方案在此類(lèi)患者中的療效。
糖尿病使肺結(jié)核活動(dòng)的風(fēng)險(xiǎn)增加近3倍[46],是誘導(dǎo)肺結(jié)核耐藥的高危因素,在臨床上加大了對(duì)耐藥肺結(jié)核患者的治療難度,并可能對(duì)耐藥肺結(jié)核患者的預(yù)后有進(jìn)一步的影響。
結(jié)核病治療的結(jié)果包括成功、失敗、復(fù)發(fā)、死亡等,臨床上常用痰菌轉(zhuǎn)陰、肺部病灶吸收、體質(zhì)量增加等指標(biāo)綜合判斷療效、評(píng)估預(yù)后,痰菌轉(zhuǎn)陰失敗是結(jié)核病不良預(yù)后的強(qiáng)力預(yù)測(cè)因子。Kang等[37]研究指出,并發(fā)糖尿病的MDR-TB患者治療成功率(36.0%)、生存期(102個(gè)月)均明顯低于單純MDR-TB患者(47.2%,114個(gè)月);Chung-Delgado等[47]也指出糖尿病使MDR-TB患者死亡風(fēng)險(xiǎn)增加[HR=4.10(95%CI:2.15~7.85)];Salindri等[48]研究顯示,糖尿病可降低MDR-TB患者的痰菌陰轉(zhuǎn)率[aHR=0.34(95%CI:0.13~0.87)];但也有研究認(rèn)為,糖尿病降低MDR-TB患者痰菌陰轉(zhuǎn)率并不明顯,差異無(wú)統(tǒng)計(jì)學(xué)意義[34]??梢?jiàn),糖尿病對(duì)耐藥肺結(jié)核的預(yù)后有著明顯的不利影響,歸納其原因有:(1)改變機(jī)體免疫狀態(tài);(2)細(xì)菌載量大,痰菌轉(zhuǎn)陰延遲;(3)降糖藥和抗結(jié)核藥物之間的相互干擾;(4)藥物不良反應(yīng)大,患者治療依從性差;(5)部分并發(fā)糖尿病的MDR-TB患者死于糖尿病并發(fā)癥等[35]。以上與其誘導(dǎo)肺結(jié)核耐藥的機(jī)制部分相同,體現(xiàn)了糖尿病對(duì)耐藥肺結(jié)核影響的貫穿性、全程性,提示在結(jié)核病治療的整個(gè)過(guò)程中血糖的良好控制都是極其重要的。
在WHO阻斷肺結(jié)核戰(zhàn)略中提出的最關(guān)切問(wèn)題是耐藥肺結(jié)核的出現(xiàn)和傳播。糖尿病對(duì)耐藥肺結(jié)核的發(fā)生、發(fā)展、治療及預(yù)后有著顯著的影響,并發(fā)耐藥肺結(jié)核也不利于患者血糖的控制。糖尿病和肺結(jié)核的雙向監(jiān)測(cè)是預(yù)防耐藥肺結(jié)核產(chǎn)生的第一步,對(duì)于確診為DM-PTB的患者,血糖控制及抗結(jié)核藥物治療有效是治療該類(lèi)患者的重點(diǎn)和難點(diǎn),也是預(yù)防耐藥肺結(jié)核產(chǎn)生的關(guān)鍵。進(jìn)展為耐多藥的肺結(jié)核患者具有更大的傳染性,其治療難度更大、治療效果更差,失敗率、死亡率更高,制定恰當(dāng)有效的耐藥肺結(jié)核治療方案、加強(qiáng)耐藥肺結(jié)核患者的管理、阻斷其傳播極其重要。耐藥肺結(jié)核的控制任重而道遠(yuǎn),未來(lái)需要更多的人力、物力、財(cái)力投入到此項(xiàng)戰(zhàn)斗中。
[1] World Health Organization. WHO global tuberculosis report 2015.Geneva:World Health Organization,2015.
[2] Ade S, Affolabi D, Agodokpessi G, et al. Low prevalence of diabetes mellitus in patients with tuberculosis in Cotonou, Benin. Public Health Action, 2015,5(2):147-149.
[3] Mi F, Jiang G, Du J, et al. Is resistance to anti-tuberculosis drugs associated with type 2 diabetes mellitus? A register review in Beijing, China. Glob Health Action, 2014,7:24022.
[4] Wu Z, Guo J, Huang Y, et al. Diabetes mellitus in patients with pulmonary tuberculosis in an aging population in Shanghai, China: Prevalence, clinical characteristics and outcomes. J Diabetes Complications, 2016,30(2):237-241.
[5] Lin Y, Innes A, Xu L, et al. Screening of patients with diabetes mellitus for tuberculosis in community health settings in China. Trop Med Int Health, 2015,20(8):1073-1080.
[6] Wang Q, Ma A, Han X, et al. Prevalence of type 2 diabetes among newly detected pulmonary tuberculosis patients in China: a community based cohort study. PLoS One, 2013,8(12):e82660.
[7] Mi F, Tan S, Liang L, et al. Diabetes mellitus and tuberculosis: pattern of tuberculosis, two-month smear conversion and treatment outcomes in Guangzhou, China. Trop Med Int Health, 2013,18(11):1379-1385.
[8] Lin Y, Li L, Mi F, et al. Screening patients with diabetes mellitus for tuberculosis in China. Trop Med Int Health, 2012,17(10):1302-1308.
[9] Rifat M, Milton AH, Hall J, et al. Development of multidrug resistant tuberculosis in Bangladesh: a case-control study on risk factors. PLoS One, 2014,9(8):e105214.
[10] Magee MJ, Kempker RR, Kipiani M, et al. Diabetes mellitus is associated with cavities, smear grade, and multidrug-resis-tant tuberculosis in Georgia. Int J Tuberc Lung Dis,2015,19(6):685-692.
[11] Chang JT, Dou HY, Yen CL, et al. Effect of type 2 diabetes mellitus on the clinical severity and treatment outcome in patients with pulmonary tuberculosis: a potential role in the emergence of multidrug-resistance. J Formos Med Assoc, 2011,110(6):372-381.
[12] Mehta S, Yu EA, Ahamed SF, et al. Rifampin resistance and diabetes mellitus in a cross-sectional study of adult patients in rural South India. BMC Infect Dis, 2015,15:451.
[13] Hsu AH, Lee JJ, Chiang CY, et al. Diabetes is associated with drug-resistant tuberculosis in Eastern Taiwan. Int J Tuberc Lung Dis, 2013,17(3):354-356.
[14] 陳潔, 李強(qiáng), 趙蓉, 等. 復(fù)治肺結(jié)核合并糖尿病患者紅細(xì)胞中GLUT1表達(dá)及意義. 臨床肺科雜志, 2016,21(6):1066-1069.
[15] Zhang Q, Xiao H, Sugawara I. Tuberculosis complicated by diabetes mellitus at shanghai pulmonary hospital, China. Jpn J Infect Dis, 2009,62(5):390-391.
[16] Babalik A, Ulus IH, Bakirci N, et al. Plasma concentrations of isoniazid and rifampin are decreased in adult pulmonary tuberculosis patients with diabetes mellitus. Antimicrob Agents Chemother, 2013,57(11):5740-5742.
[17] Berezin AE, Kremzer AA, Samura TA, et al. Impaired immune phenotype of circulating endothelial-derived microparticles in patients with metabolic syndrome and diabetes mellitus. J Endocrinol Investi, 2015,38(8):865-874.
[18] Meenakshi P, Ramya S, Lavanya J, et al. Effect of IFN-γ, IL-12 and IL-10 cytokine production and mRNA expression in tuberculosis patients with diabetes mellitus and their household contacts. Cytokine,2016,81:127-136.
[19] Brill KJ, Li Q, Larkin R, et al. Human natural killer cells mediate killing of intracellularMycobacteriumtuberculosisH37Rv via granule-independent mechanisms. Infect Immun, 2001,69(3):1755-1765.
[20] Pasipanodya JG, Gumbo T. A new evolutionary and pharmacokinetic-pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Curr Opin Pharmacol, 2011,11(5):457-463.
[21] Cohen T, Murray M. Modeling epidemics of multidrug-resis-tantM.tuberculosisof heterogeneous fitness. Nat Med, 2004,10(10):1117-1121.
[22] Pizzol D, Di Gennaro F, Chhaganlal KD, et al. Tuberculosis and diabetes: current state and future perspectives. Trop Med Int Health, 2016,21(6):694-702.
[23] Fisher-Hoch SP, Mathews CE, McCormick JB. Obesity, diabetes and pneumonia: the menacing interface of non-communicable and infectious diseases. Trop Med Int Health, 2013,18(12):1510-1519.
[24] Oluboyo PO, Erasmus RT. The significance of glucose intole-rance in pulmonary tuberculosis. Tubercle, 1990,71(2):135-138.
[25] 尹小芳, 葛海波, 馬建華, 等. 肺結(jié)核合并糖尿病患者CD4+CD25+Treg細(xì)胞與血糖的相關(guān)分析. 臨床肺科雜志, 2015,20(11):1946-1948.
[26] Butov DO, Kuzhko MM, Makeeva NI, et al. Association of interleukins genes polymorphisms with multi-drug resistant tuberculosis in Ukrainian population.Pneumonol Alergol Pol, 2016,84(3):168-173.
[27] 范任華, 向延根, 楊勵(lì), 等. 多耐藥肺結(jié)核患者特異性細(xì)胞免疫失衡與調(diào)節(jié)性T 細(xì)胞 CD4+CD25+CD127low有關(guān). 東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2015,34(4):525-531.
[28] 郭素花, 林榕, 薛志偉, 等. 胰島素控制血糖治療糖尿病合并肺結(jié)核的療效分析. 中國(guó)實(shí)用醫(yī)刊, 2016,43(13):65-67.
[29] Boglou P, Steiropoulos P, Papanas N, et al. Hypoglycaemia due to interaction of glimepiride with isoniazid in a patient with type 2 diabetes mellitus. BMJ Case Rep, 2013,pii:bcr2012008528.
[30] Duangrithi D, Thanachartwet V, Desakorn V, et al. Impact of diabetes mellitus on clinical parameters and treatment outcomes of newly diagnosed pulmonary tuberculosis patients in Thailand. Int J Clin Pract, 2013,67(11):1199-1209.
[31] Zhang JG,Ho T,Callendrello AL,et al.A multi-endpoint eva-luation of cytochrome P450 1A2,2B6 and 3A4 induction response in human hepatocyte cultures after treatment with β-naphthoflavone, phenobarbital and rifampicin. Drug Metab Lett, 2010,4(4):185-194.
[32] Telfer SJ. Fluoroquinolone antibiotics and type 2 diabetes mellitus. Med Hypotheses, 2014,83(3):263-269.
[33] Saraya A, Yokokura M, Gonoi T, et al. Effects of fluoroqui-nolones on insulin secretion and beta-cell ATP-sensitive K+channels. Eur J Pharmacol, 2004,497(1):111-117.
[34] Aspinall SL, Good CB, Jiang R, et al. Severe dysglycemia with the fluoroquinolones: a class effect? Clin Infect Dis, 2009,49(3):402-408.
[35] Bodnar T, Starr K, Halter JB. Linezolid-associated hypoglycemia in a 64-year-old man with type 2 diabetes. Am J Geriatr Pharmacother, 2011,9(1):88-92.
[36] Magee MJ, Kempker RR, Kipiani M, et al. Diabetes mellitus, smoking status, and rate of sputum culture conversion in patients with multidrug-resistant tuberculosis: a cohort study from the country of Georgia. PLoS One, 2014,9(4):e94890.
[37] Kang YA, Kim SY, Jo KW, et al. Impact of diabetes on treatment outcomes and long-term survival in multidrug-resistant tuberculosis. Respiration, 2013,86(6):472-478.
[38] Choi JC, Jarlsberg LG, Grinsdale JA, et al. Reduced sensitivity of the QuantiFERON?test in diabetic patients with smear-negative tuberculosis. Int J Tuberc Lung Dis, 2015,19(5):582-588.
[39] Faurholt-Jepsen D, Aabye MG, Jensen AV, et al. Diabetes is associated with lower tuberculosis antigen-specific interferon gamma release in Tanzanian tuberculosis patients and non-tuberculosis controls. Scand J Infect Dis, 2014,46(5):384-391.
[40] WHO Guidelines Approved by the Guidelines Review Commi-ttee.Collaborative framework for care and control of tuberculosis and diabetes. Geneva: World Health Organization,2011.
[41] 中國(guó)防癆協(xié)會(huì). 耐藥結(jié)核病化學(xué)治療指南(2015). 中國(guó)防癆雜志, 2015,37(5):421-469.
[42] Demir M, Gokturk HS, Ozturk NA, et al. Clarithromycin resistance and efficacy of clarithromycin-containing triple eradication therapy for Helicobacter pylori infection in type 2 diabetes mellitus patients. South Med J, 2009,102(11):1116-1120.
[43] Singhal A, Jie L, Kumar P, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med, 2014,6(263): 263ra159.
[44] 劉娥元. 抗結(jié)核藥聯(lián)合降糖方案對(duì)糖尿病并發(fā)肺結(jié)核患者的治療效果分析. 醫(yī)學(xué)信息, 2015,28(20):14-15.
[45] World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis. Geneva: World Health Organization,2016.
[46] Prakash BC, Ravish KS, Prabhakar B, et al. Tuberculosis-dia-betes mellitus bidirectional screening at a tertiary care centre, South India. Public Health Action, 2013,3(Suppl 1):S18-S22.
[47] Chung-Delgado K, Guillen-Bravo S, Revilla-Montag A, et al. Mortality among MDR-TB cases: comparison with drug-susceptible tuberculosis and associated factors. PLoS One, 2015,10(3):e0119332.
[48] Salindri AD, Kipiani M, Kempker RR, et al. Diabetes reduces the rate of sputum culture conversion in patients with newly diagnosed multidrug-resistant tuberculosis. Open Forum Infect Dis, 2016,3(3):ofw126.
(本文編輯:孟莉 范永德)
The relationship between diabetes mellitus and drug-resistant pulmonary tuberculosis
SONGRui-juan,XIALu,LUShui-hua.
DepartmentofTuberculosis,ShanghaiPublicHealthClinicalCenter,FudanUniversity,Shanghai201508,ChinaCorrespondingauthor:LUShui-hua,Email:tubercle@shaphc.org
With the prevalence of diabetes mellitus and pulmonary tuberculosis, more and more cases of diabetes with drug-resistant pulmonary tuberculosis had appeared. The outbreak of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) poses a serious challenge to the tuberculosis control in the world. This article aims to elaborate the relationship between diabetes and drug-resistant pulmonary tuberculosis, including the effect and mechanism of diabetes on the incidence of drug-resistant tuberculosis, the effect and mechanism of drug-resistant pulmonary tuberculosis on diabetes, the effect of diabetes on the clinical characte-ristics, diagnosis and treatment of drug-resistant pumonary tuberculosis, and the effect of diabetes on prognosis of drug-resistant pulmonary tuberculosis. This will provide a theoretical basis for the rational treatment of diabetes mellitus and drug-resistant pulmonary tuberculosis co-morbidity and improve the prognosis of diabetes with drug-resistant pulmonary tuberculosis.
Diabetes mellitus; Tuberculosis,pulmonary; Tuberculosis, multidrug-resistant; Causality; Comment
10.3969/j.issn.1000-6621.2017.01.006
201508 上海,復(fù)旦大學(xué)附屬公共衛(wèi)生臨床中心結(jié)核科
盧水華,Email: tubercle@shaphc.org
2016-08-17)