楊 君,馬峙英,王省芬
?
棉花纖維品質(zhì)改良相關(guān)基因研究進(jìn)展
楊 君,馬峙英,王省芬
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/教育部華北作物種質(zhì)資源研究與利用重點(diǎn)實(shí)驗(yàn)室/河北省作物種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室,河北保定071001)
棉纖維是優(yōu)良的、使用最為廣泛的天然纖維。隨著人們生活水平的提高,對(duì)天然純棉織物的需求不斷增加,同時(shí)對(duì)品質(zhì)的要求也愈來(lái)愈高。因此,提高棉纖維產(chǎn)量和品質(zhì)成為當(dāng)前棉花遺傳育種的重要目標(biāo),對(duì)棉纖維發(fā)育相關(guān)基因的克隆與功能研究是實(shí)現(xiàn)這一目標(biāo)的重要基礎(chǔ)。棉纖維發(fā)育由4個(gè)明顯但又重疊的時(shí)期組成,包括纖維細(xì)胞的起始、伸長(zhǎng)(初生壁合成)、次生壁合成和脫水成熟。起始是影響纖維細(xì)胞數(shù)量的重要時(shí)期,而纖維長(zhǎng)度和強(qiáng)度的決定發(fā)生在次生壁合成期和脫水成熟期。棉纖維發(fā)育是一個(gè)復(fù)雜而有序的過(guò)程,由大量的基因參與調(diào)控。目前,已經(jīng)有一些在棉纖維發(fā)育過(guò)程中發(fā)揮重要作用的基因被報(bào)道,包括各種轉(zhuǎn)錄因子、參與激素代謝基因、編碼細(xì)胞壁蛋白和細(xì)胞骨架蛋白基因、活性氧代謝相關(guān)基因、以及參與糖和脂類代謝的基因等。文中對(duì)已報(bào)道的這些與棉花纖維發(fā)育相關(guān)基因的克隆和功能分析進(jìn)行了系統(tǒng)總結(jié),以期為棉花纖維發(fā)育及品質(zhì)改良研究提供參考。
棉花;纖維;基因;品質(zhì)改良
棉花(spp.)是全球重要的經(jīng)濟(jì)作物,每年產(chǎn)值近120億美元[1]。伴隨生活水平的提高,人們?cè)絹?lái)越注重追求綠色和健康,天然純棉制品像綠色食品一樣受到越來(lái)越多消費(fèi)者的青睞。但是,中國(guó)棉花產(chǎn)量卻不斷下降,“缺口”逐年加大。2002年,中國(guó)進(jìn)口原棉69萬(wàn)噸,到2007年,進(jìn)口猛增至543萬(wàn)噸,占當(dāng)年紡織用棉的41.6%。更為嚴(yán)峻的是中國(guó)優(yōu)質(zhì)棉產(chǎn)量嚴(yán)重不足,適紡60支以上高檔棉紗的優(yōu)質(zhì)原棉95%依賴進(jìn)口。因而,為了保證中國(guó)棉花產(chǎn)業(yè)可持續(xù)發(fā)展、維護(hù)中國(guó)棉花生產(chǎn)安全、滿足棉紡織業(yè)迅猛發(fā)展和國(guó)人生活水平提高之需要,提高棉花產(chǎn)量和改良纖維品質(zhì)成為中國(guó)棉花育種的重要目標(biāo),而棉纖維發(fā)育相關(guān)基因的克隆與功能分析是實(shí)現(xiàn)這一目標(biāo)的基礎(chǔ)。中國(guó)科學(xué)家對(duì)于棉花纖維發(fā)育機(jī)制,特別是關(guān)鍵基因的克隆與功能研究方面取得了豐富的成果,已使中國(guó)關(guān)于棉花纖維發(fā)育的研究躋身世界領(lǐng)先行列。
關(guān)于棉纖維發(fā)育基因的報(bào)道最早見(jiàn)于1992年[2]。隨著科學(xué)技術(shù)的迅猛發(fā)展,棉纖維發(fā)育相關(guān)基因的克隆與功能研究獲得了長(zhǎng)足進(jìn)步。棉纖維是由胚珠表皮細(xì)胞分化而成,其發(fā)育過(guò)程可分為4個(gè)階段:起始分化(initiation)(-3—3 days post anthesis,DPA)、細(xì)胞伸長(zhǎng)(cell elongation)或稱為初生壁合成(primary cell wall deposition)(2—20 DPA)、次生壁合成(secondary cell wall deposition)(15—45 DPA)以及脫水成熟(dehydration and maturation)(45—50 DPA)[3-5]。棉花的產(chǎn)量和質(zhì)量主要取決于前幾個(gè)階段:決定每個(gè)胚珠上纖維數(shù)量的分化起始期與決定纖維長(zhǎng)度與強(qiáng)度的初生壁和次生壁形成期[5-6]。因而,目前關(guān)于棉纖維發(fā)育基因的研究主要集中在這幾個(gè)時(shí)期。本文按照基因編碼蛋白的生物學(xué)功能進(jìn)行了分類總結(jié)(電子附表1),并綜述了這些基因在棉纖維發(fā)育中的功能研究進(jìn)展。
轉(zhuǎn)錄因子(transcription factors)在棉纖維細(xì)胞發(fā)育過(guò)程中起重要的調(diào)控作用。近年來(lái)報(bào)道的與棉纖維發(fā)育相關(guān)的轉(zhuǎn)錄因子主要包括MYB(v-myb avian myeloblastosis viral oncogene homolog)、HD-ZIP(homeodomain-leucine zipper)、MADS(MCM1- AGAMOUS-DEFICIENS-SRF)、KNOX(knotted related homeobox)、TCP(teosinte branched1/cycloidea/PCF)等家族成員。擬南芥()是目前基因功能解析最為全面的模式植物,其他植物的許多基因功能研究多源于擬南芥同源基因,棉花功能基因的研究也不例外。棉纖維細(xì)胞與擬南芥表皮毛一樣是高度伸長(zhǎng)的單細(xì)胞,兩者具有表皮毛發(fā)育調(diào)控的相似機(jī)制[7]。在擬南芥中,研究較為深入的表皮毛發(fā)育相關(guān)的轉(zhuǎn)錄因子如R2R3-MYB家族的GLABRA1 (GL1)[8]、R3-MYB家族的CAPRICE(CPC)[9]、GLABRA2(GL2)[10]等,它們的同源基因在棉花中已被成功克隆。
MYB轉(zhuǎn)錄因子家族在植物內(nèi)數(shù)量龐大,而R2R3類型基因不僅在MYB家族中數(shù)量最多,而且關(guān)于它們參與棉纖維細(xì)胞發(fā)育的研究也最為深入。Loguerico等[11]從陸地棉()開(kāi)花前3 d的胚珠cDNA文庫(kù)中篩選到6個(gè)R2R3-MYB類型轉(zhuǎn)錄因子基因(–),它們?cè)诿蘩w維發(fā)育的不同時(shí)期表達(dá)水平有不同的變化,暗示其在調(diào)控棉纖維細(xì)胞發(fā)育中具有不同的功能特異性。之后,Wang等[7]通過(guò)酵母單雜交(yeast one hybrid)技術(shù)證明其中的MYB2能夠調(diào)控棉花纖維發(fā)育基因()[12]的轉(zhuǎn)錄。Suo等[13]從棉纖維起始早期胚珠分離到55個(gè)包含不同MYB保守域的基因片段,并克隆其中一個(gè)R2R3-MYB類型基因,其在初始分化和伸長(zhǎng)期的棉纖維細(xì)胞中特異表達(dá)。通過(guò)RNAi和掃描電鏡技術(shù)進(jìn)一步證明參與纖維細(xì)胞起始與分化[14],其可能調(diào)控的與棉纖維發(fā)育相關(guān)基因包括、[6]、[15]和[16]。通過(guò)比較無(wú)纖維棉突變體與野生型(wild-type,WT)轉(zhuǎn)錄組,Machado等[17]分離了另一R2R3-MYB—。通過(guò)RNAi和過(guò)表達(dá)正反向驗(yàn)證,表明不僅參與調(diào)控棉纖維伸長(zhǎng),還能夠調(diào)控纖維起始分化數(shù)量和時(shí)間。GhMYB25-like與GhMYB25有69%氨基酸序列相似性,并且二者在棉纖維中的轉(zhuǎn)錄水平變化和趨勢(shì)一樣。RNAi研究進(jìn)一步證明對(duì)棉纖維發(fā)育具有重要的調(diào)節(jié)功能,很可能在和上游發(fā)揮作用[18]。最近,Wan等[19]首次通過(guò)圖位克隆獲得了一個(gè)調(diào)控棉花短絨發(fā)育的關(guān)鍵基因(MYBMIXTA-like transcription factor 3/GhMYB25-like in chromosome A12)。在光子突變體N1中的表達(dá)極低,這與其反義啟動(dòng)子驅(qū)動(dòng)產(chǎn)生的NAT(natural antisense transcripts)密切相關(guān)。小RNA深度測(cè)序結(jié)果進(jìn)一步表明的雙向轉(zhuǎn)錄可能會(huì)形成dsRNA,進(jìn)而產(chǎn)生21—22 nt的小RNA??赡芡ㄟ^(guò)這些小RNA進(jìn)行自我剪切而實(shí)現(xiàn)表達(dá)下調(diào),從而影響棉纖維發(fā)育[19]。此外,其他報(bào)道的參與棉纖維發(fā)育調(diào)控的R2R3類型MYB基因如和,它們?cè)诿蘩w維伸長(zhǎng)期優(yōu)勢(shì)表達(dá)并潛在調(diào)控脂轉(zhuǎn)移蛋白LTP3(lipid transfer protein)[20],以及和[21]等。
在擬南芥中,GL1、bHLH(basic helix-loop-helix)蛋白GL3(GLABRA3)、TTG1(TRANSPARENT TESTA GLABRA1)三者能夠結(jié)合,形成的復(fù)合體正向調(diào)控表皮毛發(fā)育[22]。CPC是一個(gè)含不完全重復(fù)區(qū)域R3類型的MYB,與GL1之間存在互作競(jìng)爭(zhēng),可阻止復(fù)合體形成,從而負(fù)向調(diào)控表皮毛發(fā)育[9]。Liu等[19]從陸地棉中克隆一個(gè),其過(guò)表達(dá)不僅導(dǎo)致棉纖維起始分化發(fā)生延遲,而且導(dǎo)致纖維長(zhǎng)度顯著降低。酵母雙雜交(yeast two-hybrid,Y2H)試驗(yàn)表明,棉花GhCPC同樣與GhTTG1/4、GhMYC1(GL3)之間存在互作。由此可推測(cè)擬南芥CPC與GL1-GL3-TTG復(fù)合體之間互作調(diào)控表皮毛發(fā)育的模式在棉花纖維調(diào)控中同樣存在。GhMYC1能夠與啟動(dòng)子中的順式元件E-box結(jié)合,因而推測(cè)這個(gè)互作調(diào)控的下游基因可能為[19]。
擬南芥GL2是HD-ZIP IV家族轉(zhuǎn)錄因子。已報(bào)道的參與棉纖維發(fā)育的同源性基因包括(meristem layer 1)[23]、[24]及[25-26]。在棉纖維發(fā)育中不僅具有與相似的表達(dá)方式,而且過(guò)量表達(dá)使擬南芥葉片和莖上的表皮毛數(shù)量顯著增加。能夠結(jié)合L-box順式元件,因而具有調(diào)控其他棉纖維發(fā)育基因的可能,如[12,27]。GbML1與GhMYB25之間通過(guò)START- domain(GbML1)和SAD-domain(GhMYB25)可以形成物理互作,因此,GbML1可能作為伴侶分子增強(qiáng)GhMYB25對(duì)棉纖維發(fā)育的調(diào)控[23]。與具有較高同源性,其沉默不僅使棉纖維細(xì)胞起始分化數(shù)量減少,而且時(shí)間延后。超表達(dá)顯著增加棉纖維細(xì)胞起始分化的數(shù)量。GhHD1可能作用于GhMYB25-like調(diào)控的下游過(guò)程,但不在GhMYB25和GhMYB109調(diào)控的下游。利用基因芯片(microarray)對(duì)GhHD1沉默和超表達(dá)棉株進(jìn)行分析,表明GhHD1可能通過(guò)WRKY和鈣離子信號(hào)通路(calcium-signaling pathway)改變乙烯(ethylene,ETH)和活性氧(reactive oxidation species,ROS)水平,進(jìn)而影響其他參與細(xì)胞擴(kuò)張與伸長(zhǎng)基因的表達(dá)[24]。中國(guó)科學(xué)院上海生命科學(xué)研究院陳曉亞院士團(tuán)隊(duì)先后在棉花中克隆了3個(gè)GL2同源基因—、、。其中,和顯示出與棉花纖維發(fā)育相關(guān)[25-26]。來(lái)自于亞洲棉()的與擬南芥具有較高同源性,主要在發(fā)育早期的棉纖維細(xì)胞中表達(dá)??苫パa(bǔ)擬南芥突變體缺陷,即使其重新長(zhǎng)出表皮毛[26]。超表達(dá)能夠使棉纖維變得更長(zhǎng),而將該基因沉默則導(dǎo)致棉纖維長(zhǎng)度縮短超過(guò)80%。通過(guò)數(shù)字化基因表達(dá)分析(digital gene expression analysis),發(fā)現(xiàn)了300多個(gè)可能受GhHOX3調(diào)控表達(dá)的差異基因[25]。在擬南芥中,L1-box被證明是HD-ZIP類轉(zhuǎn)錄因子結(jié)合的順式元件[28]。據(jù)此,18個(gè)啟動(dòng)子中具有該元件的基因被推測(cè)是受GhHOX3調(diào)控的下游基因,其中,包括2個(gè)具有使細(xì)胞壁松弛功能的基因—[12,27]和[29]。GhHOX3不僅與GhHD1存在互作,還與受赤霉素(gibberellin,GA)調(diào)控的DELLA蛋白GhSLR1存在互作[30]。因而,總結(jié)出GhHOX3介導(dǎo)的棉纖維發(fā)育的機(jī)制為棉纖維細(xì)胞內(nèi)GA水平正?;蜉^低時(shí),HOX3與其阻遏蛋白GhSLR1結(jié)合;當(dāng)GA水平升高后,GhSLR1被蛋白酶降解,使HOX3構(gòu)象改變,并與調(diào)控增強(qiáng)子GhHD1結(jié)合,進(jìn)而調(diào)控啟動(dòng)子序列含有L1-box的棉纖維發(fā)育相關(guān)基因表達(dá),最終使棉纖維變長(zhǎng)[25]。
MADS蛋白家族都含有一個(gè)保守的MADS-box結(jié)構(gòu)域,是植物內(nèi)另外一個(gè)大的轉(zhuǎn)錄因子家族[31]。在棉花中已經(jīng)發(fā)現(xiàn)幾個(gè),其中與棉纖維發(fā)育相關(guān)的如[32]、[33]、[34]、[35]、[36]等。除在轉(zhuǎn)錄水平表明這些基因參與棉纖維的發(fā)育外,進(jìn)一步的超表達(dá)試驗(yàn)表明可促進(jìn)酵母細(xì)胞伸長(zhǎng)[35],但則使擬南芥下胚軸長(zhǎng)度顯著降低,且GA相關(guān)合成基因的表達(dá)量顯著下降,表明可能通過(guò)調(diào)控GA合成參與棉纖維發(fā)育[36]。
Gong等[37]克隆了一個(gè)棉花KNOX(knotted related homeobox)Ⅱ型轉(zhuǎn)錄因子—KNL1(KNOTTED1- LIKE),它在纖維次生壁加厚期優(yōu)勢(shì)表達(dá)。顯著抑制棉株的纖維長(zhǎng)度和細(xì)胞壁厚度,比WT顯著降低。在擬南芥中,過(guò)量表達(dá)和基因抑制都可導(dǎo)致植株莖基部細(xì)胞壁厚度降低。具有轉(zhuǎn)錄因子的序列特征和互補(bǔ)擬南芥轉(zhuǎn)錄因子KNAT7的功能,卻不具有轉(zhuǎn)錄激活功能。然而,GhKNL1能夠與其他參與細(xì)胞壁形成相關(guān)的轉(zhuǎn)錄因子如OFP4(OVATE FAMILY PROTEIN4)[38]和MYB75[39]等發(fā)生互作,所以其可能是通過(guò)調(diào)節(jié)其他轉(zhuǎn)錄因子活力而影響棉纖維的發(fā)育[37]。
Hao等[40]克隆了一個(gè)海島棉Ⅰ型TCP基因—,它在棉纖維伸長(zhǎng)期優(yōu)勢(shì)表達(dá)。沉默后,棉纖維長(zhǎng)度和品質(zhì)顯著降低。Solexa測(cè)序、Affymetrix基因芯片分析及JA含量測(cè)定等試驗(yàn)結(jié)果表明,正向調(diào)控JA合成,進(jìn)而影響其他下游基因參與棉纖維伸長(zhǎng)。之后Wang等[41]從陸地棉中也克隆了一個(gè)TCP家族Ⅰ型基因—,該基因主要在起始及伸長(zhǎng)階段的纖維細(xì)胞中高表達(dá)。在擬南芥中異源表達(dá)促進(jìn)了莖和花序等部位表皮毛以及根毛的起始和伸長(zhǎng),以及改變了生長(zhǎng)素在擬南芥體內(nèi)的分布。進(jìn)一步的凝膠阻滯電泳(electrophoretic mobility shift assay,EMSA)試驗(yàn)顯示,GhTCP14蛋白能夠直接與AUX1、IAA3和PIN2等生長(zhǎng)素途徑關(guān)鍵基因的啟動(dòng)子結(jié)合。這些結(jié)果表明是通過(guò)激素調(diào)控棉纖維發(fā)育的。
激素在調(diào)節(jié)植物生長(zhǎng)發(fā)育和抗逆過(guò)程中具有核心重要性。目前,可作為植物激素的共有10種結(jié)構(gòu)不相關(guān)的小分子[42]。其中,被報(bào)道對(duì)棉纖維發(fā)育具有明顯影響的有ETH、油菜素內(nèi)酯(brassinosteroid,BR)、GA、細(xì)胞激動(dòng)素(cytokinin,CK)、生長(zhǎng)素(auxin,AUX)及脫落酸(abscisic acid,ABA)。
2.1 ETH
在棉花胚珠培養(yǎng)中,外源添加乙烯能夠顯著促進(jìn)棉纖維細(xì)胞伸長(zhǎng),而添加乙烯合成抑制劑硫代硫酸銀則顯著抑制棉纖維伸長(zhǎng)。此外,棉纖維cDNA文庫(kù)測(cè)序和基因芯片分析等分子試驗(yàn)結(jié)果也證明乙烯及其代謝途徑在棉花纖維細(xì)胞伸長(zhǎng)過(guò)程中發(fā)揮非常重要的作用[6]。Shi等[6]從陸地棉纖維cDNA文庫(kù)中克隆到編碼乙烯合成途徑的最后一個(gè)酶ACO(1-aminocyclopropane-1-carboxylic acid oxidase,1-氨基環(huán)丙烷-1-羧酸氧化酶)的3個(gè)同源基因,它們?cè)诶w維快速伸長(zhǎng)期特異高效表達(dá)。特別是在體外試驗(yàn)中,胚珠釋放乙烯量、表達(dá)水平、纖維伸長(zhǎng)速度三者保持一致,進(jìn)一步表明ACO是通過(guò)控制乙烯合成參與調(diào)控棉纖維細(xì)胞發(fā)育。雖然ACS(1-aminocyclopropane-1-carboxylicacid synthase,1-氨基環(huán)丙烷-1-羧酸合酶)是乙烯合成的限速酶,但其并不像ACO一樣通過(guò)上調(diào)轉(zhuǎn)錄參與乙烯合成進(jìn)而影響棉纖維發(fā)育。ACS活力增強(qiáng)可能是由于轉(zhuǎn)錄后修飾,即受CPK1(Ca2+-dependent protein kinase 1)作用而發(fā)生磷酸化[43]。
2.2 BR
體外試驗(yàn)中,應(yīng)用濃度非常低的BR能顯著促進(jìn)棉纖維細(xì)胞的生長(zhǎng),而添加BR合成抑制則導(dǎo)致纖維細(xì)胞的發(fā)育受到抑制[44],這表明BR在棉花纖維細(xì)胞伸長(zhǎng)過(guò)程中發(fā)揮重要的作用。類固醇5α還原酶(steroid 5α-reductase)是BR合成中的主要限速酶。Luo等[45]從陸地棉中克隆到一個(gè)具有編碼類固醇5α還原酶活力的基因—,它在棉纖維細(xì)胞起始分化和伸長(zhǎng)階段高表達(dá)。反義RNA抑制的表達(dá)和類固醇5α還原酶抑制劑處理胚珠的結(jié)果一致,均導(dǎo)致纖維細(xì)胞伸長(zhǎng)受到抑制。種皮特異表達(dá)GhDET2能夠使棉纖維數(shù)量和長(zhǎng)度顯著增加。編碼棉花BR受體蛋白BRI1(brassinosteroid insensitive 1)的基因早在2004年就已經(jīng)被克隆,并在轉(zhuǎn)錄水平初步證明其參與棉纖維發(fā)育[44, 46]。近來(lái),Sun等[47]通過(guò)過(guò)表達(dá)和基因沉默進(jìn)一步分析了在棉纖維發(fā)育中的功能。過(guò)表達(dá)對(duì)纖維長(zhǎng)度幾乎沒(méi)有影響,但卻使纖維素顯著積累。沉默使細(xì)胞次生壁的發(fā)育受到強(qiáng)烈抑制,導(dǎo)致纖維成熟度降低。這表明介導(dǎo)的BR信號(hào)是通過(guò)調(diào)控纖維素在次生壁中的沉積,進(jìn)而影響棉纖維的成熟度。Yang等[48]從棉花中克隆到一個(gè)編碼細(xì)胞色素P450的基因—,其編碼蛋白與擬南芥CYP734A1同源。突變體不僅導(dǎo)致棉株表現(xiàn)BR缺少的典型癥狀,即植株矮小和葉片黑綠,而且棉纖維長(zhǎng)度顯著變短。應(yīng)用RNA-Seq分析,推測(cè)PAG1可能是通過(guò)調(diào)控BR信號(hào)通路而影響乙烯信號(hào)、鈣離子信號(hào)、及細(xì)胞壁和細(xì)胞骨架相關(guān)基因表達(dá),進(jìn)而影響棉纖維發(fā)育。
2.3 GA
外施GA確實(shí)能夠促進(jìn)棉纖維細(xì)胞的伸長(zhǎng)[49]。檢測(cè)表明,棉花開(kāi)花當(dāng)天胚珠中的內(nèi)源GA濃度有一個(gè)顯著提升,并在纖維細(xì)胞伸長(zhǎng)過(guò)程中保持較高含量;而葉片中的GA濃度無(wú)明顯變化[50],說(shuō)明GA在棉花纖維細(xì)胞伸長(zhǎng)過(guò)程中發(fā)揮重要的正向調(diào)控作用。GA-20氧化酶是重要的GA生物合成和調(diào)控酶。Xiao等[51]從陸地棉中克隆到3個(gè)GA-20氧化酶同源基因,即、和。主要在正在伸長(zhǎng)的棉纖維細(xì)胞中表達(dá),而和的轉(zhuǎn)錄更多是發(fā)生在胚珠中。過(guò)量表達(dá)的轉(zhuǎn)基因棉,不但表現(xiàn)為棉纖維和胚珠中GA含量的增加,而且每個(gè)胚珠上棉纖維的初始數(shù)量和纖維長(zhǎng)度顯著增加。DELLA作為阻遏蛋白,是GA信號(hào)傳導(dǎo)途徑中重要的負(fù)調(diào)控因子[52]。目前,在棉花中共有8個(gè)含有DELLA保守域的編碼基因被報(bào)道,包括[50]、、、、[53]、[54]、和[55]。雖然轉(zhuǎn)錄水平上的變化初步表明這些DELLA基因參與棉纖維的發(fā)育,但還需進(jìn)一步在轉(zhuǎn)基因棉花中進(jìn)行功能驗(yàn)證與機(jī)制解析。
2.4 CK
CK能促進(jìn)體外培養(yǎng)的胚珠發(fā)育,但阻礙纖維細(xì)胞的發(fā)育[49]。開(kāi)花前,CK能夠刺激纖維起始發(fā)育,而開(kāi)花后CK對(duì)棉纖維發(fā)育產(chǎn)生抑制作用[56]。細(xì)胞激動(dòng)素脫氫酶(cytokinin dehydrogenase,CKX)是植物內(nèi)源CK合成的關(guān)鍵負(fù)調(diào)控因子。Zeng等[57]成功克隆了一個(gè)具有CKX活力的陸地棉基因,其在胚珠表皮中特異表達(dá);超表達(dá)能使棉花胚珠內(nèi)CK含量顯著降低,從而導(dǎo)致棉纖維起始分化數(shù)量明顯減少。該實(shí)驗(yàn)室進(jìn)一步研究發(fā)現(xiàn),抑制表達(dá)可使棉纖維細(xì)胞內(nèi)CK含量提高,其中CK含量提高20.4%和55.5%的轉(zhuǎn)基因棉株表現(xiàn)出葉片衰老推遲、光合作用升高、果枝增加、棉鈴和棉籽增大,從而使皮棉產(chǎn)量相應(yīng)提高了15.4%和20.0%,但CKX表達(dá)變化導(dǎo)致CK含量的變化對(duì)棉纖維品質(zhì)沒(méi)有產(chǎn)生顯著影響[58]。
2.5 AUX
外施吲哚-3-乙酸(indole-3-acetic acid,IAA,AUX)或利用FBP7表皮特異啟動(dòng)子將外源IAA合成基因(如來(lái)源于農(nóng)桿菌的)轉(zhuǎn)入棉花,不僅能夠推動(dòng)棉纖維起始,還能增加纖維數(shù)量[59-60]。Yang等[61]對(duì)來(lái)源于棉花胚珠的32 798個(gè)ESTs進(jìn)行了表達(dá)分析,并富集了許多與IAA合成(、、和)、信號(hào)傳導(dǎo)(、、和)及轉(zhuǎn)運(yùn)(和)相關(guān)的ESTs。雖然IAA對(duì)棉纖維發(fā)育的調(diào)控具有重要作用,但目前還未見(jiàn)關(guān)于這些基因的克隆與調(diào)控棉纖維發(fā)育功能等方面的深入報(bào)道。
2.6 ABA
目前,雖然關(guān)于ABA在棉纖維發(fā)育中的研究還不夠深入,但其參與棉纖維發(fā)育調(diào)控的重要作用早已被證實(shí)[62]。隨著棉鈴發(fā)育,ABA的含量從10 DPA開(kāi)始增加,到20 DPA逐漸降低,而到30—50 DPA時(shí)含量又有所增加[62]。高濃度的ABA對(duì)棉纖維發(fā)育具有明顯的抑制作用。在不同棉種中的研究發(fā)現(xiàn),內(nèi)源ABA含量高的品種其棉纖維會(huì)較短[63]。
在植物細(xì)胞生長(zhǎng)過(guò)程中,許多蛋白在細(xì)胞壁中積累,如各種結(jié)構(gòu)蛋白,包括富含脯氨酸蛋白(proline- rich protein,PRP)、阿拉伯半乳聚糖蛋白(arabinogalactan protein,AGP)、伸展蛋白(extensin,EXT),還有與多糖作用的擴(kuò)展蛋白(expansin,EXPA或Exp)及各種酶[64]。Feng等[65]利用抑制性消減雜交(suppression subtractive hybridization,SSH)方法在快速伸長(zhǎng)的棉纖維細(xì)胞中分離到5個(gè)基因家族,其中就包括PRP、AGP和EXPA。許文亮等[66]從棉花cDNA文庫(kù)中分離了5個(gè)PRP基因,其中和表達(dá)受纖維發(fā)育調(diào)節(jié)。進(jìn)一步分析顯示,抑制導(dǎo)致棉纖維發(fā)育相關(guān)基因表達(dá)發(fā)生了顯著變化,并促進(jìn)棉花纖維細(xì)胞伸長(zhǎng)。據(jù)此推測(cè)是棉纖維發(fā)育的負(fù)向調(diào)控因子[67]。Huang等[68]在陸地棉中克隆到19個(gè)類成束阿拉伯半乳聚糖蛋白(Fasciclin-like arabinogalactan protein,F(xiàn)LA)基因,、和特異性的或主要在10 DPA棉纖維細(xì)胞中表達(dá),而、、和雖不僅僅在纖維中表達(dá),但其水平也相對(duì)較高。Liu等[69]從海島棉中也克隆到一個(gè)FLA基因—,轉(zhuǎn)錄水平上的變化表明其參與棉纖維發(fā)育。過(guò)量表達(dá)能夠促進(jìn)棉纖維細(xì)胞伸長(zhǎng),并促進(jìn)其他初生細(xì)胞壁合成基因的表達(dá)顯著升高。相反,抑制表達(dá)則顯著降低棉纖維起始分化和伸長(zhǎng),且導(dǎo)致其他初生細(xì)胞壁合成基因表達(dá)顯著降低。不僅如此,的過(guò)表達(dá)和沉默還影響棉纖維初生細(xì)胞壁中葡萄糖(glucose)、阿拉伯糖(arabinose)及半乳糖(galactose)含量。由此表明可能通過(guò)影響初生細(xì)胞壁中AGP組成和完整度參與棉纖維起始分化與伸長(zhǎng)[70]。Harmer等[29]從陸地棉中克隆到6個(gè)-expansin基因(–),其中和在纖維中特異性表達(dá),暗示它們參與棉纖維發(fā)育。此外,還有一些其他參與棉纖維發(fā)育的蛋白定位于細(xì)胞壁,如,其編碼蛋白含有BURP(BNM2/USP-like/RD22/PG1b)域,主要在伸長(zhǎng)的棉纖維細(xì)胞中表達(dá)[12, 27]。過(guò)量表達(dá)不僅顯著提高了棉纖維長(zhǎng)度,還可使棉花種子明顯增大。GhRDL1與另一個(gè)參與棉纖維發(fā)育的細(xì)胞壁蛋白GhEXPA1之間存在蛋白互作。將這兩個(gè)基因共同超表達(dá),除了能夠使棉鈴顯著增大及棉產(chǎn)量明顯提高外,還能顯著改善棉纖維品質(zhì),包括纖維長(zhǎng)度、強(qiáng)度和馬克隆值(micronaire)[27]。
植物細(xì)胞骨架主要由微管(microtubule)和肌動(dòng)蛋白微絲(actin filament)組成[71]。在高等植物中,微管能夠指導(dǎo)纖維素微纖絲在細(xì)胞壁中的沉積方向,從而參與細(xì)胞形態(tài)的建成。早在20世紀(jì)90年代,微管就已經(jīng)被證實(shí)參與棉纖維發(fā)育[72-74]。微管的主要結(jié)構(gòu)組成是一種異源二聚體蛋白——微管蛋白(tubulin,TUB),它由和2個(gè)保守的亞基組成。Whittaker等[75]通過(guò)基因特異性探針檢測(cè)到5個(gè)-TUB基因在棉纖維細(xì)胞中的表達(dá)發(fā)生積累。Li等[15]克隆到一個(gè)編碼亞基的陸地棉基因——,其在棉纖維中優(yōu)勢(shì)表達(dá)。He等[76]在陸地棉中鑒定到795個(gè)微管蛋白ESTs(expressed sequence tags),其中19個(gè)-TUB基因被克隆。通過(guò)比較WT和無(wú)絨無(wú)絮突變體(fuzzless-lintless,)轉(zhuǎn)錄組,明確其中9個(gè)-TUB基因參與棉花纖維發(fā)育。肌動(dòng)蛋白微絲由肌動(dòng)蛋白(actin)分子螺旋狀聚合成。Li等[16]在陸地棉中發(fā)現(xiàn)了15個(gè)編碼肌動(dòng)蛋白的基因——,其中主要在棉纖維細(xì)胞中表達(dá)。抑制表達(dá)會(huì)破壞棉纖維細(xì)胞骨架網(wǎng)絡(luò),進(jìn)而影響棉纖維伸長(zhǎng)。通過(guò)酵母雙雜交和體外F-actin結(jié)合試驗(yàn),一些肌動(dòng)蛋白結(jié)合蛋白(actin binding protein,ABP)被鑒定,如GhPLIM1[77]、GhWLIM5[78]、GhCFE1A[79]、GhPFN2[80]、ADF1(actin depolymerizing factor)[81-82]、WLIM1a[83]等。轉(zhuǎn)錄水平上的顯著變化表明它們參與棉纖維發(fā)育,且可能通過(guò)與肌動(dòng)蛋白互作參與調(diào)節(jié)棉纖維細(xì)胞骨架。體外試驗(yàn)表明GhPLIM1與GhWLIM5能夠保護(hù)F-actin不被微絲解聚素B(Latrunculin B)解聚[77-78]。過(guò)量表達(dá)GhCFE1A或GhPFN2能夠顯著抑制棉纖維細(xì)胞伸長(zhǎng),可能是ABPs的過(guò)量表達(dá)打亂了肌動(dòng)蛋白骨架網(wǎng)絡(luò),從而導(dǎo)致纖維細(xì)胞伸長(zhǎng)的終止[79-80]。下調(diào)表達(dá)顯著增加了棉纖維細(xì)胞中肌動(dòng)蛋白微絲的豐度、細(xì)胞壁厚度和纖維素含量,使棉纖維長(zhǎng)度和強(qiáng)度顯著提高[81],而在煙草中過(guò)表達(dá)則顯著降低其下胚軸長(zhǎng)度和根毛數(shù)量,這表明可能在棉纖維發(fā)育中起重要的負(fù)調(diào)控作用。但過(guò)量表達(dá),棉纖維細(xì)胞壁變得更薄和緊密,纖維長(zhǎng)度、強(qiáng)度和細(xì)度得到改善。這可能與在陸地棉纖維發(fā)育中的雙重作用有關(guān)。WLIM1a不僅是肌動(dòng)蛋白的成束者,還可作為轉(zhuǎn)錄因子激活苯丙氨酸脫氨酶-box(Phe ammonia lyase-box)類基因的表達(dá),通過(guò)苯丙烷合成途徑參與棉纖維細(xì)胞壁木質(zhì)素(lignin)的合成[83]。
木聚糖(xylan)是棉纖維細(xì)胞壁的一種重要的半纖維素(hemicellulose)組成成分。Li等[84]在棉纖維中鑒定了2個(gè)編碼糖基轉(zhuǎn)移酶(glycosyltransferases)的基因—和,其中在15 DPA和20 DPA棉纖維中特異表達(dá)。在擬南芥中分別過(guò)量表達(dá)這兩個(gè)基因,均能顯著增加木聚糖的積累,表明這兩個(gè)糖基轉(zhuǎn)移酶基因可能通過(guò)調(diào)節(jié)棉纖維細(xì)胞壁中木聚糖積累來(lái)影響棉纖維發(fā)育。尿苷二磷酸木糖(uridine diphosphatexylose,UDP-Xyl)是合成半纖維素(hemicellulose)和果膠多糖(pectic polysaccharide)等非纖維素物質(zhì)的重要底物。在陸地棉中,Pan等[85-86]成功克隆了3個(gè)合成UDP-Xyl的重要基因—(UDP-glucuronate decarboxylase,尿苷二磷酸葡萄醛酸脫羧酶),轉(zhuǎn)錄水平上的變化表明它們參與棉纖維發(fā)育,但功能分析與調(diào)節(jié)機(jī)制還有待進(jìn)一步的研究。木葡聚糖內(nèi)轉(zhuǎn)糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase,XTH)是植物細(xì)胞壁重構(gòu)過(guò)程中的關(guān)鍵酶,擁有使細(xì)胞壁松弛的功能,因而具有通過(guò)調(diào)節(jié)棉纖維細(xì)胞壁的可塑性參與棉纖維發(fā)育的潛在性[87-89]。Michailidis等[87]在陸地棉中發(fā)現(xiàn)2個(gè),但只有在棉纖維伸長(zhǎng)期特異表達(dá)。Lee等[88]通過(guò)將在棉花中超表達(dá)進(jìn)一步證實(shí)了該基因參與棉纖維伸長(zhǎng)。Shao等[89]通過(guò)短纖維棉突變體(11)進(jìn)一步明確9—15DPA是XTH活力增加和上調(diào)棉纖維伸長(zhǎng)的關(guān)鍵時(shí)期。
通過(guò)轉(zhuǎn)基因的方法,Ruan等[90]證明了蔗糖合酶(sucrose synthase,Sus)在棉纖維細(xì)胞起始和伸長(zhǎng)過(guò)程中發(fā)揮重要作用。之后,Jiang等[91]從陸地棉中克隆了一個(gè)Sus基因,發(fā)現(xiàn)過(guò)量表達(dá)能夠改善棉纖維長(zhǎng)度和強(qiáng)度,這可能與其增加了棉纖維細(xì)胞壁的厚度相關(guān)。另外,半乳糖醛酸轉(zhuǎn)移酶(galacturonosyltransferase)[92]、果膠裂解酶(pectate lyase)[93]、磷脂酰肌醇4-激酶(phosphatidylinositol 4-kinase)[94]等也被報(bào)道參與棉纖維的發(fā)育。
脂肪酸不僅是棉籽作為油料作物的主要成分,其代謝也影響著棉纖維的發(fā)育,特別是極長(zhǎng)鏈脂肪酸(very long-chain fatty acid,VLCFA),它具有顯著促進(jìn)棉纖維發(fā)育的作用[95]。通過(guò)應(yīng)用乙烯合成抑制劑和檢測(cè)轉(zhuǎn)錄水平,Qin等[95]初步推測(cè)VLCFA合成在乙烯合成的上游,意味著VLCFA是通過(guò)調(diào)控乙烯合成促進(jìn)棉纖維伸長(zhǎng)。Wang等[96]通過(guò)同位素標(biāo)記相對(duì)和絕對(duì)定量(isobaric tag for relative and absolute quantitation,iTRAQ)技術(shù)和RNA-Seq技術(shù),在陸地棉胚珠蛋白組中發(fā)現(xiàn)2 005個(gè)蛋白參與花期棉纖維發(fā)育過(guò)程,其中很多基因/蛋白富集到脂肪酸代謝路徑。目前,已經(jīng)有幾個(gè)參與棉纖維發(fā)育的脂肪酸合成基因被報(bào)道,如VLCFA合成第3步反應(yīng)的(3-hydroxyacyl-CoA dehydratase,3-酮酯酰-CoA脫水酶)[96]、脂肪酸延長(zhǎng)第4步反應(yīng)的(-2- enoyl-CoA reductase,反式烯脂酰-CoA還原酶)[97]、(3-ketoacyl-CoA synthase,3-酮酯酰乙酰輔酶A合成酶)[6, 98-99]及(3-ketoacyl-CoA reductase,3-酮酯酰乙酰輔酶A還原酶)[100]等。利用酵母遺傳互補(bǔ)法很好地確定了這些棉花基因的脂肪酸合成功能,但關(guān)于這些基因參與棉纖維發(fā)育的研究還僅限于轉(zhuǎn)錄水平。因而,關(guān)于脂肪酸代謝及其相關(guān)基因調(diào)控棉纖維發(fā)育的機(jī)制還有待進(jìn)一步研究。
活性氧(reactive oxygen species,ROS)是氧分子的活躍形態(tài),包括羥自由基(HO-)、超氧陰離子(O2·-)、過(guò)氧化氫(H2O2)、單態(tài)氧(1O2)[101],其在棉纖維發(fā)育過(guò)程中具有重要作用。1999年,Potikha等[102]首次發(fā)現(xiàn)H2O2在棉纖維次生細(xì)胞壁分化過(guò)程中可作為發(fā)育信號(hào)分子。Mei等[103]從陸地棉中克隆到一個(gè)編碼第三類過(guò)氧化物酶(peroxidase)的基因,其主要在快速伸長(zhǎng)的棉纖維細(xì)胞中表達(dá),可能通過(guò)影響ROS的產(chǎn)生參與調(diào)節(jié)棉纖維伸長(zhǎng)。APX(ascorbate peroxidase)是另一種重要的ROS清除酶。GhAPX1A/D在棉纖維伸長(zhǎng)期優(yōu)勢(shì)表達(dá)[104]GhAPX1A/D,其對(duì)H2O2含量的調(diào)節(jié)被認(rèn)為是棉花纖維伸長(zhǎng)發(fā)育的關(guān)鍵調(diào)控機(jī)制之一[105]。最近,Zhang等[106]發(fā)現(xiàn),的表達(dá)與棉花纖維品質(zhì)顯著相關(guān),并證明了能夠通過(guò)調(diào)控Ca2+流、ROS穩(wěn)態(tài)等影響棉纖維的伸長(zhǎng)及次生細(xì)胞壁的合成。
8.1 水通道蛋白(aquaporin)
Naoumkina等[107]利用RNA-seq技術(shù)對(duì)陸地棉單基因顯性突變體(Ligon lintless-1)和(Ligon lintless-2)的研究中發(fā)現(xiàn),水通道蛋白是這兩個(gè)突變體中下調(diào)表達(dá)最顯著的基因家族之一,由此表明該家族在棉纖維發(fā)育過(guò)程中發(fā)揮重要作用。陸地棉中至少包含71個(gè)編碼水通道蛋白的基因[108],但目前被進(jìn)一步證明與棉纖維發(fā)育相關(guān)的有5個(gè)PIPs(plasma- membrane intrinsic proteins)基因,其中屬于亞組[109],其余4個(gè)屬于亞組[110],根據(jù)在棉纖維中的優(yōu)先或特異表達(dá)推測(cè)它們參與棉纖維的發(fā)育。在棉花中敲除GhPIP2亞組基因能夠顯著抑制棉纖維的伸長(zhǎng),而在酵母中過(guò)量表達(dá)這些基因則可使宿主細(xì)胞縱向顯著伸長(zhǎng)。酵母雙雜交等試驗(yàn)表明,GhPIP2;3能夠與GhPIP2;4和GhPIP2;6相互作用,推測(cè)這些棉花PIP2組蛋白通過(guò)選擇性地形成異源寡聚體參與棉纖維的快速伸長(zhǎng)[110]。
8.2 14-3-3蛋白
在植物中,14-3-3蛋白是一種能夠與其他蛋白發(fā)生互作的、具有調(diào)節(jié)功能的酸性蛋白。目前,已報(bào)道的與棉纖維發(fā)育相關(guān)的編碼14-3-3蛋白的基因共6個(gè),分別是[111]、、、、和[112]。Q-PCR表明它們?cè)诿蘩w維快速伸長(zhǎng)期高水平表達(dá)。在裂殖酵母()中分別表達(dá)、和3個(gè)基因,均能促進(jìn)酵母細(xì)胞縱向生長(zhǎng)[112]。在棉花中過(guò)表達(dá)能夠促進(jìn)棉纖維伸長(zhǎng),而抑制、和則導(dǎo)致棉纖維細(xì)胞起始分化和伸長(zhǎng)減緩[113]。這進(jìn)一步表明在棉纖維細(xì)胞發(fā)育中發(fā)揮重要作用。此外,在轉(zhuǎn)(、和)棉花內(nèi),、、、、和等基因的表達(dá)也受到了顯著影響。蛋白互作試驗(yàn)證明Gh14-3-3L與GhBZR1間能夠互作,并且GhBIN2對(duì)GhBZR1的磷酸化可增強(qiáng)這種作用。酵母單雜交表明GhBZR1能夠與和啟動(dòng)子發(fā)生結(jié)合。綜合這些結(jié)果,推測(cè)Gh14-3-3可能通過(guò)作用于GhBZR1使其調(diào)控下游基因轉(zhuǎn)錄而參與棉纖維細(xì)胞發(fā)育[113]。
目前,中國(guó)科研工作者已經(jīng)率先完成了A、D 2個(gè)二倍體棉,四倍體陸地棉和海島棉的基因組測(cè)序工作[114-119]。如果把基因比作一個(gè)個(gè)文字,那么基因組就像一本厚厚的字典,今后的工作就是為這些“字”加上注釋,并最終付諸于育種應(yīng)用。全基因組生物信息學(xué)分析和轉(zhuǎn)錄組測(cè)序技術(shù)可以更快和更系統(tǒng)地發(fā)現(xiàn)目的基因,但棉花的轉(zhuǎn)基因不僅費(fèi)時(shí)費(fèi)力,而且許多基因型并不適合遺傳轉(zhuǎn)化,這使得棉花基因功能的驗(yàn)證工作進(jìn)展緩慢。雖然模式生物酵母細(xì)胞的伸長(zhǎng)和擬南芥表皮毛的發(fā)育模型使研究棉纖維發(fā)育相關(guān)基因變得簡(jiǎn)單,但這畢竟不能替代在棉花上進(jìn)行基因功能驗(yàn)證,而VIGS技術(shù)的出現(xiàn)為快速驗(yàn)證棉纖維發(fā)育基因功能帶來(lái)了希望,因?yàn)樵摷夹g(shù)不需要棉花遺傳轉(zhuǎn)化,而且似乎不受棉種的基因型影響[120]。雖然在棉纖維發(fā)育相關(guān)基因的研究方面已經(jīng)取得了可喜的成績(jī),但與轉(zhuǎn)基因抗蟲(chóng)棉相比,棉纖維品質(zhì)遺傳改良還需要更扎實(shí)的理論積累和技術(shù)開(kāi)發(fā)。
[1] Wilkins T A, Rajasekaran K, Anderson D M. Cotton biotechnology., 2000, 19(6): 511-550.
[2] John M E, Crow L J. Gene expression in cotton (L.) fiber: cloning of the mRNAs., 1992, 89(13): 5769-5773.
[3] Basra A S, Malik C P. Development of the cotton fiber., 1984, 89: 65-113.
[4] Kim H J, Triplett B A. Cotton fiber growth in planta and. Models for plant cell elongation and cell wall biogenesis., 2001, 127(4): 1361-1366.
[5] 潘玉欣, 馬峙英, 方宣鈞. 棉花纖維發(fā)育的遺傳機(jī)制及分子標(biāo)記. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2005, 28(3): 6-11.
Pan Y X, Ma Z Y, Fang X J. The genetic mechanism of cotton f ibre developmentand its molecular tagging., 2005, 28(3): 6-11. (in Chinese)
[6] Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation., 2006, 18(3): 651-664.
[7] Wang S, Wang J W, Yu N, Li C H, Luo B, Gou J Y, Wang L J, Chen X Y. Control of plant trichome development by a cotton fiber MYB gene., 2004, 16(9): 2323-2334.
[8] Oppenheimer D G, Herman P L, Sivakumaran S, Esch J, Marks M D. Agene required for leaf trichome differentiation inis expressed in stipules., 1991, 67(3): 483-493.
[9] Wada T, Tachibana T, Shimura Y, Okada K. Epidermal cell differentiation indetermined by ahomolog,., 1997, 277(5329): 1113-1116.
崗位巡檢,他給自己加碼,不僅增加頻次而且擴(kuò)大檢查范圍,甚至連每個(gè)設(shè)備附件都不放過(guò),即使是令人畏懼的超高壓反應(yīng)釜前、高壓管道架上也絕不馬虎。一次,上夜班,董松江查到反應(yīng)壩前。突然,他發(fā)現(xiàn)儀表指針急劇擺動(dòng),壓力上升到1560公斤!他當(dāng)機(jī)立斷,采取了緊急停車措施,從而避免了放炮。
[10] Rerie W G, Feldmann K A, Marks M D. Thegene encodes a homeo domain protein required for normal trichome development in., 1994, 8(12): 1388-1399.
[11] Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (L.)., 1999, 261(4/5): 660-671.
[12] Li C H, Zhu Y Q, Meng Y L, Wang J W, Xu K X, Zhang T Z, Chen X Y. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR., 2002, 163(6): 1113-1120.
[13] Suo J F, Liang X O, Pu L, Zhang Y S, Xue Y B. Identification ofencoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (L.)., 2003, 1630(1): 25-34.
[14] Pu L, Li Q, Fan X P, Yang W C, Xue Y B. The R2R3 MYB transcription factoris required for cotton fiber development., 2008, 180(2): 811-820.
[15] Li X B, Cai L, Cheng N H, Liu J W. Molecular characterization of the cottongene that is preferentially expressed in fiber., 2002, 130(2): 666-674.
[16] Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cottongene is functionally expressed in fibers and participates in fiber elongation., 2005, 17(3): 859-875.
[17] Machado A, Wu Y R, Yang Y M, Llewellyn D J, Dennis E S. The MYB transcription factorregulates early fibre and trichome development., 2009, 59(1): 52-62.
[18] Walford S A, Wu Y R, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development., 2011, 65(5): 785-797.
[19] WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts ofregulate cotton fiber development., 2016, 210(4): 1298-1310.
[20] Hsu C Y, Jenkins J N, Saha S, Ma D P. Transcriptional regulation of the lipid transfer protein gene, 2005, 168(1): 167-181.
[21] Hsu C Y, An C, Saha S, Ma D P, Jenkins J N, Scheffler B, Stelly D M. Molecular and SNP characterization of two genome specific transcription factor genesand, 2008, 159(1/2): 259-273.
[22] Zhao M Z, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci., 2008, 135(11): 1991-1999.
[23] Zhang F, Zuo K J, Zhang J Q, Liu X A, Zhang L D, Sun X F, Tang K X. An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development., 2010, 61(13): 3599-3613.
[24] Walford S A, Wu Y R, Llewellyn D J, Dennis E S. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene,., 2012, 71(3): 464-478.
[25] Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. Control of cotton fibre elongation by a homeodomain transcription factor., 2014, 5: 5519.
[26] Guan X Y, Li Q J, Shan C M, Wang S, Mao Y B, Wang L J, Chen X Y. The HD-Zip IV genefrom cotton is a functional homologue of the., 2008, 134(1): 174-182.
[27] Xu B, Gou J Y, Li F G, Shangguan X X, Zhao B, Yang C Q, Wang L J, Yuan S, Liu C J, Chen X Y. A cotton BURP domain protein interacts with-expansin and their co-expression promotes plant growth and fruit production., 2013, 6(3): 945-958.
[28] Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto K T, Takahashi T. Characterization of the class IV homeodomain-leucine zipper gene family in., 2006, 141(4): 1363-1375.
[29] Harmer S E, Orford S J, Timmis J N. Characterisation of six alpha-expansin genes in(upland cotton)., 2002, 268(1): 1-9.
[30] de Lucas M, Daviere J M, Rodriguez Falcon M, Pontin M, Iglesias Pedraz J M, Lorrain S, Fankhauser C, Blazquez M A, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation., 2008, 451(7177): 480-484.
[31] Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants., 2005, 347(2): 183-198.
[32] 鄭尚永, 郭余龍, 肖月華, 羅明, 侯磊, 羅小英, 裴炎. 棉花MADS框蛋白基因(GhMADS1)的克隆. 遺傳學(xué)報(bào), 2004, 31(10): 1136-1141.
Zheng S Y, Guo Y L, Xiao Y H, Luo M, Hou L, Luo X Y, Pei Y. Cloning of a MADS box protein gene () from cotton (L.)., 2004, 31(10): 1136-1141. (in Chinese)
[33] Lightfoot D, Malone K, Timmis J, Orford S. Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells., 2008, 279(1): 75-85.
[34] Shao S Q, Li B Y, Zhang Z T, Zhou Y, Jiang J, Li X B. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling., 2010, 37(12): 805-816.
[35] Li Y, Ning H, Zhang Z T, Wu Y, Jiang J, Su S Y, Tian F Y, Li X B. A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation., 2011, 43(8): 607-617.
[36] Zhou Y, Li B Y, Li M, Li X J, Zhang Z T, Li Y, Li X B. A MADS-box gene is specifically expressed in fibers of cotton () and influences plant growth of transgenicin a GA-dependent manner., 2014, 75: 70-79.
[37] Gong S Y, Huang G Q, Sun X, Qin L X, Li Y, Zhou L, Li X B. Cotton, encoding a class II KNOX transcription factor, is involved in regulation of fibre development., 2014, 65(15): 4133-4147.
[38] Li E, Wang S, Liu Y, Chen J G, Douglas C J. OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in., 2011, 67(2): 328-341.
[39] Bhargava A, Ahad A, Wang S, Mansfield S, Haughn G, Douglas C, Ellis B. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in., 2013, 237(5): 1199-1211.
[40] Hao J, Tu L L, Hu H Y, Tan J F, Deng F L, Tang W X, Nie Y C, Zhang X L. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system., 2012, 63(17): 6267-6281.
[41] Wang M Y, Zhao P M, Cheng H Q, Han L B, Wu X M, Gao P, Wang H Y, Yang C L, Zhong N Q, Zuo J R, Xia G X. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation., 2013, 162(3): 1669-1680.
[42] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling., 2009, 459(7250): 1071-1078.
[43] Wang H, Mei W Q, Qin Y M, Zhu Y X. 1-Aminocyclopropane- 1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation., 2011, 43(8): 654-661.
[44] Sun Y, Veerabomma S, Abdel-Mageed H A, Fokar M, Asami T, Yoshida S, Allen R D. Brassinosteroid regulates fiber development on cultured cotton ovules., 2005, 46(8): 1384-1391.
[45] Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation., 2007, 51(3): 419-430.
[46] Sun Y, Fokar M, Asami T, Yoshida S, Allen R D. Characterization of the brassinosteroid insensitive 1 genes of cotton., 2004, 54(2): 221-232.
[47] Sun Y, Veerabomma S, Fokar M, Abidi N, Hequet E, Payton P, Allen R D. Brassinosteroid signaling affects secondary cell wall deposition in cotton fibers., 2015, 65: 334-342.
[48] Yang Z R, Zhang C J, Yang X J, Liu K, Wu Z X, Zhang X Y, Zheng W, Xun Q Q, Liu C L, Lu L L, Yang Z E, Qian Y Y, Xu Z Z, Li C F, Li J, Li F G., a cotton brassinosteroid catabolism gene, modulates fiber elongation., 2014, 203(2): 437-448.
[49] Beasley C A, Ting I P. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules., 1974, 61(2): 188-194.
[50] Yu X L, Cui B M, Ruan M B, Wen W, Wang S C, Di R, Peng M. Cloning and characterization of, a DELLA-like gene from cotton ()., 2015, 75(1): 235-244.
[51] Xiao Y H, Li D M, Yin M H, Li X B, Zhang M, Wang Y J, Dong J, Zhao J, Luo M, Luo X Y. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis., 2010, 167(10): 829-837.
[52] Richards D E, King K E, Ait-ali T, Harberd N P. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling., 2001, 52(1): 67-88.
[53] Wen W, Cui B M, Yu X L, Chen Q, Zheng Y Y, Xia Y J, Peng M. Functional analysis of cotton DELLA-Like genes that are differentially regulated during fiber development., 2012, 30(4): 1014-1024.
[54] Liao W B, Ruan M B, Cui B M, Xu N F, Lu J J, Peng M. Isolation and characterization of a GAI/RGA-like gene from., 2009, 58(1): 35-45.
[55] Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen R. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1., 2008, 68(1/2): 1-16.
[56] Chen J G, Du X M, Zhou X, Zhao H Y. Levels of cytokinins in the ovules of cotton mutants with altered fiber development., 1997, 16(3): 181-185.
[57] Zeng Q W, Qin S, Song S Q, Zhang M, Xiao Y H, Luo M, Hou L, Pei Y. Molecular cloning and characterization of a cytokinin dehydrogenase gene from upland cotton (L.)., 2012, 30(1): 1-9.
[58] Zhao J, Bai W Q, Zeng Q W, Song S Q, Zhang M, Li X B, Hou L, Xiao Y H, Luo M, Li D M, Luo X Y, Pei Y. Moderately enhancing cytokinin level by down-regulation ofexpression in cotton concurrently increases fiber and seed yield., 2015, 35: 60.
[59] Gialvalis S, Seagull R W. Plant hormones alter fiber initiation in unfertilized, cultured ovules of., 2001(5): 252-258.
[60] Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality., 2011, 29(5): 453-458.
[61] Samuel Yang S, Cheung F, Lee J J, Ha M, Wei N E, Sze S H, Stelly D M, Thaxton P, Triplett B, Town C D, Jeffrey Chen Z. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton., 2006, 47(5): 761-775.
[62] Addicott F T. Abscisic Acid: correlations with abscission and with development in the cotton fruit., 1972, 49(4): 644-648.
[63] Gokani S J, Kumar R, Thaker V S. Potential role of abscisic acid in cotton fiber and ovule development., 1998, 17(1): 1-5.
[64] Jamet E, Canut H, Boudart G, Pont-Lezica R F. Cell wall proteins: a new insight through proteomics., 2006, 11(1): 33-39.
[65] Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber., 2004, 36(1): 51-56.
[66] 許文亮, 黃耿青, 王秀蘭, 汪虹, 李學(xué)寶. 一類新的編碼PRPs基因的分離及其在棉花纖維等組織細(xì)胞中的表達(dá). 生物化學(xué)與生物物理進(jìn)展, 2007, 34(5): 509-517.
Xu W L, Huang G Q, Wang X L, Wang H, Li X B. Molecular characterization and expression analysis offive novel genes encoding proline-rich proteinsin cotton ()., 2007, 34(5): 509-517. (in Chinese)
[67] Xu W L, Zhang D J, Wu Y F, Qin L X, Huang G Q, Li J, Li L, Li X B. Cottongene encoding a proline-rich protein is involved in fiber development., 2013, 82(4/5): 353-365.
[68] Huang G Q, Xu W L, Gong S Y, Li B, Wang X L, Xu D, Li X B. Characterization of 19 novel cottongenes and their expression profiling in fiber development and in response to phytohormones and salt stress., 2008, 134(2): 348-359.
[69] Liu H W, Shi R F, Wang X F, Pan Y X, Li Z K, Yang X L, Zhang G Y, Ma Z Y. Characterization and expression analysis of a fiber differentially expressed Fasciclin-like arabinogalactan protein gene in sea island cotton fibers., 2013, 8(7): e70185.
[70] Huang G Q, Gong S Y, Xu W L, Li W, Li P, Zhang C J, Li D D, Zheng Y, Li F G, Li X B. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton., 2013, 161(3): 1278-1290.
[71] Kost B, Chua N H. The plant cytoskeleton: vacuoles and cell walls make the difference., 2002, 108(1): 9-12.
[72] SEAGULL R W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during incotton fiber development., 1992, 101(3): 561-577.
[73] Seagull R W. The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers., 1990, 159(1): 44-59.
[74] Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of- and-tubulin isotypes during cotton fiber development., 1994, 105(4): 1347-1353.
[75] Whittaker D J, Triplett B A. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers., 1999, 121(1): 181-188.
[76] He X C, Qin Y M, Xu Y, Hu C Y, Zhu Y X. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules., 2008, 59(10): 2687-2695.
[77] Li L, Li Y, Wang N N, Li Y, Lu R, Li X B. Cotton LIM domain-containing protein GhPLIM1 is specifically expressed in anthers and participates in modulating F-actin., 2015, 17(2): 528-534.
[78] Li Y, Jiang J, Li L, Wang X L, Wang N N, Li D D, Li X B. A cotton LIM domain-containing protein (GhWLIM5) is involved in bundling actin filaments., 2013, 66(0): 34-40.
[79] Lü F, Wang H H, Wang X Y, Han L B, Ma Y P, Wang S, Feng Z D, Niu X W, Cai C P, Kong Z S, Zhang T Z, Guo W Z. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation., 2015, 66(7): 1877-1889.
[80] Wang J, Wang H Y, Zhao P M, Han L B, Jiao G L, Zheng Y Y, Huang S J, Xia G X. Overexpression of a profilin () promotes the progression of developmental phases in cotton fibers., 2010, 51(8): 1276-1290.
[81] Wang H Y, Wang J, Gao P, Jiao G L, Zhao P M, Li Y, Wang G L, Xia G X. Down-regulation ofgene expression affects cotton fibre properties., 2009, 7(1): 13-23.
[82] Chi J N, Han Y C, Wang X F, Wu L Z, Zhang G Y, Ma Z Y. Overexpression of theactin-depolymerizing factor 1 gene mediates biological changes in transgenic tobacco., 2013, 31(4): 833-839.
[83] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions ofin cell elongation and secondary wall formation in developing cotton fibers., 2013, 25(11): 4421-4438.
[84] Li L, Huang J F, Qin L X, Huang Y Y, Zeng W, Rao Y, Li J, Li X B, Xu W L. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development., 2014, 152(2): 367-379.
[85] Pan Y X, Wang X F, Liu H W, Zhang G Y, Ma Z Y. Molecular cloning of three UDP-glucuronate decarboxylase genes that are preferentially expressed infibers from elongation to secondary cell wall synthesis., 2010, 53(5): 367-373.
[86] Pan Y X, Ma J, Zhang G Y, Han G Y, Wang X F, Ma Z Y. cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton., 2007, 52(17): 2358-2364.
[87] Michailidis G, Argiriou A, Darzentas N, Tsaftaris A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid () cotton and its diploid progenitors expressed during fiber elongation., 2009, 166(4): 403-416.
[88] Lee J, Burns T H, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen R D. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation., 2010, 232(5): 1191-1205.
[89] Shao M Y, Wang X D, Ni M, Bibi N, Yuan S N, Malik W, Zhang H P, Liu Y X, Hua S J. Regulation of cotton fiber elongation by xyloglucan endotransglycosylase/hydrolase genes., 2011, 10(4): 3771-3782.
[90] Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development., 2003, 15(4): 952-964.
[91] Jiang Y J, Guo W Z, Zhu H Y, Ruan Y L, Zhang T Z. Overexpression ofincreases plant biomass and improves cotton fiber yield and quality., 2011, 10(3): 301-312.
[92] Chi J N, Han G Y, Wang F X, Zhang G Y, XiangSun Y, Ma Z Y. Isolation and molecular characterization of a novel homogalacturonan galacturonosyl- transferase gene () from., 2009, 8(19): 4755-4764.
[93] Wang H H, Guo Y, Lv F, Zhu H Y, Wu S J, Jiang Y J, Li F F, Zhou B L, Guo W Z, Zhang T Z. The essential role ofgene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton., 2010, 72(4/5): 397-406.
[94] Liu H W, Shi R F, Wang X F, Pan Y X, Zang G Y, Ma Z Y. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species., 2012, 11(3): 3367-3378.
[95] Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber andcell elongation by activating ethylene biosynthesis., 2007, 19(11): 3692-3704.
[96] Wang X C, Li Q, Jin X, Xiao G H, Liu G J, Liu N J, Qin Y M. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation., 2015, 114: 16-27.
[97] Song W Q, Qin Y M, Saito M, Shirai T, Pujol F M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif., 2009, 60(6): 1839-1848.
[98] Ji S J, Lu Y C, Feng J X, Wei G, Li J, Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array., 2003, 31(10): 2534-2543.
[99] Qin Y M, Pujol F M, Hu C Y, Feng J X, Kastaniotis A J, Hiltunen J K, Zhu Y X. Genetic and biochemical studies in yeast reveal that the cotton fibre-specificgene functions in fatty acid elongation., 2007, 58(3): 473-481.
[100] Qin Y M, Pujol F M A, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH- dependent 3-ketoacyl-CoA reductased from developing cotton fibers., 2005, 15(6): 465-473.
[101] Shapiguzov A, Vainonen J P, Wrzaczek M, Kangasjarvi J. ROS-talk-how the apoplast, the chloroplast, and the nucleus get the message through., 2012, 3: 292.
[102] Potikha T, Johnson D, Delmer D A, Collins C. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers., 1999, 119(3): 849-858.
[103] Mei W Q, Qin Y M, Song W Q, Li J, Zhu Y X. Cottonencoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation., 2009, 36(3): 141-150.
[104] Li H B, Qin Y M, Pang Y, Song W Q, Mei W Q, Zhu Y X. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development., 2007, 175(3): 462-471.
[105] Guo K, Du X Q, Tu L L, Tang W X, Wang P C, Wang M J, Liu Z, Zhang X L. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton ()., 2016, 67(11): 3289-3301.
[106] Zhang F, Jin X X, Wang L K, Li S F, Wu S, Cheng C Z, Zhang T Z, Guo W Z. A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca2+influx, ROS homeostasis, and actin filament reorganization., 2016, 171(3): 1750-1770.
[107] Naoumkina M, Thyssen G N, Fang D D. RNA-seq analysis of short fiber mutants Ligon-lintless-1 () and-2 () revealed important role of aquaporins in cotton (L.) fiber elongation., 2015, 15: 14.
[108] Park W, Scheffler B E, Bauer P J, Campbell B T. Identification of the family of aquaporin genes and their expression in upland cotton (L.)., 2010, 10: 142.
[109] Liu D Q, Tu L L, Wang L, Li Y J, Zhu L F, Zhang X L. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers., 2008, 27(8): 1385-1394.
[110] Li D D, Ruan X M, Zhang J, Wu Y J, Wang X L, Li X B. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development., 2013, 199(3): 695-707.
[111] Shi H, Wang X, Li D, Tang W, Wang H, Xu W, Li X. Molecular characterization of cottongene preferentially expressed during fiber elongation., 2007, 34(2): 151-159.
[112] Zhang Z T, Zhou Y, Li Y, Shao S Q, Li B Y, Shi H Y, Li X B. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation., 2010, 61(12): 3331-3344.
[113] Zhou Y, Zhang Z T, Li M, Wei X Z, Li X J, Li B Y, Li X B. Cotton () 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling., 2015, 13(2): 269-280.
[114] Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton., 2012, 44(10): 1098-1103.
[115] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang J Y, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. Genome sequence of the cultivated cotton., 2014, 46: 567-572.
[116] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X. Genome sequence of cultivated Upland cotton (TM-1) provides insights into genome evolution., 2015, 33(5): 524-530.
[117] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (L. acc. TM-1) provides a resource for fiber improvement., 2015, 33(5): 531-537.
[118] Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L.genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites., 2015, 5: 14139.
[119] Yuan D J, Tang Z H, Wang M J, Gao W H, Tu L L, Xin J, Chen L L, He Y H, Lin Z, Zhu L F. The genome sequence of Sea-Island cotton () provides insights into the allopolyploidization and development of superior spinnable fibres., 2015, 5: 17662.
[120] Qu J, Ye J, Geng Y F, Sun Y W, Gao S Q, Zhang B P, Chen W, Chua N H. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing., 2012, 160(2): 738-748.
(責(zé)任編輯 李莉)
附表1 棉花纖維品質(zhì)改良相關(guān)基因
Table 1 Major genes related to fiber quality improvement of cotton
Progress in Studies on Genes Related to Fiber Quality Improvement of Cotton
YANG Jun, MA Zhi-ying, WANG Xing-fen
(College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei, Baoding 071001, Hebei)
Cotton is an excellent and the most widely used natural fiber. With the improvement of living standards of people, the demand for more and better natural cotton fabrics is increasing continuously. Therefore, improving fiber yield and quality has become an important objective of cotton genetic breeding. To achieve this goal, cloning and functionally identifying cotton fiber development-related genes is the main foundation. Cotton fiber development consists of four distinct but overlapping stages, including fiber initiation, elongation (primary cell wall synthesis), secondary cell wall biosynthesis, and drying and maturation. The number of fibre cells per ovule is established at the initiation stage, and the length and strength of fibres are determined mainly at the stages of elongation and secondary cell wall synthesis. Cotton fiber development is a complicated and ordered process regulated by a large number of genes. To date, it has been reported that some genes play important roles in cotton fibre development, including various transcription factors, genes controlling the metabolism of plant hormones, cell wall and cytoskeleton-associated proteins, gene involving in the release or consumption of ROS, and lipid- and sugar- metabolism genes, etc. In order to provide reference for the future study of cotton fiber development and quality improvement, advances in the cloning and functional analysis of genes related to cotton fiber development were systematically summarized in this paper.
cotton; fiber; gene; quality improvement
2016-08-12;接受日期:2016-10-08
國(guó)家轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2014ZX08009-003)、國(guó)家“863”計(jì)劃(2013AA102601)
楊君,E-mail:yang22181@163.com。通信作者王省芬,E-mail:cotton@hebau.edu.cn