薛亞林, 周建萍,2, 朱建萍, 崔 屹
(1. 上海電力學(xué)院 自動(dòng)化工程學(xué)院,上海 200090;2. 上海發(fā)電過(guò)程智能管控工程技術(shù)研究中心,上海 200090)
光伏發(fā)電中基于模糊自適應(yīng)修正變步長(zhǎng)最大功率點(diǎn)跟蹤的控制策略
薛亞林1, 周建萍1,2, 朱建萍1, 崔 屹1
(1. 上海電力學(xué)院 自動(dòng)化工程學(xué)院,上海 200090;2. 上海發(fā)電過(guò)程智能管控工程技術(shù)研究中心,上海 200090)
最大功率點(diǎn)跟蹤能夠有效快速地實(shí)現(xiàn)光伏陣列的最大功率輸出,提高光能轉(zhuǎn)化效率。針對(duì)傳統(tǒng)變步長(zhǎng)導(dǎo)納增量法在光伏陣列中最大功率點(diǎn)尋優(yōu)時(shí)步長(zhǎng)和閾值選擇上的困難,導(dǎo)致其動(dòng)態(tài)響應(yīng)速度和輸出功率波動(dòng)性以及跟蹤精度的缺陷,提出了一種新型變步長(zhǎng)控制參數(shù)的修正方案,利用模糊規(guī)則語(yǔ)言實(shí)時(shí)調(diào)整變換器的功率占空比;并分析了光伏電池的工作特性,建立其連續(xù)導(dǎo)電模式的小信號(hào)狀態(tài)空間模型并驗(yàn)證其穩(wěn)定性。最后,通過(guò)MATLAB/Simulink對(duì)比了與傳統(tǒng)定、變步長(zhǎng)導(dǎo)納增量法的仿真驗(yàn)證。試驗(yàn)表明: 模糊自適應(yīng)修正控制算法有效提高了系統(tǒng)的動(dòng)態(tài)響應(yīng)特性、縮短了尋優(yōu)時(shí)間,并具有較高的穩(wěn)態(tài)精度。
光伏發(fā)電; 電導(dǎo)增量法; 變步長(zhǎng); 最大功率點(diǎn)跟蹤; 模糊控制
隨著化石能源的逐漸枯竭和氣候環(huán)境的惡化,越來(lái)越多國(guó)家和企業(yè)的發(fā)展重點(diǎn)逐步轉(zhuǎn)向可再生能源[1]。太陽(yáng)能是新能源與可持續(xù)發(fā)展能源中的重要構(gòu)成部分,且具有清潔、高效、分布廣泛、易于大規(guī)模開(kāi)發(fā)等優(yōu)點(diǎn),得到了廣泛應(yīng)用。太陽(yáng)能發(fā)電系統(tǒng)輸出電流和功率易受外界環(huán)境(如PN結(jié)溫度、擴(kuò)散、電場(chǎng)、光照強(qiáng)度、外界負(fù)載等)和本身半導(dǎo)體結(jié)構(gòu)材料的影響,其功率輸出的工作特性具有明顯的非線性特點(diǎn)[2- 3],隨半導(dǎo)體材料PN結(jié)溫度和光強(qiáng)的變化而變化;為減小外界因素對(duì)光能轉(zhuǎn)化效率的影響,利用電力電子變換器接口控制其工作在特定環(huán)境下的最大功率點(diǎn)顯得尤為重要。
近年來(lái)海內(nèi)外學(xué)者對(duì)光伏系統(tǒng)和最大功率點(diǎn)跟蹤(Maximum Power Point Tracking, MPPT)的深入研究和探索,涌現(xiàn)了許多良好的控制方法。定電壓跟蹤法[4](Constant Voltage Tracking, CVT),光伏系統(tǒng)輸出P-U特性的最大功率點(diǎn)近似分布在一條垂線兩側(cè)附近,其Umpp與光伏電池Uoc存在一定的線性關(guān)系;具有易于實(shí)現(xiàn)并迅速接近最大功率點(diǎn)的優(yōu)點(diǎn),但此方法未考慮環(huán)境溫度對(duì)光伏發(fā)電系統(tǒng)電壓輸出的影響,無(wú)法實(shí)時(shí)隨溫度變化追蹤最大功率;相應(yīng)控制原理的方法還有短路電流比例系數(shù)法[5]以及兩者的綜合控制[6]。其中擾動(dòng)觀察法[7]和導(dǎo)納增量法(Incremental Conductance Method, INC)[8]的研究最為廣泛。擾動(dòng)觀察法結(jié)構(gòu)較為簡(jiǎn)單,輸入?yún)?shù)較少;需要注意的是,其輸入電壓和擾動(dòng)步長(zhǎng)的選擇對(duì)響應(yīng)速度和穩(wěn)態(tài)精度影響較大,在實(shí)際選取過(guò)程中往往折中考慮,而且在外界條件快速變化時(shí)容易進(jìn)入局部最優(yōu)解現(xiàn)象。導(dǎo)納增量法利用P′(u)=0的思想尋優(yōu)最大功率點(diǎn),因此穩(wěn)態(tài)精度較高,且在外界條件迅速改變時(shí)仍具有較好的跟蹤性能,但其閾值的選擇仍具有一定的困難,一般根據(jù)實(shí)踐經(jīng)驗(yàn)選取[9]。優(yōu)化算法諸如滑模控制[10]、神經(jīng)網(wǎng)絡(luò)控制[11]、模糊控制[12]等。模糊邏輯語(yǔ)言規(guī)則利用開(kāi)發(fā)者的經(jīng)驗(yàn),具有非線性特點(diǎn),依據(jù)實(shí)際功率輸出情況,改變Boost變換器占空比擾動(dòng)量,從一定程度上解決變化步長(zhǎng)和跟蹤精度之間的矛盾,從而優(yōu)化控制效果。但由于傳統(tǒng)的模糊邏輯無(wú)法將各種情況下的控制語(yǔ)言變量劃分出來(lái),因此性能改善有限,具有一定的局限性。
綜合考慮以上尋優(yōu)方法的特點(diǎn)和追蹤效果,本文將定電壓跟蹤控制和變步長(zhǎng)INC相聯(lián)合,利用CVT將電壓快速調(diào)節(jié)至光伏最大功率點(diǎn)附近,然后變步長(zhǎng)INC對(duì)電壓進(jìn)行微調(diào),充分發(fā)揮了兩者的特點(diǎn);文中還對(duì)INC進(jìn)行了改進(jìn),避免其步長(zhǎng)和閾值選擇的大小對(duì)追蹤穩(wěn)態(tài)精度產(chǎn)生影響而進(jìn)入局部最優(yōu)化,引入智能模糊控制將功率變換器占空比予以修正;根據(jù)光伏電池的輸出特性,建立Boost變換器的小信號(hào)狀態(tài)空間模型并驗(yàn)證其工作狀態(tài)下的穩(wěn)定性;針對(duì)以往的工程參數(shù)選取,給出了變步長(zhǎng)INC跟蹤最大功率點(diǎn)時(shí)步長(zhǎng)和閾值的不等式選取方法。在MATLAB/Simulink環(huán)境中建立仿真模型,對(duì)比了傳統(tǒng)定步長(zhǎng)、變步長(zhǎng)和新型INC的跟蹤效果,結(jié)果分析新型控制方法具有較快的動(dòng)態(tài)響應(yīng)特性和穩(wěn)態(tài)精度。
光伏電池本質(zhì)上是由半導(dǎo)體材料利用光生伏特效應(yīng)將光能轉(zhuǎn)化成電能,因此輸出功率具有一定的非線性特性,隨著外界溫度條件和光照強(qiáng)度的改變而改變;其數(shù)學(xué)等效電路模型如圖1所示[13-14]。
圖1 光伏陣列等效電路模型
由圖1中電路可得到其理論研究數(shù)學(xué)模型公式:
Ipv= Iph-I0-Ish=
(1)
式中:Iph——光生伏打電流;
Ipv——光伏電池輸出電流;
I0——半導(dǎo)體二極管反向飽和電流;
Rs、Rsh——光伏陣列等效串并聯(lián)電阻;
RL——外接負(fù)載電阻;
K——玻爾茲曼常數(shù)(K=1.38×10-23J/K);
Ns——串聯(lián)光伏單元個(gè)數(shù)。
該數(shù)學(xué)模型由于結(jié)構(gòu)復(fù)雜,屬于超越方程且不可避免的涉及Isc,計(jì)算參數(shù)眾多,然而在實(shí)際應(yīng)用中,無(wú)法獲取相關(guān)全部參數(shù),且光伏陣列輸出功率受光照強(qiáng)度和溫度變化的影響較大,因此普遍采用工程用光伏電池模型[15],即:
(2)
(3)
其中:
Φ=β(T-TB)+DIRs
式中:Um、Im——光伏陣列MPP時(shí)的電壓和電流;
SB、TB——光伏陣列出廠狀態(tài)的標(biāo)測(cè)光強(qiáng)和溫度;
S、T——實(shí)際光伏陣列運(yùn)行時(shí)刻的光強(qiáng)和溫度;
α、β——電流和電壓溫度系數(shù)。
化簡(jiǎn)后光伏陣列輸出功率為
(4)
為建立光伏陣列模型和測(cè)試其功率輸出特性,根據(jù)表1所示工程光伏板參數(shù)得到其輸出I-U曲線圖,利用擬合數(shù)據(jù)曲線取得仿真參數(shù)如表2所示;聯(lián)立式(2)搭建其光伏陣列仿真模型,并分析輸出功率隨光照強(qiáng)度和溫度變化時(shí)的工作特性。設(shè)定仿真溫度T為299K,依次改變光照強(qiáng)度為 600、800、1000W/m2,獲得光伏輸出功率與光強(qiáng)變化之間的影響關(guān)系,如圖2(a)所示;設(shè)定光強(qiáng)為1000W/m2恒定時(shí),順序改變環(huán)境溫度為284、299、314K,得到光伏輸出功率與環(huán)境溫度變化之間的影響關(guān)系,如圖2(b)所示。
表1 光伏陣列工程參數(shù)
表2 光伏陣列擬合仿真參數(shù)
圖2 光伏陣列P-U輸出特征曲線
從圖2中可以看出,所搭建光伏陣列模型其輸出功率能夠根據(jù)光照強(qiáng)度的增強(qiáng)而遞增,隨環(huán)境溫度的降低最大功率點(diǎn)而移動(dòng),符合光伏陣列的實(shí)際輸出特性,滿足其后續(xù)仿真所需要求。
2.1 功率變換器小信號(hào)建模
光伏電池輸出電壓較低,一般無(wú)法直接供正常市電負(fù)載使用,且在不同光強(qiáng)和環(huán)境溫度條件下,光伏陣列具有連續(xù)非線性特點(diǎn),并存在唯一最大功率點(diǎn),為實(shí)現(xiàn)升壓以及實(shí)時(shí)跟蹤最大功率輸出,通常外接升壓型Boost功率調(diào)整器。Boost型變換器因光照和溫度的擾動(dòng),其輸出直流電將會(huì)含有交流信號(hào)分量,為將該非線性連續(xù)變量轉(zhuǎn)化為線性問(wèn)題,以此構(gòu)建小信號(hào)狀態(tài)模型。圖3為MPPT的Boost變換器控制框圖。
圖3 Boost功率變換器電路控制框圖
根據(jù)功率變換器兩種工作狀況[16],可得以下電感電容等式關(guān)系:
地震動(dòng)數(shù)據(jù)覆蓋的頻帶越寬越好,以滿足地球物理及工程研究等各方面的需要。為了驗(yàn)證考慮強(qiáng)震和GPS數(shù)據(jù)時(shí)情況是否如此,我們對(duì)數(shù)據(jù)集在地面形變信息不同頻帶占優(yōu)勢(shì)的加速度、速度和位移域進(jìn)行了對(duì)比。一方面,我們對(duì)KiK-Net-BH強(qiáng)震記錄經(jīng)過(guò)經(jīng)驗(yàn)基線校正后進(jìn)行積分,獲得速度和位移地震圖。另一方面,我們對(duì)高速GPS時(shí)間序列進(jìn)行微分以獲得速度地震圖,但不導(dǎo)出加速度地震圖,這是因?yàn)?Hz的GPS采樣率較低,只能與低通濾波的加速度圖進(jìn)行對(duì)比。盡管在理論上目前GPS接收器的最高采樣率可達(dá)50Hz,然而預(yù)計(jì)由此獲得的加速度可能會(huì)有很強(qiáng)的噪聲,而且不能有任何實(shí)際把握用來(lái)替代強(qiáng)震記錄。
(5)
(6)
(7)
(8)
(9)
(10)
由式(3)可推得光伏陣列動(dòng)態(tài)串聯(lián)電阻為
(11)
(12)
2.1 電路參數(shù)設(shè)計(jì)及性能分析
(13)
(14)
(15)
(16)
(17)
電感電流在穩(wěn)態(tài)運(yùn)行的前提條件下連續(xù)導(dǎo)電時(shí),功率開(kāi)關(guān)管需在周期內(nèi)導(dǎo)通與關(guān)斷,且電感電流不為零。將表1參數(shù)代入公式并留有一定的裕量,計(jì)算得變換器濾波電感為L(zhǎng)=3mH,濾波電容C1=25μF,負(fù)載側(cè)電容C2=450μF;根據(jù)式(10)代入相關(guān)參數(shù)驗(yàn)證Boost功率變換器的伯德圖如圖4所示。該設(shè)計(jì)電路的相位裕度為90.2deg,系統(tǒng)響應(yīng)狀態(tài)良好,且在其中低頻階段,該系統(tǒng)幅頻特性有較寬的-20dB/dec的斜率頻段,驗(yàn)證了所設(shè)計(jì)的功率變換器電路符合要求且性能狀態(tài)良好。
圖4 Boost功率變換器動(dòng)靜態(tài)響應(yīng)特性伯德圖
3.1 傳統(tǒng)變步長(zhǎng)算法理論分析
傳統(tǒng)的定步長(zhǎng)INC在搜尋最大功率點(diǎn)時(shí)存在尋優(yōu)精度和動(dòng)態(tài)響應(yīng)特性無(wú)法兼顧的缺點(diǎn),因此變步長(zhǎng)INC逐漸得到廣泛關(guān)注。一般變步長(zhǎng)INC尋優(yōu)最大功率有2種途徑: 一是依功率變化率P′(u)的不同階段設(shè)置不同的尋優(yōu)步長(zhǎng);另一種是按照光伏陣列P-U單峰值曲線的導(dǎo)數(shù)值作為變步長(zhǎng)的速率因子。這種算法能夠使得步長(zhǎng)以自適應(yīng)的方式進(jìn)行尋優(yōu),且在越靠近dP/dU附近時(shí),自適應(yīng)步長(zhǎng)越小,因此這種控制算法具有相對(duì)較好的控制特性。
在P-U曲線上取時(shí)間k時(shí)的輸出電壓U(k)和電流I(k)值,D(k)表示在該時(shí)刻的占空比,變步長(zhǎng)算法為D(k)=D(k-1)±N(dP/dU);又由于dP/dU≈ΔP/ΔU,可化簡(jiǎn)為
D(k)=D(k-1)±N(ΔP/ΔU)
(18)
從圖2可以看出最大功率點(diǎn)兩側(cè)的P-U曲線并非成正態(tài)分布,右側(cè)斜率較左側(cè)大,所以傳統(tǒng)變步長(zhǎng)依據(jù)最大功率點(diǎn)兩側(cè)P′(u)在每一次的占空比控制中的速度因子無(wú)法一致;由式(18)可知,變步長(zhǎng)大小范圍主要有系數(shù)N決定,一般該系數(shù)由實(shí)踐經(jīng)驗(yàn)經(jīng)動(dòng)態(tài)響應(yīng)速度與跟蹤精度折中處理,往往無(wú)法有效確定,故系數(shù)N仍需要深入優(yōu)化。文中為保證步長(zhǎng)能夠收斂于MPPT尋優(yōu)算法的上限來(lái)確定該參數(shù),故:
(19)
(20)
ΔDmax為固定步長(zhǎng)的最大值。該方法能夠有效確定傳統(tǒng)變步長(zhǎng)參數(shù),充分考慮動(dòng)態(tài)和穩(wěn)態(tài)兩者的性能。
3.2 模糊算法修正設(shè)計(jì)
針對(duì)傳統(tǒng)導(dǎo)納增量變步長(zhǎng)斜率本身的缺陷,文獻(xiàn)[17]根據(jù)變步長(zhǎng)斜率P′(u)所處不同階段的值,改變步長(zhǎng)系數(shù),動(dòng)態(tài)調(diào)整尋優(yōu)精度,但所提方法受迭代次數(shù)影響,動(dòng)態(tài)響應(yīng)性能受到較大影響。本文引入了模糊邏輯語(yǔ)言規(guī)則對(duì)光伏輸出功率占空比予以修正。一般模糊控制變量和語(yǔ)言規(guī)則的多少?zèng)Q定了對(duì)控制對(duì)象的精細(xì)程度,影響其系統(tǒng)的輸出性能;但過(guò)多的模糊邏輯語(yǔ)言數(shù)量,也會(huì)造成其控制器的設(shè)計(jì)復(fù)雜。
根據(jù)變步長(zhǎng)INC的尋優(yōu)性能,新型修正算法共有兩個(gè)輸入變量和一個(gè)輸出變量。輸入變量分別為dP/dU及其變化率ΔdP/dU;占空比修正量為其輸出變量。圖5為模糊控制MPPT占空比修正量控制框圖;E(n)、Ec(n)分別為P′(u)和 ΔP′(u),S(n)為占空比修正量,S′(n)為CVT變步長(zhǎng)導(dǎo)納增量初始占空比。
圖5 模糊控制MPPT占空比修正控制框圖
各模糊變量隸屬度函數(shù)為{NB,NM,NS,ZE,PS,PM,PB};輸入變量模糊論域選擇為{-6,6},輸出占空比修正變量模糊論域選擇為{-0.04,0.04};具體的模糊邏輯控制語(yǔ)言規(guī)則如表3所示。
表3 模糊控制語(yǔ)言規(guī)則
模糊邏輯語(yǔ)言規(guī)則修正光伏陣列輸出功率占空比設(shè)計(jì)原則: 在正向功率尋優(yōu)過(guò)程中,輸入功率差值為正,則繼續(xù)向該方向調(diào)節(jié),同時(shí)根據(jù)P′(u) 和ΔP′(u)的輸入量調(diào)節(jié)占空比修正量,使總的變步長(zhǎng)速度因子前后大致保持一致;在負(fù)向功率尋優(yōu)過(guò)程中,輸入功率差值為負(fù),則向反方向調(diào)節(jié),同時(shí)調(diào)節(jié)輸出占空比修正量,減小變步長(zhǎng)速度因子的大小。
光伏系統(tǒng)工作初始,起動(dòng)電壓較低,為盡快實(shí)現(xiàn)最大功率點(diǎn)的尋優(yōu),提高系統(tǒng)的動(dòng)態(tài)響應(yīng)性,采取CVT算法作為光伏陣列的起動(dòng)電壓,一般Umpp在0.78Uoc附近[18-19],隨后采取修正變步長(zhǎng)INC控制策略尋優(yōu)最大功率點(diǎn)。其控制流程如圖6所示。
圖6 模糊自適應(yīng)修正變步長(zhǎng)INC控制算法流程圖
光伏發(fā)電系統(tǒng)與外接電路的連接,其最大功率點(diǎn)的尋優(yōu)過(guò)程是通過(guò)該電路和負(fù)載之間阻抗轉(zhuǎn)換器的匹配予以實(shí)現(xiàn),因此能夠通過(guò)光伏陣列功率輸出占空比的調(diào)節(jié)以獲得最大功率尋優(yōu)。
在MATLAB/Simulink仿真環(huán)境中搭建圖3所示功率變換器電路,其中光伏陣列相關(guān)參數(shù)見(jiàn)表1和表2;占空比采樣周期fsw=10kHz,三角波幅值設(shè)置為[-1,1],優(yōu)化后變步長(zhǎng)算法速度因子N=0.0014515,光伏陣列溫度設(shè)置為25℃,光強(qiáng)為1000W/m2;仿真結(jié)果對(duì)比了傳統(tǒng)定、變步長(zhǎng)INC及本文所提新型模糊自適應(yīng)修正變步長(zhǎng)控制策略下的最大功率點(diǎn)尋優(yōu)過(guò)程。
仿真結(jié)果如圖7~圖9所示。圖7為傳統(tǒng)定步長(zhǎng)與新型模糊自適應(yīng)修正變步長(zhǎng)策略的仿真對(duì)比結(jié)果: 其動(dòng)態(tài)響應(yīng)方面,新型控制策略達(dá)到最大功率點(diǎn)的穩(wěn)定時(shí)間為0.022s,而傳統(tǒng)定步長(zhǎng)算法顯著落后于新型模糊自適應(yīng)策略,其達(dá)到穩(wěn)定時(shí)間約為0.052s;在跟蹤精度上,由局部放大圖可以看到,傳統(tǒng)定步長(zhǎng)輸出功率響應(yīng)最大波動(dòng)量約為0.5W,新型控制算法輸出功率波動(dòng)量約為8e-4 W,顯著提高了輸出功率的穩(wěn)定性。圖8為傳統(tǒng)變步長(zhǎng)與新型模糊自適應(yīng)修正策略仿真對(duì)比,在動(dòng)態(tài)響應(yīng)速度與跟蹤精度上,新型模糊控制策略仍有良好的性能,傳統(tǒng)變步長(zhǎng)算法在跟蹤精度上與新型算法減少約3W的功率輸出,因此由圖7~圖8可以得出,傳統(tǒng)的INC在動(dòng)態(tài)響應(yīng)與跟蹤精度上無(wú)法兼顧。圖9為經(jīng)優(yōu)化速度因子后傳統(tǒng)變步長(zhǎng)與新型修正變步長(zhǎng)模糊算法的仿真對(duì)比,可以看出優(yōu)化后傳統(tǒng)變步長(zhǎng)算法較優(yōu)化前性能有明顯提高;從局部放大圖可看出新型模糊算法在響應(yīng)速度和尋優(yōu)精度上有了進(jìn)一步的優(yōu)化,提高了近0.01W的輸出功率。對(duì)比幾種不同控制方法的算例仿真,光伏系統(tǒng)響應(yīng)曲線上升平穩(wěn),未出現(xiàn)功率波動(dòng),從而也驗(yàn)證了所建立功率變換器小信號(hào)模型的穩(wěn)定性和可靠性。
圖7 傳統(tǒng)定步長(zhǎng)與新型模糊自適應(yīng)修正變步長(zhǎng)策略仿真對(duì)比
圖8 傳統(tǒng)變步長(zhǎng)與新型模糊自適應(yīng)修正變步長(zhǎng)策略仿真對(duì)比
圖9 優(yōu)化后傳統(tǒng)變步長(zhǎng)與新型模糊自適應(yīng)修正變步長(zhǎng)策略仿真對(duì)比
本文分析了光伏電池模型結(jié)構(gòu)、建立連續(xù)導(dǎo)電模式小信號(hào)模型并分析其穩(wěn)定性。針對(duì)傳統(tǒng)光伏最大功率點(diǎn)尋優(yōu)算法的特點(diǎn)和不足,優(yōu)化其變步長(zhǎng)速度因子,并在此基礎(chǔ)上設(shè)計(jì)了一種新型模糊自適應(yīng)修正變步長(zhǎng)控制策略。通過(guò)MATLAB/Simulink的仿真試驗(yàn)驗(yàn)證了所搭建光伏模塊的正確性以及Boost功率變換器模型的穩(wěn)定性;最后模擬了傳統(tǒng)控制算法與新型模糊算法的最大功率點(diǎn)尋優(yōu),驗(yàn)證了新型修正方案具有快速的動(dòng)態(tài)響應(yīng)性能、良好的穩(wěn)態(tài)尋優(yōu)精度和更大的功率輸出。
[1] 殷志強(qiáng).中國(guó)可再生能源發(fā)展戰(zhàn)略研究叢書: 太陽(yáng)能卷[M].北京: 中國(guó)電力出版社,2008.
[2] 周林,武劍,栗秋華,等.光伏陣列最大功率點(diǎn)跟蹤控制方法綜述[J].高電壓技術(shù),2008,34(6): 1145-1154.
[3] 劉興杰,郭棟.基于電氣外特性的光伏發(fā)電系統(tǒng)模型等效方法[J].電工技術(shù)學(xué)報(bào),2014,29(10): 231-240.
[4] AGANAH K A, LEEDY A W. A constant voltage maximum power point tracking method for solar powered systems[C]∥IEEE 48rd Southeastern Symposium on System Theory, 2011: 125-130.
[5] XU D, MA Y D, CHEN Q H. A global maximum power point tracking method based on interval short-circuit current[C]∥16th European conference on Power Electronics and Applications(EPE’14-ECCE Europe), 2014: 1-8.
[6] 高金輝,李國(guó)成.一種開(kāi)路電壓和短路電流相結(jié)合的MPPT算法研究[J].電力系統(tǒng)保護(hù)與控制,2015,43(24): 96-100.
[7] GOMATHY S, SARAVANAN S, THANGAVEL D S. Design and implementation of maximum power point tracking(MPPT) algorithm for a standalone PV system[J]. International Journal of Scientific and Engineering Research, 2012,3(3): 1-7.
[8] ALI A N A, SAIED M H, MOSTAFA M Z, et al. A survey of maximum PPT techniques of PV systems[C]∥IEEE Energy Tech, USA, Cleveland, 2012: 1-17.
[9] 周建萍,朱建萍.自適應(yīng)變步長(zhǎng)電導(dǎo)增量法的最大功率點(diǎn)跟蹤控制[J].上海電力學(xué)院學(xué)報(bào),2014,30(3): 235-239.
[10] ELOBAID L M, ABDELSALAM A K, ZAKZOUK E E. Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey[J]. IET Renewable Power Generation, 2015,9(8): 1043-1063.
[11] PANDA S, VASUDEVA B K, SREEDEVI A. Design of boost converter with second order sliding mode control to attain MPPT for stand alone PV system[C]∥2015 Annual IEEE India Conference(INDICON), India, 2015: 1-6.
[12] LARBES C, CHEIKH S, OBEIDI T, et al. Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system[J]. Renewable Energy, 2009, 34(10): 2093-2100.
[13] 楊永恒,周克亮.光伏電池建模及MPPT控制策略[J].電工技術(shù)學(xué)報(bào),2011,26(S1): 229-234.
[14] 潘學(xué)萍,張?jiān)?,鞠平,?太陽(yáng)能光伏電站等效建模[J].電網(wǎng)技術(shù),2015,39(5): 1171-1178.
[15] 蘇建徽,余世杰,趙為,等.硅太陽(yáng)電池工程用數(shù)學(xué)模型[J].太陽(yáng)能學(xué)報(bào),2001,22(4): 409- 412.
[16] 張衛(wèi)平,陳亞愛(ài),關(guān)曉菡.開(kāi)關(guān)變換器的建模與控制[M].北京: 中國(guó)電力出版社,2006.
[17] LIU F R, DUAN S X, LIU F, et al. A variable step size INC MPPT method for PV systems[J]. IEEE Trans on Industrial Electronics, 2008,55(7): 2622-2628.
[18] HU J, ZHANG J C, WU H B. A novel MPPT control algorithm based on numerical calculation for PVgeneration systems[C]∥IEEE 6th International Power Electronics and Motion Control Conference, 2009: 1215-1219.
[19] 王麗萍,張建成.光伏電池最大功率點(diǎn)跟蹤控制方法的對(duì)比研究及改進(jìn)[J].電網(wǎng)與清潔能源,2011,27(2): 52-55.
Modified Type of Variable Step Size Maximum Power Point Tracking Control Strategy Based on Fuzzy Adaptive for Photovoltaic Arrays in Photovoltaic Power Generation*
XUEYalin1,ZHOUJianping1,2,ZHUJianping1,CUIYi1
(1. School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2. Shanghai Engineering Research Center of Intelligent Management and Control for Power Process,Shanghai 200090, China)
The maximum power point tracking(MPPT) can effectively and quickly realize the maximum power output of the photovoltaic array, and improve the efficiency of light energy conversion. A novel variable step size control parameter correction scheme was proposed according to the traditional variable step size incremental conductance algorithm in photovoltaic system maximum power point tracking when the step size and threshold selection difficult, resulting in the dynamic response speed and output power fluctuation and tracking accuracy of the defects. By using fuzzy language rules, the power duty of the converter was adjusted in real time and the working characteristics of the photovoltaic cells were analyzed. The small signal state space model of the continuous conduction mode was established and its stability was verified. Finally, by comparing with the traditional fixed step and variable step incremental conductance method through the MATLAB/Simulink simulation, experiments showed that the fuzzy adaptive control algorithm could effectively improve the dynamic response characteristics of the system, shorten the search time and had a higher steady-state precision.
photovoltaic power generation; incremental conductance method; variable step-size; maximum power point tracking(MPPT); fuzzy control
國(guó)家自然科學(xué)基金項(xiàng)目(61275038);上海市重點(diǎn)科技攻關(guān)計(jì)劃項(xiàng)目(14110500700);上海市科學(xué)技術(shù)委員會(huì)工程技術(shù)研究中心資助項(xiàng)目(14DZ2251100)
薛亞林(1991—),男,碩士研究生,研究方向?yàn)樾履茉窗l(fā)電及儲(chǔ)能技術(shù)在微電網(wǎng)中的應(yīng)用。 周建萍(1978—),女,博士研究生,副教授,研究方向?yàn)榉植际桨l(fā)電、微電網(wǎng)的運(yùn)行與仿真。
TM 301.2
A
1673-6540(2016)12- 0011- 07
2016-05-18