王 品,姚佩陽(yáng)(空軍工程大學(xué)信息與導(dǎo)航學(xué)院,西安710077)
具有不同輸入時(shí)延的二階多智能體系統(tǒng)一致性
王 品,姚佩陽(yáng)
(空軍工程大學(xué)信息與導(dǎo)航學(xué)院,西安710077)
研究了具有不同時(shí)變輸入時(shí)延的二階連續(xù)多智能體系統(tǒng)的一致性問(wèn)題。首先,通過(guò)變量轉(zhuǎn)換,將系統(tǒng)的收斂性問(wèn)題轉(zhuǎn)化為誤差系統(tǒng)的穩(wěn)定問(wèn)題;然后,通過(guò)對(duì)系統(tǒng)進(jìn)行變換,將二階系統(tǒng)穩(wěn)定性問(wèn)題轉(zhuǎn)換為等價(jià)系統(tǒng)的穩(wěn)定性問(wèn)題。通過(guò)構(gòu)造李雅普諾夫函數(shù),基于線性矩陣不等式(LMI)的方法,給出在無(wú)向固定拓?fù)錀l件下,系統(tǒng)達(dá)到一致的充分條件。最后,仿真實(shí)例證明了結(jié)果的有效性。
一致性;多智能體系統(tǒng);不同時(shí)變輸入時(shí)延;LMI
近年來(lái),一致性問(wèn)題引起眾多學(xué)者的廣泛關(guān)注。一致性問(wèn)題是指多智能體在動(dòng)態(tài)網(wǎng)絡(luò)中通過(guò)協(xié)調(diào)控制使其狀態(tài)達(dá)到一致,譬如,多智能體運(yùn)動(dòng)過(guò)程中的速度趨同、位置趨同,飛行器的集結(jié)、蜂擁等。
在一致性的應(yīng)用中,不可避免地會(huì)碰到時(shí)延的問(wèn)題。多智能體自身接收及處理收到信息會(huì)產(chǎn)生輸入時(shí)延;此外,由于信息的傳遞需要時(shí)間,也會(huì)產(chǎn)生通信時(shí)延。具有時(shí)延的一階智能體系統(tǒng)已得到深入研究,并取得豐碩成果[1-6]。然而,針對(duì)具有時(shí)延的二階多智能體系統(tǒng)的研究則相對(duì)較少。文獻(xiàn)[7]利用頻域分析的方法,研究了具有對(duì)稱、時(shí)不變時(shí)延下的二階多智能體系統(tǒng)一致性問(wèn)題。在文獻(xiàn)[8]中,進(jìn)一步研究了時(shí)變時(shí)延情況下的系統(tǒng)收斂判據(jù)。文獻(xiàn)[9]討論了無(wú)向和有向二階多智能體系統(tǒng)的通信時(shí)延上限。針對(duì)具有不同通信時(shí)延的二階系統(tǒng),文獻(xiàn)[10]給出了系統(tǒng)達(dá)到一致的充分條件。
在實(shí)際的物理系統(tǒng)中,各智能體的輸入時(shí)延并不相同。因此,本文研究了無(wú)向拓?fù)渲?,在固定拓?fù)涞那闆r下,具有不同輸入時(shí)延的二階多智能體系統(tǒng)的一致性問(wèn)題。通過(guò)構(gòu)造Lyapunov-Krasovskii函數(shù),利用Lyapunov穩(wěn)定性判據(jù),得到存在不同輸入時(shí)延情況下的二階多智能體連續(xù)系統(tǒng)一致性的充分條件,并用線性矩陣不等式表示,利用Matlab自帶的LMI工具箱可以得到不同時(shí)變時(shí)延的上界。
考慮n個(gè)智能體組成的二階連續(xù)系統(tǒng):
(1)
其中,xi(t)∈R和vi(t)∈R分別表示多智能體的位置和速度,ui為控制輸入。
針對(duì)不同時(shí)變輸入時(shí)延,采用無(wú)相對(duì)速度信息的一致性協(xié)議:
(2)
式中,k>0為控制增益,τi(t)為第i個(gè)智能體的時(shí)變輸入時(shí)延。因無(wú)向圖G為連通圖,因此,若達(dá)到一致,當(dāng)t→∞時(shí),vi(t)→0,xi(t)→ε,i=1,2…,n。本文考慮的輸入時(shí)延τi(t)具有以下條件:
2)0≤τi(t)≤hi,i=1,2,…,n,hi>0
寫成矩陣形式表示為:
(3)
式中:x(t)=[x1(t),x2(t),…,xn(t)]T,v(t)=[v1(t),v2(t),…,vn(t)]T,矩陣Ii為n×n階矩陣,其第i行對(duì)應(yīng)單位陣的第i行,其余值為0;Li的定義與之類似,其第i行對(duì)應(yīng)拉普拉斯矩陣L的第i行,其余值為0。
令x(t)=ε1n+Δ(t),式中,Δ(t)=[Δ1(t),Δ2(t),…,Δn(t)]T,1n=[1,1…,1]T。于是,式(3)等價(jià)為
(4)
令y(t)=[ΔT(t),vT(t)]T,式(4)又可改寫為
(5)。
為得到本文結(jié)論,首先引入兩個(gè)引理:
引理1[11]給定矩陣M,P,Q,D,E,且Q>0,E>0則:
引理2[12-13]對(duì)任意可微向量x(t)和任意常數(shù)對(duì)稱矩陣W>0,下列不等式成立:
定理1當(dāng)時(shí)變輸入時(shí)延滿足條件(1)時(shí),對(duì)于連通無(wú)向圖G,應(yīng)用協(xié)議(3),使得下列線性矩陣不等式
(6)
成立,則二階連續(xù)多智能體系統(tǒng)能夠達(dá)到一致。
證明:考慮Lyapunov-Krasovskii函數(shù)(7):
(7)
則求導(dǎo)可得:
(8)
由引理2可得式(9):
(9)
將式(5)代入可得:
(10)
(11)
當(dāng)輸入時(shí)延τi(t)滿足條件(2)時(shí),選擇Lyapunov-Krasovskii函數(shù)(12):
(12)
類似于定理1的證明,可得推論1:
推論1對(duì)于無(wú)向連通圖,存在合適的hi使系統(tǒng)(3)達(dá)到一致,最大時(shí)延hi可通過(guò)下列線性矩陣不等式獲得:
由于缺少時(shí)延導(dǎo)數(shù)上界信息,使得式(12)比式(7)少了一個(gè)積分項(xiàng),因此,求得的系統(tǒng)穩(wěn)定所允許時(shí)變輸入時(shí)延上界具有更大的保守性。
下面給出Matlab仿真實(shí)驗(yàn)以驗(yàn)證結(jié)論的有效性和正確性。一致性協(xié)議中k=1,多智能體間通信拓?fù)浣Y(jié)構(gòu)如
圖1所示。 多智能體系統(tǒng)含有5個(gè)智能體,固定無(wú)向拓?fù)湟约斑叺臋?quán)重如圖1所示。
本文針對(duì)具有不同輸入時(shí)延的二階連續(xù)多智能體系統(tǒng)進(jìn)行了研究。通過(guò)線性矩陣不等式的方法,得到了在固定無(wú)向連通拓?fù)錀l件下,具有時(shí)延導(dǎo)數(shù)信息和無(wú)導(dǎo)數(shù)信息時(shí),多智能體系統(tǒng)能夠達(dá)到平均一致性的充分條件,最后仿真驗(yàn)證了結(jié)果的有效性。
[1]Olfati-Saber R ,Fax J A,Murry R M.Consensus and cooperation in networked multi-agent systems[C].The Proceedings of the IEEE,2007.
[2]Sun Y G,Wang L.Consensus of multi-agent systems in directed networks with nonuniform time-varying delays[J]. IEEE Transactions on Automatic Control,2009,54(7):1607-1613.
[3]Meng Z Y,Ren W,Cao Y C.Leaderless and leader-following consensus with communication and input delays under a directed network topology[J].IEEE Trans on System, 2010,41(1):75-88.
[4]Tian Y P,Liu C L.Consensus of multi-agent systems with deverse input and communication delays[J].IEEE Trans on Automatic Control,2008,53(9):2122-2128.
[5]梁有明,劉成林.具有通信時(shí)延和輸入時(shí)延的一階多自主體的一致性[J].信息與控制,2012,41(1):14-21. Liang Youming,Liu Chenglin,Liu Fei.Consensus problem of first-order multi-agent systems with communication delay and input delay[J].Information and Control,2012,41(1):14-21.
[6]曾耀武,馮偉.具有時(shí)滯和不確定性多智能體魯棒一致性研究[J].復(fù)雜系統(tǒng)與復(fù)雜性科學(xué),2013,10(3):75-80. Zeng Yaowu,Feng Wei.Robust consensus analysis of multi-agent systems with both time-delay and uncertainty[J].Complex Systems and Complexity Science2013,10(3):75-80.
[7]Saber R O,Murray R.Consensus problems in networks of agents with switching topology and time-delays [J].IEEE Trans on Automatic Control,2004,49(9):1520-1533.
[8]Bliman P A,Trecate G F.Average consensus problems in networks of agents with delayed communications[J].Automatica,2008,44(8):1985-1995.
[9]Sun Y G,Wang L,Me G M.Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays[J].Systems and Control Letters,2008,57(2):175-183.
[10] Tang Z J, Huang T Z,Shao J L.Consensus of second-order multi-agent systems with nonuniform time-varing delays[J].Neuro Computing,2012,97:410-414.
[11] Boyd B,Ghaoui L E,F(xiàn)eron E,et al.Linear Matrix Inequalities in System and Control Theory[M].Philadelphia: SIAM,1994.
[12] Sun Y G,Wang L,Xie G M.Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays[J].Systems and Control Letters,2008,57( 1): 175-183.
[13] Sun Y G,Wang L,Xie G M.Stabilization of switched linear systems with multiple time-varying delays[C]∥Proceedings of the 45th IEEE Conference on Decision and Control. San Diego,USA,2006: 4069-4074.
(責(zé)任編輯 李進(jìn))
Consensus of Second-Order Multi-Agent Systems with Multiple Input Delays
WANG Pin,YAO Peiyang
(Information and Navigation College,Air Force Engineering University.Xi’an 710077, China)
A consensus problem is discussed about the second-order multi-agent system with multiple time-varying input delays.Firstly,by variable transformution,the convergence problem of second-order multi-agent systems is converted into the stability problem of an error system.Then,by system transformution,the stability problem of the second-order system is converted into the stability problem of the equivalent system. Based on linear matrix inequalities (LMI),by constructing Lyapunov-Krasovskii functions,sufficient conditions of consensus in undirected networks are obtained. At last,examples are given to demonstrate the effictiveness of the conclusion.
consensus; multi-agent systems; multiple time-varying input delays; linear matrix inequalities
10.13306/j.1672-3813.2016.04.014
2015-09-28;
2015-11-09
國(guó)家自然科學(xué)基金(61273048)
王品(1992-),男,山東萊陽(yáng)人,碩士研究生,主要研究方向?yàn)橛腥?無(wú)人協(xié)同、多智能體系統(tǒng)一致性。
TP27
A