沈友青,黃國源,王配才,黃志強,代會瑩
大強度間歇運動對高脂喂養(yǎng)大鼠代謝表征和骨骼肌脂代謝基因表達的影響
沈友青1,黃國源2,王配才3,黃志強1,代會瑩1
研究目的:探討大強度間歇運動對高脂誘導(dǎo)大鼠肥胖癥的預(yù)防作用及骨骼肌脂代謝調(diào)控機制,為肥胖癥的預(yù)防提供理論和實踐依據(jù)。研究方法:37只雄性SD大鼠分為對照安靜組(CS組)、高脂安靜組(HS組)、高脂持續(xù)運動組(HE組)和高脂間歇運動組(HI組)。HE組和HI組分別進行低強度持續(xù)運動和大強度間歇運動訓(xùn)練,每周5天,共10周。定期測量攝食量和體重,采用全自動生化分析技術(shù)檢測血脂、血糖含量,Elisa試劑盒檢測血清胰島素含量,H&E染色法觀察脂肪細胞大小,Real-time PCR技術(shù)檢測骨骼肌脂代謝調(diào)控基因Rev-erbα、SCD1、CPT1和FAT/CD36 mRNA相對表達量,Western blot技術(shù)檢測各調(diào)控基因的蛋白表達量。結(jié)果:HS組體重、血脂和血糖、脂肪細胞大小顯著增加,QUICKI指數(shù)下降。HI組體重、血脂、血糖和脂肪細胞大小明顯降低,QUICKI指數(shù)升高;且效果明顯優(yōu)于低強度持續(xù)運動方式。HS組FAT/CD36 和SCD1 mRNA與蛋白表達量明顯高于CS組;HI組Rev-erbα、FAT/CD36和CPT1 mRNA表達量顯著高于HS組;HE組與HS組無統(tǒng)計學(xué)差異。結(jié)論:高脂飲食誘導(dǎo)大鼠代謝表征和骨骼肌脂代謝異常。分子生物學(xué)機制分析表明,大強度間歇運動促進脂肪酸跨膜轉(zhuǎn)運、胞內(nèi)合成和參與β氧化,有效預(yù)防高脂飲食誘導(dǎo)的代謝表征異常和骨骼肌脂質(zhì)代謝紊亂,其效果明顯優(yōu)于低強度持續(xù)運動方式。大強度間歇運動刺激Rev-erbα表達上調(diào),增加對脂代謝調(diào)節(jié)因子的調(diào)控,可能是維持骨骼肌脂質(zhì)穩(wěn)態(tài)適應(yīng)的新機制。關(guān)鍵詞:低強度持續(xù)運動;大強度間歇運動;骨骼肌;Rev-erbα;脂肪酸轉(zhuǎn)運蛋白;硬脂酰CoA去飽和酶1;肉毒堿棕櫚酰轉(zhuǎn)移酶1
肥胖癥(Obesity)與飲食不健康、體力活動水平低等不良生活方式密切相關(guān),被視為是最主要的可預(yù)防性疾病;降低其誘發(fā)因素,如體力活動不足、高脂膳食等,是實現(xiàn)肥胖癥初級預(yù)防的重要理念和關(guān)鍵目標(biāo)[36,50]。但如何采取有效措施預(yù)防肥胖癥的發(fā)生,是當(dāng)今預(yù)防醫(yī)學(xué)和運動科學(xué)領(lǐng)域亟待解決的重要問題。美國運動醫(yī)學(xué)會( ACSM) 發(fā)布的2015年度世界健身流行趨勢的報告中,將大強度間歇運動作為關(guān)注的熱點之一[49]。有動物實驗和人體實驗研究表明,大強度間歇運動可提高心肺機能、促進糖脂代謝和增加氧化應(yīng)激能力,是心血管疾病、糖尿病等慢性病干預(yù)的重要選擇[1-3,25,39]。大強度間歇運動是一種由快速、大強度運動,間歇采用安靜或低強度運動恢復(fù)方式而實現(xiàn)的運動形式,由運動強度、運動時間、重復(fù)次數(shù)、間歇時間及恢復(fù)方式等要素構(gòu)成[19]。該運動方式可利用較少的鍛煉時間達到類似或優(yōu)于傳統(tǒng)持續(xù)運動方式的鍛煉效果,且其運動形式的變化可消除鍛煉時的枯燥感,有利于鍛煉者堅持運動[13,15,28,45]。目前有關(guān)大強度間歇運動對高脂膳食誘導(dǎo)肥胖癥的預(yù)防效果及其脂質(zhì)代謝調(diào)控作用鮮有報道。
慢性病運動干預(yù)與骨骼肌病理生理適應(yīng)機制有關(guān),該領(lǐng)域是運動科學(xué)的研究熱點[14,37]。研究發(fā)現(xiàn),核受體Rev-erbα是骨骼肌脂代謝核心轉(zhuǎn)錄調(diào)控因子,在物質(zhì)代謝和能量穩(wěn)態(tài)維持中發(fā)揮關(guān)鍵作用[11,12,46]。已發(fā)現(xiàn)Rev-erbα與慢性代謝性疾病的發(fā)生發(fā)展密切相關(guān),是重要的藥物靶標(biāo)[30]。目前關(guān)于運動干預(yù)聯(lián)合高脂喂養(yǎng)對骨骼肌Rev-erbα表達及其脂肪酸代謝調(diào)節(jié)鮮有報道。本研究探討大強度間歇運動對高脂喂養(yǎng)大鼠代謝表征和骨骼肌脂代謝調(diào)控因子的影響,并以低強度持續(xù)運動作為科學(xué)對照,研究大強度間歇運動對肥胖癥的預(yù)防作用,并分析可能存在骨骼肌適應(yīng)機制,為肥胖癥等慢性病的預(yù)防提供理論和實踐依據(jù)。
1.1 主要儀器和試劑
主要儀器:ZH-PT動物實驗跑臺、Aeroset全自動生化分析儀、RM2016石蠟切片機、EG1160石蠟包埋機、DP72電子顯微鏡、Thermo超低溫冰箱、X1R高速冷凍離心機、Avanti J-26 xp冷凍離心機、PICO-17臺式離心機、Eppendorf紫外分光光度計、JY600C水平電泳槽、Mini-P4垂直電泳儀、Bio-rad水平板半干電轉(zhuǎn)儀、BOX EF2凝膠成像分析系統(tǒng)、IQTM5 MyCycler PCR檢測系統(tǒng)、NC膜(HATF00010,Mi11ipore公司)。
主要試劑:大鼠胰島素Elisa試劑盒(美國Linco公司)、蘇木精和伊紅(國藥集團),QuantiTect反轉(zhuǎn)錄試劑盒、QuantiTect SYBR Green PCR試劑盒。β-actin(NM_013200)、Rev-erbα(NM_145775)、SCD1(NM_139192)、FAT/CD36(NM_031561)、CPT1(NM_013200)引物均購自Qiagen公司。BCA蛋白定量測定試劑盒(PICPI23223,Thermo公司);ECL化學(xué)發(fā)光試劑盒(WBKLS0100,Mi11ipore公司)。一抗GADPH(sc-48166)、Rev-erbα(sc-47626)、SCD1(sc-14720)、FAT/CD36(sc-7641)、CPT1(sc-20514)和二抗驢抗羊 IgG-HRP(sc-2020)均購自Santa Cruze公司。
1.2 實驗動物與訓(xùn)練方案
8~10周齡普通級雄性SD大鼠37只,初始體重190±15 g,由武漢大學(xué)實驗動物中心/ABSL-III實驗室提供。適應(yīng)性喂養(yǎng)后,稱量體重并采用簡化分層隨機抽樣法分為4組:對照安靜組(CS,n=11)、高脂安靜組(HS,n=10)、高脂持續(xù)運動組(HE,n=8)和高脂間歇運動組(HI,n=8)。每籠4~5只,燈控調(diào)節(jié)晝夜節(jié)律12∶12 h,室溫23±1 ℃,濕度40%~60%。自由進食和飲水,飼料為純成份對照飼料(D12450B,10%Fat)和高脂飼料(D12451,45%Fat),由美國Research Diets公司提供。D12450B和D12451的能量密度分別為3.85 kcal/g、4.73 kcal/g[48]。
1.3 體重與攝食量記錄
喂養(yǎng)期間仔細觀察并記錄大鼠的一般狀況。采用電子天平稱量日喂食量和剩食量(精確度為0.1 g),并計算攝食量,根據(jù)飼料的能量密度計算每組大鼠的熱能攝入量。采用電子稱稱量體重(精確度為0.5 g),每周記錄2次。1.4 血液生化指標(biāo)檢測
建模結(jié)束后禁食12 h,采樣時間控制在上午8:00~10:00。2%戊巴比妥鈉(40 mg/kg)腹腔注射麻醉,備皮消毒。采集腹主動脈血7 mL,靜置2 h后4℃ 3 000 rpm離心15 min,收集血清待測。檢測指標(biāo)包括血脂(TG、TC、LDL-C和HDL-C)、血糖(GLU)和胰島素。血脂和血糖采用全自動生化分析儀檢測,胰島素水平采用大鼠胰島素Elisa試劑盒檢測。胰島素敏感性利用QUICKI(Quantitative insulin sensitivity check index)指數(shù)評價,根據(jù)公式(1)計算,其中I0代表空腹胰島素含量(μU/mL),G0代表空腹血糖濃度(mg/dL)[35,52]。
(1)
1.5 脂肪組織重量與H&E染色觀察
高中的知識體系中往往蘊含著很多數(shù)學(xué)的思想方法。人教版高中數(shù)學(xué)必修1中將函數(shù)零點引進后,將函數(shù)的零點轉(zhuǎn)化為方程的根,又可以轉(zhuǎn)化為函數(shù)圖像與x軸交點的橫坐標(biāo),還可以轉(zhuǎn)化成兩個函數(shù)圖像交點的橫坐標(biāo),這就充分體現(xiàn)著數(shù)學(xué)的函數(shù)與方程的數(shù)學(xué)思想,以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,還滲透著轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法。所以對于數(shù)學(xué)的結(jié)構(gòu)教學(xué),要結(jié)合數(shù)學(xué)思想方法幫助我們更快更好的發(fā)現(xiàn)數(shù)學(xué)結(jié)構(gòu)。
1.6 骨骼肌組織取材與目標(biāo)基因 mRNA表達量檢測
分離腓腸肌,置于1.5 mL消毒處理后的EP管中,放入液氮罐和-80℃超低溫冰箱保存,用于靶分子生物學(xué)指標(biāo)檢測。基因檢測采用兩步法Real-time PCR,提取骨骼肌總RNA,檢測純度和完整性;反轉(zhuǎn)錄合成cDNA,總反應(yīng)體系為20 μL,反應(yīng)條件為:65 ℃溫育2 min;擴增42 ℃ 60 min,70 ℃ 5 min。按照QuantiTect SYBR Green PCR試劑盒說明書操作,兩步法擴增。采用3個復(fù)孔,反應(yīng)體系為25 μL,反應(yīng)條件為:1)95 ℃,15 min。2)94 ℃,15 s;57 ℃,30 s;72 ℃,30 s;循環(huán)35次。根據(jù)參考基因β-actin和目標(biāo)基因的循環(huán)次數(shù)計算Rev-erbα、FAT/CD36、SCD1、CPT1 mRNA相對表達量[44]。
1.7 靶分子的蛋白表達量檢測
蛋白檢測采用Western blot法,抽提總蛋白,進行蛋白濃度測定。SDS-PAGE電泳,每孔上樣量為30 μg蛋白;電壓為濃縮膠80 V,分離膠120 V。將目標(biāo)蛋白轉(zhuǎn)至NC膜,電流量按照膜面積1.5 mA/cm2設(shè)置,轉(zhuǎn)膜時間約2 h。用TBST配制5%脫脂奶粉封閉膜,4 ℃過夜后TBST洗膜,孵育一抗,37 ℃孵育2 h。TBST洗膜,孵育二抗,37 ℃孵育2 h。GAPDH為內(nèi)參,一抗稀釋比例為GAPDH 1∶1500、REV-ERBα 1∶200、FAT/CD36 1∶200、SCD1 1∶1 000、CPT1 1∶200,二抗稀釋比例為1∶2 000。ECL 化學(xué)發(fā)光液反應(yīng)1 min,X光片暗室曝光,凝膠成像分析系統(tǒng)掃描膠片并拍照。
1.8 數(shù)據(jù)處理
2.1 各組大鼠攝食量與體重比較
HS組均只日攝食量低于CS組(P<0.05),而高脂組間攝食量無明顯差異;熱能攝入量各組間均無統(tǒng)計學(xué)差異(表1)。喂養(yǎng)期間,各組體重呈上升趨勢(圖1);10周后,HS組終末體重(P<0.01)和凈增體重(P<0.01)較CS組分別高15.9%和31.4%。HI組終末體重(P<0.01)和凈增體重(P<0.01)明顯低于HS組;HE組與HS組無顯著差異。
表 1 本研究各組大鼠均只攝食量、熱能攝入量與體重比較一覽表
Table 1 Effect of Exercise and Diet on Food Consumption,Caloric Intake and Body Weight
CSHSHEHI攝食量(g/d)22.5±0.619.3±0.6*19.5±0.619.0±0.7熱能攝入量(kcal/d)86.8±2.291.3±2.892.3±3.189.9±3.4初始體重(g)205.5±7.4203.1±3.8208.8±2.4203.3±2.7終末體重(g)426.0±9.0493.6±18.6**468.3±16.9406.6±18.9##
注:* 表示與CS組對比P<0.05,**表示與CS組對比P<0.01,#表示與HS組對比P<0.05,##表示與HS組對比P<0.01,下同。
圖 1 造模期間各組大鼠每周體重變化曲線圖
Figure 1. Change Curve of Rats’ Body Weight during 10 Weeks
2.2 血液生化指標(biāo)比較
HS組TG(P<0.01)、TC(P<0.01)、LDL-C(P<0.05)、GLU(P<0.01)含量高于CS組;QUICKI指數(shù)明顯低于CS組(P<0.01)(表2)。在高脂組中,HI組TG(P<0.05)和GLU(P<0.01)明顯低于HS組,QUICKI指數(shù)明顯高于HS組(P<0.01);而HE組與HS組間無統(tǒng)計學(xué)差異。2.3 脂肪重量與H&E染色觀察結(jié)果
HS組脂肪墊重量(RET,P<0.01;MES,P<0.01;EPI,P<0.01)和脂肪組織總重量(P<0.01)均顯著高于CS組(圖2)。高脂組中,HI組脂肪墊重量(RET,P<0.01;MES,P<0.01;EPI,P<0.01)、脂肪組織總重量(P<0.01)顯著低于HS組。HI組與HE組脂肪墊重量部分存在差異,而脂肪組織總重存在明顯差異(P<0.05)。
表 2 各組大鼠血液生化指標(biāo)差異性比較一覽表
Table 2 Effect of Exercise and Diet on Serum Biochemical Index
CSHSHEHITG(mmol/L)0.33±0.020.61±0.09**0.41±0.080.29±0.05#TC(mmol/L)1.22±0.081.54±0.04**1.45±0.031.53±0.07HDL-C(mmol/L)0.44±0.020.44±0.010.40±0.020.42±0.02LDL-C(mmol/L)0.18±0.020.23±0.01*0.21±0.010.23±0.01GLU(mmol/L)7.86±0.4113.95±0.70**11.06±0.878.63±0.75##Insulin(mU/L)13.75±0.6515.13±0.4514.87±0.5314.69±0.42QUICKI0.305±0.0030.280±0.002**0.287±0.0050.298±0.004##
圖 2 各組大鼠各部位脂肪墊重量與脂肪組織總重對比圖
Figure 2. Fat Weights in Different Regions and Total Fat Weights in All Groups
注:△表示與HI組對比P<0.05,△△表示與HI組對比P<0.01,下同。RET:腎周脂肪組織;MES:大網(wǎng)膜脂肪組織;EPI:睪周脂肪組織;TOTAL:脂肪組織總量。
采集腎周脂肪觀察脂肪細胞形態(tài)學(xué)變化,鏡下觀顯示脂肪細胞邊界清晰(圖3)。HS組脂肪細胞平均面積明顯大于CS組(P<0.01);HE組和HI組較HS組脂肪細胞平均面積小(HE vs HS,P<0.01;HI vs HS,P<0.01),且HI組明顯小于HE組(P<0.05)(圖4)。
2.4 骨骼肌Rev-erbα、FAT/CD36、SCD1和CPT1 mRNA相對表達量和蛋白印跡
HS組骨骼肌Rev-erbα mRNA和CPT1 mRNA相對表達量與CS組無統(tǒng)計學(xué)差異,而FAT/CD36 mRNA(P<0.05)和SCD1mRNA(P<0.01)明顯高于CS組。高脂組中,HI組Rev-erbα、FAT/CD36和CPT1 mRNA相對表達量均顯著高于HS組(P<0.01);HI組FAT/CD36 mRNA表達量高于HE組(P<0.05);HE組與HS組各目標(biāo)基因相對表達量均無統(tǒng)計學(xué)差異(圖5-A)。蛋白印跡顯示(圖6-B)與mRNA表達水平基本一致。
圖 3 各組大鼠脂肪組織H&E染色顯微鏡下觀測示意圖(×200倍,刻度尺為50 μm)
Figure 3. Histological Evaluation of Lipid Accumulation in Retroperitoneal Region
圖 4 各組大鼠脂肪細胞平均面積比較圖
Figure 4. Comparison of Average Size of Adipose Cell in All Groups
圖 5 各組大鼠骨骼肌目標(biāo)基因mRNA相對表達量和蛋白表達圖譜
Figure 5. Effect of Diet and Exercise on Target Genes and Protein Expressions in All Groups
3.1 大強度間歇運動改善高脂喂養(yǎng)大鼠的代謝表征
高飽和脂肪酸膳食誘導(dǎo)大鼠代謝表征(metabolic phenotype)如體成分、血糖與胰島素敏感性、血脂輪廓(lipid profile)等的異常改變,表現(xiàn)為高脂膳食導(dǎo)致不良體重增長、內(nèi)臟脂肪堆積,脂肪細胞體積增加;血脂(TG、TC和LDL-C)、血糖含量升高,胰島素敏感性下降,本研究結(jié)果與現(xiàn)有報道相吻合[6,45]。本研究主要探討大強度間歇運動對高脂喂養(yǎng)大鼠肥胖癥的預(yù)防作用,成功地建立了高脂膳食誘導(dǎo)的肥胖癥模型,為進一步研究肥胖癥運動干預(yù)效果及分子機制提供重要的科學(xué)對照。
3.2 大強度間歇運動對骨骼肌FAT/CD36、SCD1和CPT1表達的影響與作用分析
骨骼肌是脂肪酸氧化代謝最活躍的部位之一,也是能量物質(zhì)儲存的主要外周組織。脂肪酸由微循環(huán)系統(tǒng)進入骨骼肌細胞參與代謝,需要在多個調(diào)控分子的作用下實現(xiàn)脂肪酸轉(zhuǎn)運、胞內(nèi)脂質(zhì)合成、線粒體跨膜轉(zhuǎn)運并參與β氧化代謝。FAT/CD36 是脂肪酸跨膜轉(zhuǎn)運的關(guān)鍵轉(zhuǎn)運體,目前已有關(guān)于不同運動方式對骨骼肌FAT/CD36影響的研究報道。Holloway等[23]發(fā)現(xiàn),野生型小鼠急性運動后,骨骼肌線粒體FAT/CD36表達上調(diào);Bradley等[9]發(fā)現(xiàn),急性持續(xù)運動SD大鼠骨骼肌細胞膜FAT/CD36表達量增加20%;而Hoshino等[26]研究發(fā)現(xiàn),大強度間歇運動增加大鼠骨骼肌脂肪酸氧化代謝能力,但與線粒體中FAT/CD36表達量無關(guān)。目前有關(guān)運動對FAT/CD36表達影響結(jié)果的觀點并不一致,分析可能與運動強度、干預(yù)時間等運動要素有關(guān)。本研究中運動干預(yù)聯(lián)合高脂喂養(yǎng)時FAT/CD36表達均呈上升趨勢,大強度間歇運動誘導(dǎo)FAT/CD36表達增加幅度更明顯,這與現(xiàn)有的研究結(jié)果一致。Kitaoka等[29]采用動物實驗研究發(fā)現(xiàn),大強度運動訓(xùn)練明顯增加骨骼肌FAT/CD36蛋白表達,增加底物利用率。Talanian等[47]針對未參加系統(tǒng)訓(xùn)練女性的研究也發(fā)現(xiàn),經(jīng)過6周大強度間歇運動后骨骼肌FAT/CD36的活性顯著增加。高脂喂養(yǎng)引起肌細胞外高濃度的脂肪酸供給,可誘導(dǎo)FAT/CD36表達以實現(xiàn)脂肪酸由循環(huán)系統(tǒng)轉(zhuǎn)運至肌細胞內(nèi),作為能量物質(zhì)儲存。運動進一步促進FAT/CD36表達上調(diào),使得脂肪酸膜轉(zhuǎn)運、細胞內(nèi)底物流通增加,為線粒體β氧化提供底物,同時,可充分動員外周組織如脂肪組織、肝臟中儲存的脂肪,降低組織脂質(zhì)含量[8,24]。FAT/CD36表達上調(diào)也可能增加細胞脂質(zhì)堆積的風(fēng)險及誘導(dǎo)胰島素抵抗,胞內(nèi)脂質(zhì)維持動態(tài)平衡與脂肪酸跨膜轉(zhuǎn)運、胞內(nèi)脂質(zhì)合成、脂肪酸氧化代謝等多環(huán)節(jié)協(xié)同作用密切相關(guān)。
SCD1是催化多不飽和脂肪酸(SFAs)轉(zhuǎn)化為單不飽和脂肪酸(MUFAs)的限速酶,可為肌細胞內(nèi)脂質(zhì)(IMCL)合成提供充足的底物[16]。本研究發(fā)現(xiàn),高脂膳食誘導(dǎo)骨骼肌SCD1表達增加,分析認(rèn)為,SCD1受到營養(yǎng)條件影響較大,飽和脂肪酸含量豐富的膳食易誘導(dǎo)骨骼肌SCD1表達增加,促進IMCL合成,這與現(xiàn)有的報道一致[51]。有動物實驗研究發(fā)現(xiàn),2周游泳和6周跑臺運動,均可增加肌肉中SCD1基因和蛋白表達量,調(diào)節(jié)肌細胞內(nèi)甘油三酯的合成和增加骨骼肌氧化代謝運動適應(yīng)能力[17,27]。人體研究與動物研究結(jié)果一致,Dube等[18]以超重或肥胖人群為研究對象,有氧鍛煉干預(yù)后骨骼肌SCD1增加,IMTG含量和組織氧化代謝能力增加,同時,體重和體脂含量下降,胰島素敏感性增加。Bergman等[7]研究表明,自行車運動員骨骼肌中SCD1含量較未訓(xùn)練人群明顯增加,伴隨IMTG含量上升,分析認(rèn)為,耐力訓(xùn)練引起的骨骼肌適應(yīng)性變化和氧化代謝能力增加,從而提高能源物質(zhì)儲備。本研究中,高脂安靜組和運動組SCD1表達無明顯差異,分析認(rèn)為,運動方式可能對高脂喂養(yǎng)條件下骨骼肌SCD1表達沒有影響。有研究指出,SCD1的代謝調(diào)節(jié)功能較為復(fù)雜,正常細胞功能的維持需要SCD1表達受到嚴(yán)格調(diào)控[4]。一方面,促進SFAs向MUFAs轉(zhuǎn)化,防止SFAs過多和酯化障礙引起脂質(zhì)毒性和細胞凋亡;另一方面,MUFAs是胞內(nèi)脂質(zhì)儲存池IMTG的重要底物,合成過多同樣會導(dǎo)致肌細胞脂質(zhì)過載,誘導(dǎo)胰島素抵抗和代謝異常。肌細胞內(nèi)脂質(zhì)維持動態(tài)平衡,可能與脂肪酸跨膜轉(zhuǎn)運、氧化代謝等多環(huán)節(jié)協(xié)同作用密切相關(guān)。
3.3 大強度間歇運動促進Rev-erbα表達及調(diào)節(jié)骨骼肌脂質(zhì)穩(wěn)態(tài)的機制分析
Rev-erbα是脂代謝調(diào)節(jié)核心作用因子,Rev-erbα敲除后小鼠表現(xiàn)出明顯的脂代謝異常[40]。Solt等[46]對高脂誘導(dǎo)的肥胖小鼠注射Rev-erbα激動劑后,骨骼肌中脂肪酸氧化代謝增加,伴隨體重和體脂含量下降,因此Rev-erbα可能作為肥胖癥等慢性病治療的靶基因。盡管越來越多的證據(jù)支持Rev-erbα在脂代謝中的重要作用,但對于其在骨骼肌中表達的影響因素仍知之甚少。本研究發(fā)現(xiàn),運動干預(yù)增加高脂喂養(yǎng)大鼠骨骼肌Rev-erbα表達量,尤其是大強度間歇運動方式引起其表達量顯著上升。大強度間歇運動誘導(dǎo)骨骼肌Rev-erbα表達明顯上調(diào)的機制需進一步研究,可能與骨骼肌收縮引起的能量消耗和物質(zhì)代謝的適應(yīng)性變化有關(guān)。
Rev-erb可直接調(diào)節(jié)脂質(zhì)代謝基因,并可能通過建立脂質(zhì)代謝信號通路的交聯(lián)對話機制,共同調(diào)節(jié)骨骼肌脂代謝和維持能量穩(wěn)態(tài)[11,31,46]。Solt等[46]采用Rev-erbα激動劑(SR9009、SR9011)對正常小鼠和肥胖小鼠進行干預(yù),研究發(fā)現(xiàn),小鼠骨骼肌脂肪酸代謝明顯增加,F(xiàn)ATP1、CPT1表達上調(diào),而SCD1表達受到抑制,伴隨組織中TG和體脂含量下降。Burris等[12]、Ramakrishnan等[38]也指出,Rev-erbs與FAT/CD36、SCD1、CPT1存在密切聯(lián)系。
目前尚不清楚在高脂喂養(yǎng)聯(lián)合運動干預(yù)時,Rev-erbα是否直接調(diào)控FAT/CD36、SCD1和CPT1的表達,影響脂肪酸轉(zhuǎn)運、合成和氧化代謝,從而改善組織局部和整體代謝。本研究通過整合分析,提出如下可能作用機制:Rev-erbα通過刺激FAT/CD36表達使脂肪酸跨膜轉(zhuǎn)運增加,促進細胞能量物質(zhì)的供應(yīng),同時,動員外周組織如脂肪組織、肝臟中儲存的脂肪,降低循環(huán)系統(tǒng)中流通的脂質(zhì)含量。Rev-erbα調(diào)節(jié)SCD1的表達水平,既保障IMTG維持在一定水平為能量代謝提供底物儲存,又防止再合成過載導(dǎo)致的脂質(zhì)異常沉積。與此同時,增加脂肪酸β氧化限速酶CPT1的表達,促進線粒體生物合成并提供運動能量消耗,從而減少高脂膳食喂養(yǎng)誘導(dǎo)的細胞脂質(zhì)毒性及胰島素抵抗等。大強度間歇運動利用運動中較強的刺激效應(yīng)和運動“后效應(yīng)”,刺激能量誘導(dǎo)因子Rev-erbα表達上調(diào),并發(fā)揮級聯(lián)效應(yīng)增加對脂代謝因子的協(xié)同調(diào)節(jié),從而維持骨骼肌的脂質(zhì)內(nèi)穩(wěn)態(tài)。運動干預(yù)聯(lián)合高脂喂養(yǎng)時,Rev-erbα調(diào)控脂代謝信號通路的可能作用機制,仍需采用骨骼肌Rev-erbα特異性基因敲除和干擾模型進一步探索和驗證。
1.不同運動干預(yù)聯(lián)合高脂喂養(yǎng)對肥胖癥的預(yù)防作用效果存在差異;從代謝表征分析,大強度間歇運動方式具有較強的時效性,預(yù)防效果優(yōu)于低強度持續(xù)運動方式。
2.大強度間歇運動促進骨骼肌脂代謝核心作用因子Rev-erbα表達上調(diào),可能通過調(diào)控FAT/CD36、SCD1和CPT1的表達量,維持高脂喂養(yǎng)時脂肪酸跨膜轉(zhuǎn)運、胞內(nèi)合成和線粒體生物氧化,共同維持脂質(zhì)穩(wěn)態(tài)和能量平衡。Rev-erbα調(diào)控運動干預(yù)時脂代謝信號通路,可能是肥胖癥預(yù)防骨骼肌適應(yīng)的新機制,相關(guān)研究有待進一步深入。
[1]沈友青,宋濤,龐秋,等.大強度間歇運動在肥胖癥及其相關(guān)慢性病干預(yù)中的應(yīng)用研究進展[J].中國運動醫(yī)學(xué)雜志,2013,32(8):741-748.
[2]施曼莉,朱榮.高強度間歇運動對骨骼肌糖原含量的影響及機制研究[J].體育科學(xué),2015,35(4):66-71.
[3]AFZALPOUR M E,CHADORNESHIN H T,FOADODDINI M,etal.Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain[J].Physiol Behav,2015,147:78-83.
[4]ARREGUI M,BUIJSSE B,STEFAN N,etal.Heterogeneity of the Stearoyl-CoA desaturase-1(SCD1) gene and metabolic risk factors in the EPIC-potsdam study[J].PLoS One,2012,7(11):e48338.
[5]BEDFORD T G,TIPTON C M,WILSON N C,etal.Maximum oxygen consumption of rats and its changes with various experimental procedures[J].J Appl Physiol,1979,47(6):1278-1283.
[6]BENNETT C B,CHILIBECK P D,BARSS T,etal.Metabolism and performance during extended high-intensity intermittent exercise after consumption of low- and high-glycaemic index pre-exercise meals[J].Br J Nutr,2012,108 (Suppl 1):S81-90.
[7]BERGMAN B C,PERREAULT L,HUNERDOSSE D M,etal.Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes[J].J Appl Physiol,2010,108(5):1134-1141.
[8]BONEN A,DYCK D J,IBRAHIMI A,etal.Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36[J].Am J Physiol,1999,276(4 Pt1):E642-649.
[9]BRADLEY N S,SNOOK L A,JAIN S S,etal.Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle[J].Am J Physiol Endocrinol Metab,2012,302(2):E183-189.
[10]BRUCE C R,THRUSH A B,MERTZ V A,etal.Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content[J].Am J Physiol Endocrinol Metab,2006,291(1):E99-E107.
[11]BUGGE A,FENG D,EVERETT L J,etal.Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function[J].Genes Dev,2012,26(7):657-667.
[12]BURRIS T P.Nuclear hormone receptors for heme:REV-ERBalpha and REV-ERBbeta are ligand-regulated components of the mammalian clock[J].Mol Endocrinol,2008,22(7):1509-1520.
[13]COCKS M,SHAW C S,SHEPHERD S O,etal.Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity,insulin sensitivity,muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men[J].J Physiol Biochem,2015.doi:10.1113/jphysiol.2014.285254.
[14]COCKS M,SHAW C S,SHEPHERD S O,etal.High intensity interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males[J].J Physiol,2012,591(Pt 3):641-656.
[15]CORTE DE ARAUJO A C,ROSCHEL H,PICANCO A R,etal.Similar health benefits of endurance and high-intensity interval training in obese children[J].PLoS One,2012,7(8):e42747.
[16]DOBRZYN P,DOBRZYN A,MIYAZAKI M,etal.Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver[J].Proc Natl Acad Sci U S A,2004,101(17):6409-6414.
[17]DOBRZYN P,PYRKOWSKA A,JAZUREK M,etal.Endurance training-induced accumulation of muscle triglycerides is coupled to upregulation of stearoyl-CoA desaturase 1[J].J Appl Physiol,2010,109(6):1653-1661.
[18]DUBE J J,AMATI F,TOLEDO F G,etal.Effects of weight loss and exercise on insulin resistance,and intramyocellular triacylglycerol,diacylglycerol and ceramide[J].Diabetologia,2011,54(5):1147-1156.
[19]GIBALA M J,LITTLE J P,MACDONALD M J,etal.Physiological adaptations to low-volume,high-intensity interval training in health and disease[J].J Physiol,2012,590(Pt 5):1077-1084.
[20]GILLEN J,LITTLE J,PUNTHAKEE Z,etal.Acute high-intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes[J].Diabetes Obes Metab,2012,14(6):575-577.
[21]HAFSTAD A D,BOARDMAN N T,LUND J,etal.High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart[J].J Appl Physiol,2011,111(5):1235-1241.
[22]HARAM P M,KEMI O J,LEE S J,etal.Aerobic interval training vs.continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity[J].Cardiovasc Res,2009,81(4):723-732.
[23]HOLLOWAY G P,JAIN S S,BEZAIRE V,etal.FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle[J].Am J Physiol Regul Integr Comp Physiol,2009,297(4):R960-967.
[24]HOLLOWAY G P,LUIKEN J J,GLATZ J F,etal.Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation:an overview[J].Acta Physiol (Oxf),2008,194(4):293-309.
[25]HOLLOWAY T M,BLOEMBERG D,DA SILVA M L,etal.High intensity interval and endurance training are associated with divergent skeletal muscle adaptations in a rodent model of hypertension[J].Am J Physiol Regul Integr Comp Physiol,2015.308(11):R927-934.
[26]HOSHINO D,YOSHIDA Y,KITAOKA Y,etal.High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle[J].Appl Physiol Nutr Metab,2013,38(3):326-333.
[27]IKEDA S,MIYAZAKI H,NAKATANI T,etal.Up-regulation of SREBP-1c and lipogenic genes in skeletal muscles after exercise training[J].Biochem Biophys Res Commun,2002,296(2):395-400.
[28]KILPATRICK M W,GREELEY S J,FERRON J M.A comparison of the impacts of continuous and interval cycle exercise on perceived exertion[J].Eur J Sport Sci,2015(Epub ahead of print).
[29]KITAOKA Y,MUKAI K,AIDA H,etal.Effects of high-intensity training on lipid metabolism in Thoroughbreds[J].Am J Vet Res,2012,73(11):1813-1818.
[30]KOJETIN D J,BURRIS T P.REV-ERB and ROR nuclear receptors as drug targets[J].Nat Rev Drug Discov,2014,13(3):197-216.
[31]LE MARTELOT G,CLAUDEL T,GATFIELD D,etal.REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis[J].PLoS Biol,2009,7(9):e1000181.
[32]LINDEN M A,FLETCHER J A,MORRIS E M,etal.Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training[J].Med Sci Sports Exe,2015,47(3):556-567.
[33]MORIFUJI M,SANBONGI C,SUGIURA K.Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats[J].Br J Nutr.2006,96(3):469-475.
[34]MUNIYAPPA R,CHEN H,MUZUMDAR R H,etal.Comparison between surrogate indexes of insulin sensitivity/resistance and hyperinsulinemic euglycemic clamp estimates in rats[J].Am J Physiol Endocrinol Metab,2009,297(5):E1023-1029.
[35]NIU Y,YUAN H,FU L.Aerobic exercise's reversal of insulin resistance by activating AMPKα-ACC-CPT1 signaling in the skeletal muscle of C57BL6 mice[J].Int J Sport Nutr Exe Metab,2010,20(5):370-380.
[36]POPKIN B M,ADAIR L S,NG S W.Global nutrition transition and the pandemic of obesity in developing countries[J].Nutr Rev,2012,70(1):3-21.
[37]PRIEUR F,MUCCI P.Effect of high-intensity interval training on the profile of muscle deoxygenation heterogeneity during incremental exercise[J].Eur J Appl Physiol,2013,113(1):249-257.
[38]RAMAKRISHNAN S N,LAU P,BURKE L J,etal.Rev-erbbeta regulates the expression of genes involved in lipid absorption in skeletal muscle cells:evidence for cross-talk between orphan nuclear receptors and myokines[J].J Biol Chem,2005,280(10):8651-8659.
[39]RAMOS J S,DALLECK L C,TJONNA A E,etal.The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function:A systematic review and meta-analysis[J].Sports Med,(Epub ahead of print).
[40]RASPE E,DUEZ H,MANSEN A,etal.Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription[J].J Lipid Res,2002,43(12):2172-2179.
[41]ROBITAILLE J,HOUDE A,LEMIEUX S,etal.Variants within the muscle and liver isoforms of the carnitine palmitoyltransferase I (CPT1) gene interact with fat intake to modulate indices of obesity in French-Canadians[J].J Mol Med,2007,85(2):129-137.
[42]ROCHA R E,COELHO I,PEQUITO D C,etal.Interval training attenuates the metabolic disturbances in type 1 diabetes rat model.[J].Arq Bras Endocrinol Metabol.2013,57(8):594-602.
[43]SARIS W H,SCHRAUWEN P.Substrate oxidation differences between high- and low-intensity exercise are compensated over 24 hours in obese men[J].Int J Obes Relat Metab Disord,2004,28(6):759-765.
[44]SCHMITTGEN T D,LIVAK K J.Analyzing real-time PCR data by the comparative CT method[J].Nature Protocols,2008,3(6):1101-1108.
[45]SENE-FIORESE M,DUARTE F O,SCARMAGNANI F R,etal.Efficiency of intermittent exercise on adiposity and fatty liver in rats fed with high-fat diet[J].Obesity (Silver Spring),2008,16(10):2217-2222.
[46]SOLT L A,WANG Y J,BANERJEE S,etal.Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists[J].Nature,2012,485(7396):62-68.
[47]TALANIAN J L,HOLLOWAY G P,SNOOK L A,etal.Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle[J].Am J Physiol Endocrinol Metab,2010,299(2):E180-188.
[48]THE JACKSON LABORATORY.JAX Diet-Induced Obesity(DIO)Models[EB/OL].(2012-03-21).http://jaxmice jax org/diomice/index html.
[49]THOMPSON W R.Worldwide survey of fitness trends for 2015:What’s driving the market[J].ACSM's Health Fitness J,2014,18(6):8-17.
[50]UN GENERAL ASSEMBLY.Draft political declaration of the high-level meeting on the prevention and control of non-communicable diseases[DB/OL],http://www.un.org/en/ga/ncdmeeting,2011.
[51]VOSS M D,BEHA A,TENNAGELS N,etal.Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats:Implications for a role of stearoyl-CoA desaturase 1 in insulin resistance[J].Diabetologia,2005,48(12):2622-2630.
[52]WALLACE T M,LEVY J C,MATTHEWS D R.Use and abuse of HOMA modeling[J].Diabetes Care,2004,27(6):1487-1495.
[53]WHYTE L,GILL J,CATHCART A.Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweightobese men[J].Metabolism,2010,59(10):1421-1428.
The Effects of High-intensity Interval Trainingon Metabolic Profiles and Gene Expression ofMuscle Lipid Metabolism in High-fat Diet Rat
SHEN You-qing1,HUANG Guo-yuan2,WANG Pei-cai3,HUANG Zhi-qiang1,DAI Hui-ying1
Objective:To explore the efficacy of high-intensity interval training on preventing high-fat diet-induced obesity,and the molecular mechanism of regulating lipid metabolism in skeletal muscle.Methods:Thirty-seven Sprague-Dawley male rats were divided into four groups,control diet/sedentary group (CS),high-fat diet/sedentary (HS),high-fat diet/mild-intensity endurance exercise (HE),and high-fat diet/high-intensity interval exercise (HI).After acclimation,all exercise groups were made to exercise for 10 weeks on a motor-driven rodent treadmill according to exercise protocols,with matched running distances.Body weight,fat content,blood metabolites,quantitative insulin sensitivity check index (QUICKI),and adipocyte size were assessed using measurement,automatic biochemical analyzer,and histochemical method,respectively.The expressions of gene and protein regulating fatty acid metabolism were quantified by real-time PCR and western blotting,including nuclear receptor subfamily 1,group D,member 1(Rev-erbα),stearoyl-CoA desaturase-1(SCD1),carnitine palmitoyltransferase 1(CPT1),and fatty acid translocase (FAT/CD36).Results:Body weight,TG,TC,LDL-C,and GLU in HS group was increased,while QUICKI was reduced.The size of adiposity cell in HS group was expanded.Body weight,serum lipid and GLU in HI group were lower than those in HS group,while insulin sensitivity was significantly improved in HI group.Adipocyte size in HI group was less than that in HS and HE group.The difference between HE group and HS group was not significant.The expression of FAT/CD36,and CPT1 was elevated in the HI group,which also had the highest level of Rev-erbα expression.The expression of FAT/CD36,and SCD1 was up-regulated in HS,with no statistic change in Rev-erbα expression.Conclusions:High-fat diet led to disorder of metabolic characterization and lipid metabolism in rat skeletal muscle.The HI-induced increase in fatty acid transport across the cell membrane,intracellular synthesis and ?-oxidation,which could effectively prevent the disorder of metabolic profiles and lipid imbalance.The effect of high-intensity interval training was more time-effective than that of mild-intensity durance training.The HI-induced up-regulation of Rev-erbα might be newly developed mechanism in interaction with regulatory of lipid metabolism,and further to maintain lipid homeostasis in skeletal muscle.
mild-intensityendurancetraining;high-intensityintervaltraining;skeletalmuscle;Rev-erbα;FAT/CD36;SCD1;CPT1
1002-9826(2016)01-0084-08
10.16470/j.csst.201601012
2015-04-13;
2015-09-10
湖北省自然科學(xué)基金資助項目(2015CFC881)。
沈友青(1978-),女,湖北孝感人,副教授,博士,主要研究方向為慢性病運動干預(yù),Tel:(027)87942627,E-mail:future0104@hotmail.com;黃國源(1950-),男,上海人,教授,博士,主要研究方向為老年體育、健康體適能,E-mail:ghuang@usi.edu;王配才(1985-)男,山東臨沂人,講師,碩士,主要研究方向為運動生物醫(yī)學(xué)監(jiān)控,E-mail:275236880@qq.com;黃志強(1978-),男,江西南昌人,副教授,碩士,主要研究方向為健康體適能,E-mail:710236060@qq.com;代會瑩(1983-),女,黑龍江哈爾濱人,講師,碩士,主要研究方向為運動損傷康復(fù)治療,E-mail:13370564@qq.com。作者單位:1.湖北第二師范學(xué)院 體育學(xué)院,湖北 武漢 430205;2.美國南印第安納大學(xué) 運動科學(xué)系,印第安納州 伊凡斯威爾市 47712;3.江漢大學(xué) 教育科學(xué)學(xué)院,湖北 武漢 430056 1.Hubei University of Education,Wuhan 430205,China;2.University of Southern Indiana,Evansville,47712,America;3.Jianghan University,Wuhan 430056,China.
G804.23
A